Computational Fabrication

Wojciech Matusik, Adriana Schulz

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s). SIGGRAPH '19 Courses, July 28 - August 01, 2019, Los Angeles, CA, USA ACM 978-1-4503-6307-5/19/07. 10.1145/3305366.3328065

Course Schedule

- 9:00 am 9:10 am
- 9:10 am 9:25 am
- 9:25 am 9:50 am
- 9:50 am 10:15 am
- 10:15 am 10:25 am
- 10:25 am 10:40 am
- 10:40 am 10:55 am
- 10:55 am 11:15 am
- 11:15 am 11:35 am
- 11:35 am 12:00 pm
- 12:00 pm 12:15 pm

- Introduction
- Hardware Review
 - From Design to Machine Code
 - **Design Space Representations**
- Performance-Driven Design
- Break
- **Performance Space Representation**
- **Inverse Methods**
- Multi-objective Inverse Methods
- Advanced Performance-Driven Design
- **Course Review**

Performance Space Representations

Recap: Performance-Driven Design

Design Space

From Design Space to Performance Space

• Numerical simulation maps points from design space to performance space

Design Space

Bounds on Performance

Design Space

Example I: Color Gamut

 The subset of colors which can be accurately represented within a given color space or by a certain output device.

Hardware Capabilities Limit Gamut

• Gamut can be directly tied to capabilities of a given hardware

Example II: Mechanical Properties in Printing Microstructures

Heterogeneous material

What physical properties can be achieved with microstructures?

Mapping Microstructures to Material Properties

Mechanical Properties Gamut

 Space of bulk material properties that can be achieved with all material microstructures of a given size

How to Represent Gamut?

- Boundary
 - Mesh/contour
- Volume
 - Grids (e.g., voxels), adaptive grids, points, distance fields

Why Volumetric Gamut Representations?

Why Volumetric Gamut Representations?

- Easy to check whether points are inside/outside
- Each cell can store points mapping back to the design space

How to Represent Gamut in Higher Dimensions?

How to Represent Gamut in Higher Dimensions?

- These representations are useful but have not been explored much
- Possible representations: points, classifiers

• When design space is low-dimensional

- When design space is low-dimensional we can explicitly compute the mapping for all points in design space
- Example: 2D printers/color

• When design space is high dimensional

• When design space is high dimensional we can use genetic algorithms to expand gamut in all directions

• Microstructure samples

- Microstructure samples
- Compute level set

- Microstructure samples
- Compute level set
- Find random seeds near the level
 set boundary

- Microstructure samples
- Compute level set
- Find random seeds near the level set boundary
- Find gradient towards outside of gamut

- Microstructure samples
- Compute level set
- Find random seeds near the level set boundary
- Find gradient towards outside of gamut
- Discrete and continuous sampling

- Microstructure samples
- Compute level set
- Find random seeds near the level set boundary
- Find gradient towards outside of gamut
- Discrete and continuous sampling
- Update level set

Example: Gamut for Microstructures with Cubic Symmetry

Course Schedule

- 9:00 am 9:10 am
- 9:10 am 9:25 am
- 9:25 am 9:50 am
- 9:50 am 10:15 am
- 10:15 am 10:25 am
- 10:25 am 10:40 am
- 10:40 am 10:55 am
- 10:55 am 11:15 am
- 11:15 am 11:35 am
- 11:35 am 12:00 pm
- 12:00 pm 12:15 pm

- Introduction
- Hardware Review
 - From Design to Machine Code
 - **Design Space Representations**
 - Performance-Driven Design
- Break
- Performance Space Representation
- **Inverse Methods**
- Multi-objective Inverse Methods
- Advanced Performance-Driven Design
- **Course Review**

Inverse Methods

Bounds on Performance

Design Space

• Inverse problem is much more difficult

Design Space

• Inverse problem is much more difficult

Design Space

• Inverse problem is much more difficult

Design Space

Functional Design/ Generative Design

Goal

Printable Object

Inverse: From Performance Space to Design Space

How do we update the design variables?

- ✓ converge to a good solutions quickly
- ✓ not get stuck in local minima

Depends on the Design Space!

• Each design can be mathematically represented as a point in \mathbb{R}^D

Design Space

Design Space for Additive Manufacturing

• Each design can be mathematically represented as a point in \mathbb{R}^D , where D = number of voxels in a build volume

Reducing Design Space

• Each design can be mathematically represented as a point in \mathbb{R}^D

Design Space

Example

Example

X

Reduced Parameters

- Mesh Vertices
- Mesh deformation "knobs"
 - e.g cages

simulated result

simulated result

goal

e.g., Newton's Method

Inverse Methods: Topology Optimization

- Objectives:
 - Structure should be as stiff as possible (i.e. the compliance should be minimal) when a load is applied
 - The total amount of material should be equal to V_{max}

Initial layout

Large discrete space: $\{0,1\}^N$

Output: Voxels with material assignment (no material, full)

• Design variables

Material property $\mathbf{C} = \rho \mathbf{C}_0$ $\mathbf{C} = \rho^p \mathbf{C}_0$

the method is called SIMP, power-law or density approach.

Large discrete space: $\{0,1\}^N$

• Default boundary conditions: MMB Beam

Full domain

• Default boundary conditions: MMB Beam

Half design domain

• Default boundary conditions: MMB Beam

Half design domain

• Default boundary conditions: MMB Beam

Half design domain

• How can we measure compliance?

Compute static equilibrium: KU = F

Measure Energy of the System: $\mathbf{U}^T \mathbf{K} \mathbf{U}$

$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$

$$V(\mathbf{x})$$

subject to
$$\frac{V(\mathbf{x})}{V_0} = f$$

 $\mathbf{K}\mathbf{U} = \mathbf{F}$

$$0 < x_{\min} \le x \le 1$$

Densities
$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$
subject to
$$\frac{V(\mathbf{x})}{V_0} = f$$
$$\mathbf{K} \mathbf{U} = \mathbf{F}$$
$$\mathbf{0} < \mathbf{x}_{\min} \le \mathbf{x} \le \mathbf{1}$$

$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$

subject to
$$\frac{V(\mathbf{x})}{V_0} = f$$

 $\mathbf{KU} = \mathbf{F}$
 $\mathbf{0} < \mathbf{x}_{\min} \le \mathbf{x} \le \mathbf{1}$ Valid range for densities

• Minimum compliance problem

Energy of the system

$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$

subject to
$$\frac{V(\mathbf{x})}{V_0} = f$$

 $\mathbf{K}\mathbf{U} = \mathbf{F}$

 $0 < x_{\min} \le x \le 1$

$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$

subject to $\frac{V(\mathbf{x})}{V_0} = f$
 $\mathbf{K} \mathbf{U} = \mathbf{F}$ Static equilibrium
 $\mathbf{0} < \mathbf{x}_{\min} \le \mathbf{x} \le \mathbf{1}$

$$\begin{split} \min_{\mathbf{x}} c(\mathbf{x}) &= \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e \\ \text{subject to} \quad \boxed{\frac{V(\mathbf{x})}{V_0}} &= f \\ \mathbf{K} \mathbf{U} &= \mathbf{F} \\ \mathbf{0} < \mathbf{x}_{\min} \leq \mathbf{x} \leq \mathbf{1} \end{split}$$

Result

• Based on the paper:

"A 99 line topology optimization code in Matlab" by Ole Sigmund, Structural and Multidisciplinary Optimization 21(2), 2001, pp. 120-127

- Code can be find here:
 - http://www.topopt.mek.dtu.dk/apps-and-software

Challenges

Hardware: Object-1000 Plus

- Up to 39.3 x 31.4 x 19.6 in
- 600dpi (~40 microns)
- 5 trillion voxels

Software: SIMP Topology Optimization

- Up to millions of elements
- Difficult to handle multiple materials

Course Schedule

- 9:00 am 9:10 am
- 9:10 am 9:25 am
- 9:25 am 9:50 am
- 9:50 am 10:15 am
- 10:15 am 10:25 am
- 10:25 am 10:40 am
- 10:40 am 10:55 am
- 10:55 am 11:15 am
- 11:15 am 11:35 am
- 11:35 am 12:00 pm
- 12:00 pm 12:15 pm

- Introduction
- Hardware Review
- From Design to Machine Code
- **Design Space Representations**
- Performance Driven Design
- Break
- Performance Space Representation
- Inverse Methods
- **Multi-objective Inverse Methods**
- Advanced Performance-Driven Design
- **Course Review**

Multiple Performance Objectives

Performance metric: **flexibility**

Performance metric: weight

Performance metric: **stability**

Multi-Objective Optimization

min
$$f_i(x)$$
, $i = 1, ..., d$ $x \in \mathbb{R}^D$
Subject to $g(x) \ge$, $h(x) = 0$

Multi-Objective Optimization

$$\min f_i(x), \qquad i = 1, \dots, d$$

Subject to $g(x) \ge, \quad h(x) = 0$

$$F(x) = [f_1(x), \dots, f_d(d)]$$

We know how to do this:

$$\min f\left(x\right)$$
Multi-Objective Optimization

$$\min f_i(x), \qquad i = 1, \dots, d$$

Subject to $g(x) \ge, \quad h(x) = 0$

$$F(x) = [f_1(x), \dots, f_d(d)]$$

We know how to do this:

$$\min f\left(x\right)$$

Solution: $f(x) = \sum_i w_i f_i(x)$

Multi-Objective Optimization

$$\min f_i(x), \qquad i = 1, \dots, d$$

Subject to $g(x) \ge, \quad h(x) = 0$

$$F(x) = [f_1(x), \dots, f_d(d)]$$

We know how to do this:

$$\min f\left(x\right)$$

Solution:
$$f(x) = \sum w_i f_i(x)$$

How do you pick the weights?

Do the Weights Mater?

Example:

 $f_1(x) = 2x - 5$ $f_2(x) = x + 3$ $0 \le x \le 1$

 $f(x) = w_1 f_1(x) + w_2 f_2(x)$

Do the Weights Mater?

Example:

 $f_1(x) = 2x - 5$ $f_2(x) = x + 3$ $0 \le x \le 1$

$$f(x) = w_1 f_1(x) + w_2 f_2(x)$$

No matter what weights you pick arg $\min f(x) = 0$

When Objectives are Conflicting

Experiment

(A)

3 carrots 8 candies

6 carrots 6 candies

Experiment

7 carrots3 candies

6 carrots 6 candies

(E)

5 carrots 7 candies

4 carrots 9 candies

Definition: Dominance

3 carrots8 candies

(D)

7 carrots3 candies

6 carrots 6 candies

(E)

5 carrots 7 candies

6 carrots 4 candies

4 carrots 9 candies

Definition: Dominance

3 carrots8 candies

(D)

7 carrots3 candies

6 carrots 6 candies

(E)

5 carrots 7 candies

6 carrots 4 candies

4 carrots 9 candies

A solution x_1 is said to dominate the other solution x_2 , if both the following conditions are true:

- 1. The solution x_1 is no worse than x_2 in all objectives.
- 2. The solution x_1 is strictly better than x_2 in at least one objective.

A point is Pareto optimal if it in not dominated by any point: called non-dominated point

Let's Plot this

4 carrots 9 candies

Pareto Front

For Minimization

Space of Optimal Solutions

Space of Optimal Solutions

The Geometry of the Front

Not a straight line!

Solution: $f(x) = \sum_i w_i f_i(x)$ \otimes

The Front Can Have Gaps

The Front Can Have Non-Convex Regions

Pareto Front Discovery

Main Challenge:

- Converge to optimal solutions
- Diverse set that describes the full front

Performance Space

Problem: Each Single Objective Optimization is not SIMPLE!

Move many points in parallel towards the front at the same time?

Elitist Non-dominated Sorting GA or NSGA-II

Figure 13: Population at generation 100.

Finding the Full (Continuous) Front

Set of Manifolds

Example

Schulz et al 2018

Course Schedule

- 9:00 am 9:10 am
- 9:10 am 9:25 am
- 9:25 am 9:50 am
- 9:50 am 10:15 am
- 10:15 am 10:25 am
- 10:25 am 10:40 am
- 10:40 am 10:55 am
- 10:55 am 11:15 am
- 11:15 am 11:35 am
- 11:35 am 12:00 pm
- 12:00 pm 12:15 pm

- Introduction
- Hardware Review
 - From Design to Machine Code
 - **Design Space Representations**
 - Performance Driven Design
- Break
- **Performance Space Representation**
- **Inverse Methods**
- Multi-objective Inverse Methods
- Advanced Performance-Driven Design
- **Course Review**

Advanced Performance-Driven Design

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models
Application: Interactive Garment Design

Linear Sensitivity Analysis

• What does this derivative tells us about our surface ?

Linear Sensitivity Analysis

Source: Umetani et al 2011

Sensitivity Modes

Sensitivity Mode

Result: Interactive Garment Design

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Performance-Driven Design in CAD Systems

Precomputation and Interpolation

precomputed data

Results

Stress Distribution

Results

InstantCAD

precomputed data

output

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Fast Simulation for Control

Replacing Simulation with Machine Learning

Simulation Results FluidFall #1

Ground Truth

Model Rollout Input: position & velocity at the first frame

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Design of Robots with Ground Locomotion

Fast Gait

Slower Gait

Geometry Change

Application: Design of Robots with Ground Locomotion

Real Time Feedback

Optimization

Assembly

Physical Robots Created

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Design by Composition

Design and Fabrication by Example

Dataset

Dataset

Snapping

- Constraints:
 - Data driven: similar connections
- Optimization:
 - user interaction

Adding Physical Connectors

Working Model

Snapped Configuration

Connected Configuration

Searching for Connections

Snapped configuration

Linked Elements

Searching for Connections

Working Model

Searching for Connections

Physical Connectors: An Example

Extracted Directly From Data!
Designing a Go-Kart

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Machine Knitting

Source: Ministry of Supply

Solution: Knit Graph Representation

$$\mathcal{N} \equiv \{n, \ldots\} \qquad \bigcirc$$

$$\mathcal{R} \equiv \{(n_i, n_j), \ldots\} \qquad \cdots$$

$$C \equiv \{(n_i, n_j), \ldots\} \qquad \uparrow$$

Graph Properties:

Source: Narayanan et al 2018

From Geometry to Knitting Instructions

From Geometry to Knitting Instructions

Source: Narayanan et al 2018

Results

Stanford Bunny

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Color Reproduction via Multi-Layer Printing

Original painting (Sunlight)

Our reproduction (Sunlight)

Bidirectional Layout–Spectrum Mapping

Requires more than tens of thousands paired training data

Contoning Dataset

Physical Reproductions

Comparison with Color Contoning

Ours

Original

Color Contoning [Babaei et al. 2017]

Advanced Performance-Driven Design

- Performance Evaluation Speed-Up
 - Sensitivity Analysis
 - Precomputation + Interpolation
 - Replace Simulation with ML
- Design space exploration and Optimization
 - Expert Systems
 - Data-Driven Search
 - Incorporate Hardware Constraints
- Simulation to Reality Gap
 - Data-Driven Models
 - Learning Models

Application: Hybrid Copter Design

Advantages of Hybrid Copters

Copter mode

✓ Flexibility

Plane mode

- ✓ High speed
- ✓ Energy efficiency

Interactive Hybrid-Copter Design

🤕 🕂 🐔 🗁 Examples 📄 Hybrid UAV 】 🛅 Hybrid UAV

Interactive Hybrid-Copter Design

Traditional Controller Design

Quad-plane controller

Tail-sitter controller

Our Approach: NN Controller

Reinforcement Learning

Reinforcement Learning

Real Flight Tests

Our Approach: NN Controller

Real Flight Tests

Course Schedule

- 9:00 am 9:10 am
- 9:10 am 9:25 am
- 9:25 am 9:50 am
- 9:50 am 10:20 am
- 10:20 am 10:25 am
- 10:25 am 10:40 am
- 10:40 am 10:55 am
- 10:55 am 11:15 am
- 11:15 am 11:35 am
- 11:35 am 12:00 pm
- 12:00 pm 12:15 pm

- Introduction
- Hardware Review
 - From Design to Machine Code
 - **Design Space Representations**
 - Performance-Driven Design
- Break
- **Performance Space Representation**
- Inverse Methods
- Multi-objective Inverse Methods
- Advanced Performance-Driven Design
- **Course Review**

Computational Design Stack

Computational Design Stack

Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM

Figure 2. Various 3D printing techniques. a) Selective laser sintering (SLS), b) Fused deposition modeling (FDM, also termed "thermoplastic extrusion"), c) Photopolymer inkjet printing, d) Binder ketting, also trademarked as 3DP, e) Laminated object manufacturing (LOM), f) Stereo-Hibbrgraph (SL), Images countrey of CustomPartNetzon.

Computational Design and Fabrication Pipeline

Hardware

Machine Code

Performance

3D Printing Software Pipeline

• For a discrete z value, compute an intersection of a plane with a model

Computational Design Stack

Hardware

Machine Code

Performance

Design Space

- Each design can be mathematically represented as a point in \mathbb{R}^{D}

Design Space

Parametric Design and CAD

Procedural Modeling

Source: Converting 3D Furniture Models to Fabricable Parts and Connectors, Lau et al., Siggraph 2011
Deformation Methods

Computational Design Stack

Hardware

Machine Code

Performance

Design Driven By Performance

Simulation

- Mechanical
 - dynamic
 - static
- Acoustic
- Thermal
- Electromagnetic
- etc.

Performance Space Representations: Gamut

Inverse: From Performance Space to Design Space

• Inverse problem is much more difficult

From Performance Space to Design Space

Optimization in Reduced Space

Rest shape

Topology Optimization

Multi-Objective Optimization: Pareto Front

8 candies

4 candies

3 candies

7 candies

3 carrots 9 candies

Multi-Objective Optimization: Pareto Front

Pareto Front

Speeding up Simulation

Expert Systems for Computational Design

Data-driven Systems for Computational Design

Computational Design Stack

Hardware

Machine Code

Performance