Retrieval on Parametric Shape Collections

ADRIANA SCHULZ

Massachusetts Institute of Technology
ARIEL SHAMIR

The Interdisciplinary Center Herzliya
ILYA BARAN

Onshape Inc.

and

DAVID I. W. LEVIN, PITCHAYA SITTHI-AMORN, and WOJCIECH MATUSIK

Massachusetts Institute of Technology

‘While collections of parametric shapes are growing in size and use, little
progress has been made on the fundamental problem of shape-based match-
ing and retrieval for parametric shapes in a collection. The search space
for such collections is both discrete (number of shapes) and continuous
(parameter values). In this work, we propose representing this space using
descriptors that have shown to be effective for single shape retrieval. While
single shapes can be represented as points in a descriptor space, parametric
shapes are mapped into larger continuous regions. For smooth descriptors,
we can assume that these regions are bounded low-dimensional manifolds
where the dimensionality is given by the number of shape parameters. We
propose representing these manifolds with a set of primitives, namely, points
and bounded tangent spaces. Our algorithm describes how to define these
primitives and how to use them to construct a manifold approximation that
allows accurate and fast retrieval. We perform an analysis based on cur-
vature, boundary evaluation, and the allowed approximation error to select
between primitive types. We show how to compute decision variables with
no need for empirical parameter adjustments and discuss theoretical guaran-
tees on retrieval accuracy. We validate our approach with experiments that
use different types of descriptors on a collection of shapes from multiple
categories.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, languages,
and systems

General Terms: Algorithms

This research was funded by NSF grant 1138967. Ariel Shamir is partly
supported by ISF grant 324/11.

Authors’ addresses: A. Schulz, 77 Massachusetts Ave, MIT 32-D414, Cam-
bridge, MA 02139; email: adschulz@mit.edu.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions @acm.org.

© 2017 ACM 0730-0301/2017/01-ART11 $15.00

DOI: http://dx.doi.org/10.1145/2983618

Additional Key Words and Phrases: Shape retrieval, parametric designs

ACM Reference Format:

Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin, Pitchaya
Sitthi-Amorn, and Wojciech Matusik. 2017. Retrieval on parametric shape
collections. ACM Trans. Graph. 36, 1, Article 11 (January 2017), 14 pages.
DOI: http://dx.doi.org/10.1145/2983618

1. INTRODUCTION

A fundamental problem in many applications in graphics and mod-
eling is the retrieval of shapes from a large collection. While shape-
based matching and retrieval have been widely addressed for simple
(nonparametric) shape databases, little progress has been made in
efficient retrieval on collections of parametric shapes.In this work,
we propose a strategy for searching through a database of paramet-
ric models in which the input query is expressed as a single 3D
shape.

Parametric shapes—generalized models that return different
shapes for different parameter settings—are important tools in
graphics and modeling. In essence, one can view a single para-
metric design as representing a whole family of 3D shapes (see
Figure 1). Using parametric designs can save storage but more im-
portantly, they can support customization by users. Different users
in different circumstances may require different designs of the same
object, or may want to explore different variations of a similar de-
sign. In many cases it is impractical to explicitly design a new model
for each variation, and this is where parametric designs are most
useful.

Parametric shapes are widespread because most man-made ob-
jects are designed in parametric CAD systems such as Solidworks,
OpenScad, Creo, Onshape, etc. In such tools, modeling is done by
specifying parametric features, which can then be modified to al-
low for shape variations.Collections of such designs are available
on repositories such as GrabCAD. In addition to modeling using
CAD systems, several approaches have been suggested to allow for
automatic conversion of existing designs to shapes that can then
be manipulated while preserving their structure [Gal et al. 2009;
Bokeloh et al. 2012]. The results of these techniques are customiz-
able shapes with a constrained set of valid variations.

Retrieval on parametric shape collections is challenging because
the search space is both discrete (number of shapes) and continuous
(parameter values). In all previous work, when matching a given
query model to a parametric model, one first has to fit the param-
eters to best match the query and then compute the distance from

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

11:2 o A. Schulz et al.

Parametric Shape

Descriptor Space Parametric Shape
Fig. 1. We propose a method for shape retrieval from parametric shape col-
lections that uses a descriptor space representation. While shape descriptors
map single shapes to points in a descriptor space, smooth descriptors map
parametric shapes to low-dimensional manifolds in this space. Our method
efficiently represents these manifolds in order to allow for accurate and fast
retrieval of the closest parametric model to a given query shape.

the query to the fitted shape. We call this the fir-first scheme. This
scheme has several disadvantages. First, the process of fitting is
time-consuming and has to be done for every shape in the database.
It therefore does not scale well as the size of the database increases.
Second, this scheme does not allow the use of descriptor space rep-
resentations that have been shown to be effective for retrieval in a
single (nonparametric) shape collection. The typical approach for
efficient search does not rely on directly comparing a query ele-
ment with every element in a database, but rather on precomputing
descriptors for each shape and then performing fast retrieval by
computing distances in this high-dimensional descriptor space. Be-
cause the actual geometry of each parametric shape is known only
after fitting, it is not possible to perform the time-consuming task of
computing descriptors a priori using the fiz-first scheme. Descriptors
must be extracted just before comparing or a direct comparison of
the geometry must be used.

In our work, we propose a method for performing matching and
retrieval from a collection of parametric shapes that does not follow
the fit-first scheme. The key idea is to represent the full parametric
shape, including continuous variations, in descriptor space. While
single shapes can be described as points in a descriptor space,
parametric shapes occupy larger “regions.” To find the closest para-
metric shape given a query model (single point in descriptor space)
we need to efficiently compute the distance from this point to each
shape “region” and retrieve the closest one. We address this prob-
lem by creating a compact representation for these regions that
allows minimal storage and fast evaluations, all the while guaran-
teeing accurate distance measurements. We observe that, for smooth
descriptors, these regions are bounded low-dimensional manifolds
embedded in high-dimensional space. The dimensionality of these
manifolds is given by the number of parameters and the bounds are
given by the feasible set of parameter values. We also have access
to the actual function that defines the manifold, given by the com-
position of the parametric shape function and the signature function
of the descriptor (see Figure 2).

We propose an algorithm for covering each manifold with a set
of primitives that can be efficiently used for retrieval. We use two

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

RN

«M(q)

Parameter Space

Geometry

Descriptor Space

Fig.2. The function M(q) = (D o F)(q) is a composition of the mapping
function F from parameter values to a geometry with the signature function
D, which generates a descriptor for a given geometry.

types of primitives: points and bounded tangent spaces. We dis-
cuss methods for creating these primitives (specifically, defining
the bounds for the tangent spaces) and selecting between them to
guarantee efficient storage and retrieval. The general idea is that flat-
ter regions should be covered by tangent spaces, while more curvy
ones should be covered by points. However, since different prim-
itives have different storage and retrieval costs, the optimal cover
depends not only on the geometry of the manifold, but also on the
desired amount of accuracy. We therefore define an approximation
error for our classification application and propose a method for
primitive selection based on curvature, boundary evaluation, and
allowed approximation error. Our theoretical analysis allows us to
compute threshold values with no need for empirical parameter
adjustments and provides guarantees on retrieval accuracy.

In addition to proposing the first retrieval algorithm for paramet-
ric shapes that exploits descriptor space representations, our work
makes the following technical contributions:

—A representation of manifolds as a mixture of point and tangent
primitives and a strategy for optimally selecting between primi-
tive types for efficient coverage.

—A method for determining bounds of the tangent primitives based
on target fitting error, curvature, and distance to the boundary.

We evaluate our method in terms of performance and accuracy
using three types of descriptors and a collection of parametric shapes
from multiple categories.

2. RELATED WORK

Our work draws from a number of methods in data-driven modeling,
shape retrieval, template-driven exploration of shape collections,
representations of point clouds in high dimensions, and manifold
distances.

Data-driven Modeling with Parametric Shapes. Data-driven
modeling exploits composition of new designs from a collec-
tion of shapes or shape parts. Such systems often require partial
shape deformation for constraint satisfaction and part composition
[Funkhouser et al. 2004; Huang et al. 2015]. However, these shape
manipulations need to preserve structure and a variety of feasibility
constraints, for example in the context of fabrication [Schulz et al.
2014]. By explicitly defining a feasible set in parameter space, the
parametric representation allows for large variability while guar-
anteeing validity. Recent usage of parametric shapes for modeling
includes reconstruction of 3D shapes from images [Xu et al. 2011]
or point-set scans [Nan et al. 2012; Shen et al. 2012]. None of these
works, however, address the fundamental problem of efficiently
querying a collection of parametric shapes. Nan et al. [2012] pro-
pose a technique for fitting template parameters to best match a
given model, but still query the shape collection using the fit-first

scheme. Talton et al. [2011] use a parametric grammar for proce-
dural modeling and propose a general fit-first scheme for fitting a
parametrized variable-dimensional model to a query.

Shape Retrieval. Efficient retrieval of 3D shapes has drawn the
attention of the graphics community for many years. For a survey
of shape retrieval methods we refer the reader to Tangelder and
Veltkamp [2008]. For more recent advances in the field we refer
the reader to SHREC [2014]. One of the most common approaches
for fast retrieval is the use of descriptors that represent geometric
models as points in a high-dimensional feature space. In this ap-
proach, the main computational cost is performed in preprocessing
by evaluating the descriptors for each shape. Retrieval at runtime is
reduced to a high-dimensional nearest neighbor search in descriptor
space that can be performed quite efficiently. There is vast litera-
ture on descriptors for 3D shapes, ranging from simple histogram
methods [Osada et al. 2001] to light transport functions [Chen et al.
2003]. Benchmarks for comparing these descriptors have also been
proposed [Shilane et al. 2004] and the choice of descriptor is usually
done based on the trade off between accuracy and computational
cost. Some approaches also propose descriptors that are indepen-
dent of certain shape transformations, such as articulations [Gal
et al. 2007; Bronstein et al. 2011]. However, none of these methods
can capture the variability of parametric shapes. Parametric mod-
els that return a different geometry for different parameter settings
cannot be represented as points since they cover large regions of
the descriptor space. We propose a method to efficiently represent
these regions.

Template-Driven Shape Exploration. Our problem is also related
to works that represent a category of discrete designs using a para-
metric 3D template. In this case, the template is not a parametric
design, but a description that generalizes a set of models. Ovsjanikov
et al. [2011] construct a single template to generalize a particular
shape category and use it to explore the variability of the collec-
tion. Kim et al. [2013] produce a set of probabilistic templates that
group large shape collections into clusters that capture the shape
variations. These exploration tools have also been used for shape
synthesis [Averkiou et al. 2014]. Finally, Yang et al. [2011] propose
a method for exploring meshes with similar connectivity while pre-
serving constraints. Although these works do not directly address
the retrieval problem, some of the proposed techniques relate to our
problem. A key observation of Ovsjanikov et al. [2011] is that since
templates have a low-dimensional set of parameters, they lie near
a low-dimensional manifold in a descriptor space. Following this
observation, they use PCA to extract the variability of the shape
collection in this space and use optimization to convert it into the
variability of the template deformation. Similarly, Yang et al. [2011]
define the shape space as a manifold that is navigated by local pla-
nar and quadratic approximations. In line with these works, we
represent our parametric shapes as low-dimensional manifolds in
descriptor space. However, in our work, each manifold is defined
by a single parametric shape and not a set of nonparametric shapes.
Moreover, we aim to represent a collection of such manifolds, de-
fined by a collection of parametric shapes, and support distance
queries from all of them to allow efficient retrieval.

Point Clouds in High Dimensions. Since we represent paramet-
ric shapes as low-dimensional manifolds in a descriptor space, our
work is related to compact representations of low-dimensional data
in high dimensions. Manifold learning is a strategy that aims at
finding meaningful low-dimensional structures in high-dimensional
data using nonlinear dimensionality reduction methods such as
ISOMAP [Tenenbaum et al. 2000] and LLE [Roweis and Saul

Retrieval on Parametric Shape Collections J 11:3

2000]. In these approaches, we assume that the K-dimensional
manifold is represented as a point cloud in an N-dimensional space
(K <« N) and no additional information is known. The result of
such techniques is a map A : RY +— RX that allows projecting
points into this low-dimensional space. This representation, how-
ever, cannot be used for retrieval since distances to query points
must be computed in RY allowing comparisons across manifolds.
By creating a point cloud representation of each parametric
shape using sampling in parameter space, our problem is closely
related to a classification problem in high-dimensional data, where
each parametric shape defines a class. Among the most common
approaches for this problem are Gaussian mixture models [Bishop
2006], which can be computed using Expectation-Maximization
(EM) algorithms. Since parametric shapes are low dimensional,
Gaussians in RY cannot compactly cover each shape space and ad-
ditional dimensionality reduction would be necessary to guarantee
minimal overlap between class representations. Alternatively, one
can use a method such as mixtures of factor analyzers [Ghahramani
et al. 1996], which concurrently performs clustering and local
dimensionality reduction within each cluster. In our application,
however, instead of starting with a point cloud, we have access to
the actual function that defines the manifold, namely, the parametric
model composed with the descriptor evaluation. We also know
the underlying dimensionality, which is defined by the number of
parameters. We take advantage of this in our algorithm, measuring
geometric properties such as derivatives and curvatures on sampled
points, which are not present in a point cloud representation.

Distances to Manifolds. Our approach relies on an estimate of
distances from points to manifolds with a known parametrization
map, a problem that has also been addressed in several research
areas. Pottmann and Hofer [2003] propose a method for construct-
ing smooth functions that approximate the distance from a a point
x € RY (variable) to a given manifold (fixed). These functions have
second-order accuracy with respect to x and can therefore be used
in optimization tools that have the position x as a variable and the
distance to the manifold as part of the cost function. This has been
applied, for example, in the context of registration [Pottmann et al.
2004; Mitra et al. 2004] and surface approximation [Wang et al.
2006]. In our work, however, since in any retrieval experiment the
X position is given by a query shape (fixed), second-order accuracy
with respect to x adds no information to our measurement. Instead,
we prefer simpler functions that approximate the first-order distance
metric and allow for fast estimation of the closest manifold to the
query point. This involves efficient representation of the manifold
to allow for fast distance estimation given a fixed query point.
Vural and Fossard [2011] have proposed a method for discretizing
manifolds to allow for distance estimation and classification. Their
algorithm has similar goals to ours: they sample each manifold,
all the while attempting to determine the number of samples that
should be retained to maximize classification accuracy. This work,
however, is restricted to point sampling. Tangent approximations
have also been widely used to approximate manifold distances
[Vasconcelos and Lippman 2005; Srivastava et al. 2005]. These
are known to provide a more compact representation, but only
work locally since they are equivalent to the first-order Taylor
approximation. In our approach, we combine these two ideas by
proposing a hybrid approach where the manifold is represented
by a set of primitives that can be either point samples or bounded
tangent spaces. In our method, we address the question of how to
select between the primitive types in order to optimally allocate
resources and discuss theoretical and empirical bounds on retrieval
accuracy.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

114 o A. Schulz et al.

3. REPRESENTATION OF PARAMETRIC SHAPES

We define a parametric shape as T = {F, A}, where A C RX is the
feasible set that constrains the parameter values, and F is a function
from parameter values g € A to a geometry (e.g., a mesh).

Given a query shape s, we would like to compute the distance
from s to T'. Formally, this distance is defined by

dist(s, T) = mifrtl (dist(s, F(g))),
qe

where the distance between two fixed shapes dist(s, F(q)) can be
defined by a given shape descriptor. However, instead of finding the
optimal value of ¢ and computing the distance for this parameter
(i.e., fit-first), we will find this distance by defining a representa-
tion in a descriptor space of the whole parametric shape. Similar
to the previous work [Osada et al. 2001; Chen et al. 2003], we
represent a geometry using a descriptor that takes a 3D mesh and
computes a signature vector (typically signature vectors are high
dimensional). This signature vector compactly represents a single
geometry as a high-dimensional point in a descriptor space. How-
ever, this approach is not obviously applicable to parametric shapes
because parametric shapes span a large set of possible geometries
and therefore occupy a larger region of the descriptor space.

As shown in Figure 2, we define M(q) = (Do F)(g), where D is
the signature function that generates a descriptor for a given geom-
etry. We can interpret M(q) as a parametrization from A C R to
RY, where the number of shape parameters K is much smaller than
the dimensionality of the descriptor space N. Our method assumes
that F is smooth. This holds for the models that are automatically
converted from single geometries and for most CAD models since
these shapes are typically designed such that parameter variations
smoothly deform geometries. As a result, for smooth descriptors
we can assume that the image M(A) = quA M(q) lies on a man-
ifold. Therefore, given a query shape s, we can apply the signature
function to compute its value in descriptor space x = D(s) and de-
fine dist(s, T') = dy(x, M(A)), where d, is the Euclidean distance
in RV,

Our goal is to efficiently evaluate the distance from x to a col-
lection of manifolds that represent each parametric shape in our
database in order to retrieve the closest one (see Figure 1). Our
approach is to construct a compact representation of each manifold
that is an approximation with a certain allowed error. We aim at
finding an approximation that has minimal storage requirements
and allows for distance evaluations that are both fast and accurate.

3.1 Manifold Approximation

We approximate each manifold M(A) as a set of I primitives
that locally describe the manifold: M(A) = {Pi,..., P;}. For
convenience, we will drop the parenthetical (A) in the notation of
M and M.

Our goal is to find the closest parametric shape in a collection
given a query shape, that is, find the closest manifold M given
a query point x. Accordingly, we have a good approximation M
if the distance from x to M and the distance from x to M are
approximately the same. We therefore say the approximation error
of the manifold is §, if

Vx e RY, |dy(x, M) — da(x, M)| < 8.
‘We can write this as

da(x, M) =8 < dy(x, M) < dy(x, M) + 8.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

The inequality on the right is satisfied if

dy(y, M) <8 Vy e M, (Coverage Lemma)

while the inequality on the left is satisfied if

dy(5, M) <8 Vy € M. (Tightness Lemma)

PROOF OF THE COVERAGE LEMMA. Given x € RV, 3y € M such
that dy(x, M) = d,(x, y). If the Coverage Lemma holds, then there
3y € M such that d,(y, y) < 8. By the triangle inequality we get
d(x,) < dolx,y) + do(y, §). Since, do(x, M) < da(x, ¥), we
conclude that dy(x, M) < da(x, y) +da(y, ¥), which, in turn, gives
us do(x, M) < dp(x, M)+68. O

PROOF OF THE TIGHTNESS LEMMA. Analogous to the proof of the
Coverage Lemma. [

The Coverage Lemma states that every point on M is sufficiently
close to M. This means that every point on the original manifold can
be represented by a point on our approximation. This guarantees
that if x € RY is close to M, then it will be close to M. The
Tightness Lemma states that every point on M is sufficiently close
to M, which means that there is no point on the approximation that
is far from the manifold. This guarantees that if x € R" is far from
M, then it will be far from M. Together, the coverage and tightness
mean that the Hausdorff distance between M and M is bounded
by 8.

4. ALGORITHM

Each primitive P; of the approximation M = {Py, ..., P;} is de-
fined as either a point or a bounded tangent space, which is formed
by the intersection of a tangent space at a given point with an ellip-
soid & C RN centered at that point. We write

pi or o
Y €&l =pi+ Xt
where p; isapointon M, {t}, ..., ' } are the normalized directional

derivatives that form a basis to the tangent space of M at p;, and
a’; € R are weights.

To define M, we propose an algorithm that samples points y on
M at random and then adds a primitive to M if D(y, M) > 6.
Random sampling of points on M is done by randomly selecting
points g € A and computing y = M(q). The added primitive could
either be a single point or a bounded tangent space as defined in
Equation (1). We argue that in the limit, this sampling algorithm
assures that we get a complete coverage of the manifold. In our
experiments, we terminate sampling after 2,000 rejections. This
does not provide a technical guarantee of complete coverage, but it
is a good approximation as shown in Figure 8. This is because the
rejection sampling scheme we use will keep all points that are not
covered by the approximation. Tightness is always satisfied when
P; is a point, but not when P; is a tangent space. In this case, we
use the Tightness Lemma to define a rule on how to determine the
bounding ellipsoid &; for P;, as will be discussed in the following.

When our rejection sampling scheme chooses to add a primitive
to M, the primary decision is to determine whether it should be rep-
resented as a single point primitive or a bounded tangent space with
the point as its center. This choice is done to maximize efficiency.
A bounded tangent primitive requires storing K tangent vectors in
addition to the center point; we therefore say that its costis K + 1
times the cost of the point primitives. This also roughly corresponds
to the increase in query computation time (see Section 5). Hence,

2
Fig. 3. The coverage of a point (left) and of a tangent line (right) is defined
by the region of the manifold (here illustrated as a curve c¢(¢)) that is well
approximated by this primitive given the allowed approximation error 8.
‘While the coverage of the point ¢(0) is directly proportional to §, the coverage
of the tangent line /() is proportional to d, which depends on the curvature.

if the bounds of a tangent primitive are tight enough such that the
region it covers is smaller than the region that can be covered by
K +1 points, then it is not worthwhile to use this primitive. To make
this decision, we need to define and measure the coverage of both
point and tangent primitives. We will first consider the case where
the manifold is unbounded (i.e., A = RX) and later we will take
into account the additional bounds imposed by the feasible set .A.

4.1 Unbounded Manifolds

If a manifold does not have bounds, the only aspect that determines
how well it can be locally represented by tangent spaces is how much
it deviates from being flat. We will measure how well a tangent space
can locally approximate a manifold based on the Coverage Lemma.
Then, we will discuss how we define the bounding hyperellipse &;
based on the Tightness Lemma.

Coverage. First, let us consider the one-dimensional case where
M = c¢(t)is acurve in R? and assume without loss of generality that
the sample pointis p = ¢(0). In this case, the tangent approximation
is then given by the line

I(t) = ¢(0) + £ (0).

Since we allow an error of size 8, then once a point is sampled,
any point on the circle of radius § centered at that point is well
represented by the sampled point according to the Coverage Lemma.
On the other hand, if we take the tangent line on that point, then any
point on the curve that is within distance § of this line is covered
by the line representation. So, while the coverage of a point is
proportional to §, the coverage of the tangent line is proportional
to d, where d is the distance from the point p to the furthest point
on the curve c(¢) that is sufficiently close to the tangent line (see
Figure 3).

We can approximate d using the Taylor expansion. If c() =
c(0) + 1’ (0) + %tzc”(O), then the distance from a point c(z) to the
line / is given by

D(c(),) = %tz c"(0) - c’(O)

(c"(0), '(0)) H
(IOl

‘We can make this distance smaller than § by bounding ¢ as follows:

zg\/za/

The distance d can then be approximated by ;. [|¢’(0)|| from which
we get

d— 26/IIC”(O)(C/(O),C/(O)) c'(0)(c"(0). Ol
' O)]*

c"(0) — ¢'(0)

(¢"(0), c'(0)) H
e’ (0112

(@3]

Retrieval on Parametric Shape Collections J 115

‘ (_[.:} t'(f]

(a) Unbounded case (b) Bounded case

Fig. 4. Computation of the bounding radius for a tangent space primitive
[(t) on the manifold c(¢). In the illustration, the dotted line represents the part
outside the boundary of the manifold and § is the allowed approximation
error. Left: when we do not take the boundary into account the bounding
radius is determined uniquely by the curvature constraint .. Right: when
we are close to the boundary, the radius is computed as r;, + rs, where ry, is
the distance to the boundary and r; is the amount by which we can expand
the radius preserving tightness constraints. We can compute rs from § and
dp, which is the distance from the boundary point p;, on /() to the manifold.

We observe that the denominator inside the square root of this
expression is precisely the definition of curvature « for the curve

c(t)att = 0 [Do Carmo 1976]. From this we can write d = \/2;‘3

A lower bound on the number of points needed to cover the same
region as the tangent line is given by the ratio of the two coverages,
d/§. Hence, we should store a tangent primitive if this ratio is larger
than the extra storage requirement, K + 1. That is, we should store
a tangent primitive if

2

ks S(K + 1) ®

This result is quite intuitive, since the curvature measures the
amount by which the curve deviates from being flat. In our algo-
rithm, we therefore measure the curvature at the point and if the
curvature is small, then we store the bounded tangent primitive;
if it is too big, we store the point primitive. The preceding equa-
tion defines how we determine this threshold based our the original
parameter § and the dimension of the parametric shape, so no addi-
tional empirical parameter estimation is needed.

This curvature interpretation can be easily expanded to M :
RX — RY. In the multidimensional case, we use the maximal
principal curvature [Do Carmo 1976], which measures the curvature
at the direction where it is maximized. Since the coverage ratio is
now given by (d/8)X, we get

1
> —(K + 1)¥K. 4
knmr - 2(+) ()

In our implementation, we approximate the maximal principal
curvature k%" by the largest curvature in the K derivative directions.
The curvature in each direction is computed using the expression
for « inside Equation (2), replacing the derivatives of curve ¢ with
the partial derivatives of the manifold M.

Tightness. To bound the tangent space we have to ensure that the
Tightness Lemma is satisfied. As we did in the previous section, we
will first look at the one-dimensional case and will use the Taylor
approximation. Then, the distance from a point /() to the curve ¢
can be bounded by the distance from a point /() to the point c(#)
(see Figure 4(a)):

1
D((1),¢) < D((t), c(t)) = Etzllc/’(O)H-

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

11:6 o A. Schulz et al.

To ensure that this is smaller than §, we bound 7, such that

1= y28/llc"(O),

from which we get that the tangent space should be bounded by a

circle of radius:
re = /28 (0)[12/ " (O)].

Again, in the multidimensional case, we use a hypersphere and
take the first and second derivatives in the direction of the maximal
principal curvature.

4.2 Bounded Manifolds

Next, we discuss how to incorporate the feasible set A into our
representation. Because the feasible set induces boundaries on the
manifold in descriptor space R", we need to incorporate this effect
into & in order to guarantee tightness. This, in turn, affects the
coverage of the tangent primitives and should also be taken into
account when choosing which primitive to store.

Tightness Constraints. Once again, we will start by looking at the
one-dimensional case. As previously discussed, the curvature of the
manifold defines a bound r, to the tangent primitive, as shown in
Figure 4(a). We define boundary constraint r,, as the largest radius
that guarantees that the projection of the bounded tangent line onto
the curve falls on points ¢(z), such that r € A (see Figure 4(b)).

If the point y = ¢(0) is close to the boundary, then r. could be
larger than r,,. To guarantee tightness in this case, the tangent line
has to be bounded by r, + rs, where r; is the amount by which we
can expand the curve to guarantee that the distance from it to the
bounded manifold is smaller than the allowed approximation error §.

In the multidimensional case, we consider a direction v in de-
scriptor space in which to compute the distance from a sample
point y = M(q) to the boundary. We assume that we have a set of
analytic expressions that represent the boundary constraints in the
parameter space and then map them to the descriptor space using the
Jacobian J, at the sampled point q. Then, if a boundary constraint
in the parameter space is written as a function g(x), in the descriptor
space it becomes Jqg(x) + M(q). We can find the distance to the
boundary g(x) in the direction v by solving

rgi)p Jqg(x) — av].)

If the ray along the direction v intersects the boundary constraint
g(x), then the value of this minimization will be zero and the result-
ing o will return the distance from M(q) to this boundary constraint.
The distance to the boundary, r;,, along v is then determined by com-
puting this for every constraint g(x) and taking the minimum.

To compute r; we first need to evaluate the distance d, from the
point p, = M(q) + r,v to the manifold. Then, as illustrated in
Figure 4(b), we can compute 5 so that §* = d? +r?. To compute dj,
we use the second-order Taylor approximation in a similar manner
as explained earlier.

The computed distance to the boundary depends on the direction
v. Shooting rays in multiple directions and taking the minimum
radius would determine a bounding hypersphere. This, however, is
very restrictive, since a point can be close to the boundary in one
direction and not in others. Therefore, we have chosen to bound the
tangent spaces using ellipsoids instead of hyperspheres.

Naturally, the area covered by the ellipsoid depends on its orien-
tation. Choosing optimal orientations for the ellipsoids can reduce
the number of primitives needed to represent the manifold (see
Figure 5). To determine a good basis for the orientation of the ellip-
soids, we aim at aligning it with the least constrained directions of

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

N

. OQQ
I

91 primitives

59 primitives 48 primitives

Fig. 5. From left to right: covering the manifold with tangent spaces
bounded by hyperspheres, nonoriented ellipsoids, and oriented ellipsoids.
This example illustrates that the number of primitives needed to represent the
manifold for the same value of § is reduced when we use better primitives.
‘We notice that even in this example with a two-dimensional parameter space
there is a significant improvement when oriented primitives are used. The
blue dots represent the underlying manifold represented via super sampling.
(Please note that these are high-dimensional primitives projected to 2D for
visualization and therefore appear slightly distorted.)

the manifold. We do this using a greedy approach. We start with a
set of directions on the tangent space. First, we compute the distance
from each of them to the boundary (using the method described ear-
lier). Second, we take the direction that has the minimum distance
to the boundary and set it as a basis vector. We then restrict our
search to the orthogonal space of the current basis and repeat the
first step. The algorithm ends after we complete a full basis.

Coverage. To choose between points and tangent primitives, we
first verify Equation (4) and then compare coverage taking into ac-
count the constraints imposed by the boundary. For each direction,
we set the coverage radius to be r' = min(r] + ri, r!). Then, fol-
lowing Equation (3), we choose to add a bounded tangent instead
of a point if

K i
I % > (K + 1). (6)
i=1

5. RETRIEVAL

Our retrieval method determines the closest parametric shape by
finding the closest primitive to the query shape. Distances to points
are measured using standard Euclidean norms and distances to
bounded planes are measured by first projecting the query point
x onto the tangent space and then computing the distance from the
projection p to the ellipsoid. This distance is approximated using a
scaling function S that maps the ellipsoid to the unit hypersphere
centered at the origin. If S(p) < 1, then the distance is given by
the projection error d, = ||x — p||. Otherwise, we approximate the

distance from p to the ellipsoid as d, ~ ||p — S~'(Hzg;\\)|| and thus

the final error is given by /dlz, + d? (see Figure 6).

While computing the distance from a query point to a point
primitive in RY is ©(N), computing the distance to a tangent space
primitive involves additional computation for evaluating the projec-
tion onto the tangent space p and its distance from the ellipsoid d, .
We can precompute the N x K projection matrix for each tangent
primitive and store it as part of our data structure. This does not
affect our previous storage discussion since the ratio of the storage
cost for tangent primitives as compared to points remains on the
order of K. With this, computing the projection of the query point
onto the tangent space is ®(K N). Using the simplification dis-
cussed previously, the computation of d, is ®(K). Therefore, while
the distance to a point primitive is @(N), the distance to a tangent
primitive is ®(K N). From this, we conclude that, similar to storage
requirement, the additional retrieval time for tangent primitives

e 'f P
2 5 »5(p)
S_l (pt'rm.rm'!} -_ f

Feontaer = TStp)l

51

Fig. 6. Approximating the distance d, from the projected point p to the
hyperellipse. Let S be a scaling function that maps the hyperellipse to the
unit hypersphere centered at the origin. The point on the hypersphere that
is the closest to S(p) is given by peontacr = %. We use the inverse
mapping and approximate the distance from p to the hyperellipse as d, ~

HP - S71 (pwntact)” .

Table I. Parametric Designs in
Our Collection
[Category | Number of Models |

lamps 17
boats 11
chairs 15
planes 9

carts 10
tables 15

when compared to points is proportional to the number of
parameters, K.

Although our method finds the closest parametric model to the
query, finding the closest match still involves the final step of fitting
parameters. Since we find the closest primitive, we can use the
parameters of this primitive as an initial guess and use existing
search methods to refine it. This problem has been addressed in
previous work with an Iterative Closest Point (ICP) method [Nan
et al. 2012].

6. EXPERIMENTAL SETUP

We tested our algorithm on a collection of models from multiple
categories using three different descriptors.

6.1 Database

Although repositories of parametric CAD shapes are available (e.g.,
GrabCAD), evaluating geometry for a given parameter configura-
tion requires access to the proprietary CAD software (e.g., Solid-
works). Therefore, in order to run experiments with our retrieval
method, we created a collection of parametric shapes using two
procedures. First, we used a free CAD software (OpenSCAD) to
model objects and expose design parameters. Second, we used an
automatic method to convert single geometries into parametrized
objects based on a simple method inspired by previous work on
manipulation of man-made shapes [Gal et al. 2009].

Our collection of parametric shapes spans multiple categories,
as shown in Table I. We use two CAD designs and 74 automat-
ically converted models. We plan to release this collection along
with the article to encourage future research on parametric shape
collections. Figure 1 illustrates some of the models in our collec-
tion and their variations. We refer the reader to the supplemental
materials for a detailed description of these designs. The number
of parameters for each design ranges from 2 to 9. We argue that
this is a descriptive range, even considering complex parametric
CAD designs. Although parametric CAD software allows for many

Retrieval on Parametric Shape Collections J 11:7

independent variables, these are often constrained by manufactur-
ing considerations and the need to interface with other models.
Therefore, in practice, most CAD designs only have a small set of
meaningful parameters that can be directly exported by designers to
allow for further user-driven customization (typically less than 10).

For the parametric CAD models, the ranges for the exposed pa-
rameters were hand annotated by the designer. While generating
the manifold representations in descriptor space, we call the CAD
software to compute a 3D mesh for each parameter configuration.
For models defined by our automatic conversion procedure, we rep-
resented each vertex of the mesh explicitly as a linear function of the
parameters. This makes geometry evaluations very fast, especially
when compared to the CAD models where each evaluation involves
several nontrivial operations.

In our designs, the feasible set of parameter values are linear: we
defined ranges for exposed parameters of CAD designs and our au-
tomatic method defines the boundary of the feasible set using a set
of linear constraints. With this assumption, the optimization shown
in Equation (5) is a least squares problem that can be solved effi-
ciently. We stress, however, that the mathematical model discussed
in this article does not depend on the linearity assumption. In addi-
tion, the implementation speedups given by the linearity assumption
are only relevant during the precomputation step that generates the
manifold approximations and they do not affect retrieval time.

6.2 Descriptors

The algorithm we propose is independent of the choice of descrip-
tor. The only assumption we make is that a descriptor should be
quite smooth, so that the image of the parametric space lies close to
a manifold in the descriptor space. We use three different descrip-
tors for our experiments. The first one is the D2 Shape Distribu-
tion, which is defined by a histogram of distances between pairs
of points on the surface of the model [Osada et al. 2001]. The sec-
ond is the VOXEL Shape Histogram, which is a shape histogram
descriptor [Ankerst et al. 1999] and describes the distribution of
a model area as a function of the distances from voxel centers.
Since these descriptors are not necessarily smooth, we interpolate
the feature signal with a Gaussian kernel, following the approach
of Ovsjanikov et al. [2011]. The third descriptor is the Light Field
Descriptor [Chen et al. 2003], which captures geometry detail from
rendered images of the shape and is known to have good retrieval
precision [Shilane et al. 2004].

For the D2 descriptor, we sample 3,000 points on the surface of
the model and express them as a function of the shape parameters.
For a given parameter setting, we measure the pairwise distances
(normalized by the average distance) between all sampled points
and convolve this distribution with a set of Gaussian kernels of
a fixed width ¢ and means distributed uniformly between 0 and
3. Since in our collection each sampled point can be written as a
linear expression of the parameters, derivatives can be computed
analytically. We have also experimented with finite differences,
which are faster to compute and comparable in terms of accuracy.
In our experiments, we set o = 0.1 and use 300 Gaussian means.
We have also used PCA on our dataset to reduce our descriptor
space to 24 dimensions.

For the VOXEL descriptor, we sample one million points on
the surface for the model. We take the difference from each sample
point to the center of mass and normalize them by maximal distance.
We convolve this distribution with a set of isotropic 3D-Gaussian
kernels that have variance o and means distributed uniformly on
a 3D grid. For this experiment, we made sure to resample all the
points for each parameter configuration and use finite differences

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

A. Schulz et al.

(a) Adaptive Sampling - Points (b) Rejection Sampling- Points

- ™My
Vo -y
at .

-

(c) Adaptive Sampling - Planes (d) Rejection Sampling- Planes

Fig. 7. Comparison between adaptive sampling and rejection sampling on
a simple paraboloid example. Our rejection sampling scheme was done for
both point and planes for a fixed approximation error §. The number of
samples for the adaptive sampling schemes was chosen to be the same as
the result of the rejection sampling for both points and planes. The top
row shows the results for point samples. Although both methods return a
uniform distribution, in the adaptive sampling scheme points tend to clump
together and leave gaps. The bottom row results for approximating with
tangent spaces (we only display the center of the tangent space for simplifi-
cation). Once again both methods display the desired distribution (based on
curvature) and rejection sampling covers the space more effectively.

to compute first and second derivatives. We have used o = 0.2 and
1,000 Gaussians distributed on a 10 x 10 x 10 grid. As with the
D2 descriptor, we use PCA on the dataset to reduce the descriptor
to 64 dimensions. Although this descriptor is not rotation invariant,
we exploit the fact that our models are CAD designs that have
upright orientation and are aligned with one of the four principal
axes. Therefore, we perform retrieval on four rotated versions of the
query and keep the best one.

Construction of the Light Field descriptor involves transforming
a model to be centered at the origin and inside of a unit sphere.
The model is then rendered from a number of viewpoints, sampled
from the vertices of a dodecahedron. Image features are computed
as in Chen et al. [2003], combining Zernike moments with Fourier
coefficients. Again, in this setting, we handle rotation invariance
by performing retrieval on four rotated versions of the query and
keeping the best one. We use PCA on the dataset to reduce the
descriptor to 280 dimensions.

7. EVALUATION

We present results on evaluating the accuracy and efficiency of our
manifold representation for individual parametric shapes, as well as
on the overall retrieval method from a shape collection.

7.1 Manifold Representation

Sampling Scheme. Alternatives to our rejection sampling approach
are adaptive sampling schemes based either on curvature or on
surface areas. While a method based on curvature is suitable for
approximating the manifold with tangent planes, adaptive sampling
based on surface area approximates a uniform distribution of points
in descriptor space. We have implemented both of these approaches
using a Metropolis—Hastings algorithm, where the probability den-
sity function given a current sample is given by a Gaussian centered

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

D2 Descriptor Voxel Descriptor

0.15

°

o

0.05

°
2

Measured Error (99 percentile)
Measured Error (99 percentile)

o

0 0.05 0.1 0.15
Target Error (8)

0 005 0.1 015
Target Error (8)
afitting

w—CoOvVerage e fitting

. Light Field Descriptor

w—CoOvVerage

1

o

Measured Error (99 percentile)
°

o

05 1 15
Target Error (8)

efitting ~ e=mcoverage

Fig. 8. Measuring fitting and coverage errors as a function of the target
parameter 6 for the implemented descriptors. We observe that both measured
errors are within the bounds of 8. For large values of § we observe that the
fitting error drops to zero. This is because for very coarse approximations,
our algorithm prefers points to tangents—the coverage of points becomes
larger with §, while plane coverage is still limited by the curvature and
the boundary of the manifold. Since absolute distance values depend on
descriptors (and are much larger for the Light Field descriptor), the ranges
of the target errors for this experiment were chosen so that the number of
samples were similar for all descriptors.

at that point with variance proportional to the curvature or surface
area measured at that point. We compare the results from these
approaches to our rejection sampling scheme using only point or
tangent plane primitives and illustrate the results in Figure 7. We ob-
serve that we get similar distributions for curvature based adaptive
sampling and rejection sampling for tangent primitives, and sim-
ilar distributions for surface area adaptive sampling and rejection
sampling using only point primitives.

However, while the adaptive sampling approaches are good at
approximating the desired distributions, the randomness in the al-
gorithm makes it unsuitable for minimal coverage, especially when
the number of primitives is small. Figure 7 shows how points tend
to clump together and leave gaps. On the other hand, the rejection
sampling scheme guarantees that only points that contribute to cov-
erage are added. In addition, our method determines the number of
samples based on a unique user-specified parameter that reflects the
retrieval error. Although the parameters of the adapting sampling
schemes may be tweaked to vary how densely the sampling covers
the space, these cannot be easily mapped to a global approximation
error. Since sampling is part of a preprocessing step, this justifies a
more expensive approach (rejection sampling) that results in lower
storage, more controlled approximation error, and faster runtime.
Another important aspect is that the criteria for adaptive sampling
depends on the primitive type, while the rejection sampling method
we propose can handle a hybrid representation. Finally, we can
incorporate the boundary information to the rejection sampling al-
gorithm, which allows us to create a compact representation for our
bounded manifolds.

Accuracy. We evaluate the accuracy of our manifold representa-
tion by measuring the actual fitting and coverage error for different

Table Model — 3DOF

10000

—o—Points

—@-Tangents

L 1000
\ Hybrid

Cost (log scale)
Cost (log scale)

Cart Model — 5DOF

Retrieval on Parametric Shape Collections J 11:9

Chair Model - 7DOF

100000 1000000

—+—Points —4—Points

100000

—#i—Tangents 10000 —@—-Tangents

)

Hybrid Hybrid

10000

/

Cost (log scale)

100

10

-1.9 -1.7 -1.5 -1.3 -11 -0.9 -0.7 -0.5 -2.05 -1.55

approximation parameter (log of §)

approximation parameter (log of &)

approximation parameter (log of §)

6 6 6
= —e—Points = —+—Points = —+—Points
= 5 = 5 = ;
'g) —#-Tangents "i —@-Tangents 'g) ~@-Tangents
5 Hybrid E Hybrid 5 Hybrid
° 4) 4 ° 4
(=) =] (=)
= = =
2 = 2
(=2 j=3 (=2
é 2 E 2 '4% 2
1 é 1
= /I/. . =

4 "N 4 . S —

g 0 —_— 1 2 & - =L 1 2 F\?‘v’— —h1
Q Q Q
O O O

0 0 0
-1.9 -1.7 -1.5 -1.3 -11 -0.9 -0.7 -0.5 1.9 -1.7 1.5 -1.3 -1.1 -0.9 -0.7 -0.5 -1.9 -1.7 -1.5 -1.3 -11 -0.9 -0.7 -0.5

approximation parameter (log of §)

approximation parameter (log of §)

approximation parameter (log of §)

Fig. 9. Comparison between our hybrid method and using a single primitive. Top row: shows the storage cost of each representation across different target
parameters 8 in log scale. Bottom row: the relative cost of the single primitive methods while compared to our method.

values of the target parameter §. We measure coverage error by
sampling points from the ground truth manifold M and computing
the distances to the representation M. We measure fitting error by
sampling points on M and computing distances to the ground truth
M. As ground truth we use a dense super sampling of the mani-
fold M, namely, a point-only (no tangent approximations) rejection
sampling with very small § = 0.005. Figure 8 shows results of an
experiment on a parametric chair with two parameters for all three
descriptors. We plot across different values of § the 99 percentile
error (the worst error discarding the worst 1%).

Efficiency. To evaluate the efficiency of our representation we
compare our method with a rejection sampling scheme that uses
just point primitives and one that uses just tangent primitives. Fig-
ure 11 shows the storage cost of each representation across different
values of the target parameter § (that defines the accuracy of the ap-
proximation). The cost depends on the number of stored primitives
and their storage costs. We set the cost for point primitives to 1 and
the cost of tangent primitives to K + 1, where K is the number of
parameters (Degrees of Freedom (DOF)) of the shape. Note that
counting ellipsoids as K + 1 times more expensive also roughly
corresponds to the increase in query computation time. We present
evaluation results on three different shapes: a table with 3DOF, a
cart with 5DOF, and a chair with 7DOF.

The top row in Figure 9 shows the cost versus § on a log scale.
We observe the trend of preferring tangents for small values of
8 and points for large values of §. As shown in the graphs, our
hybrid representation can optimally select the transition between
points and planes so that its cost is constantly below the other two
alternatives. The second row shows the relative cost of using a

single primitive compared to our method. As shown in the graphs,
the relative cost of our hybrid method is close to one of the two at
a certain § range, while the other methods have a cost up to five
times larger, depending on the shape and primitive type. The small
oscillations in this graph are mostly due to the randomness in the
sampling algorithm, but are also related to some approximations in
our implementation.

Note that our representation uses both primitives and does not
change between them at a specific point. It has a higher percentage
of points for larger values of 8, and a higher percentage of ellipsoids
for smaller values of §. Note also that the crossover value where
point primitives start to outperform tangents varies depending on
the shape. This happens because different shapes have different
numbers of parameters and also because the sizes of the feasible
sets vary. These parameters influence the coverage of a tangent
approximation. Therefore, using a representation that picks one
primitive type depending on the target parameter 8 is not feasible
as the transition value depends on the shape. Given a specific 4,
some shapes may be better represented with points, while others
with planes. In contrast, our hybrid representation can adapt to the
specific shape and choice of 8, automatically choosing the right
combination of the two primitives. This is especially important
while representing a collection of shapes, as only a hybrid scheme
can optimize across all the different models in the database.

7.2 Retrieval

Next, we evaluate how well our representation works for retrieving
models in a collection of parametrized shapes. First, we motivate
the importance of taking into account the parametrized model. We

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

11:10 o A. Schulz et al.

T~

L
A
N

.

-
-

Y
>
Mean Shape Query Closest Mean Shape
4+ |)
Random parameter Database lookup:
setting mean shape only

Fig. 10. Demonstration of query failures when representation only consists
of the mean shape. From left to right: the mean shape of some parametric
models in our database, query shape given by a random parameter setting
of each parametric model, and the closest mean shape retrieved from the
database. Since changes in parameter settings significantly alter the geome-
try, the closest mean shapes are usually not from the parametric models that
originate the queries.

evaluate what happens when we do not represent the full manifold
but instead, use a shape with the default template parameters (we
will call this the mean shape). For the query, we use random pa-
rameter configurations and search the database for the closest mean
shape. We have used the D2 descriptor for this experiment. Fig-
ure 10 illustrates a few of the retrieved results. In this figure, we
show the query shape, the mean shape of the models that originates
the query, and the closest mean shape retrieved. We observe that
the changes on the parameters significantly affect the geometry. For
example, when we flatten a cart it resembles a coffee table; if we
shrink the feet of a stool it resembles a lamp. We ran the mean shape

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

retrieval test on 20 random parameter samples for each model in
our database. In this experiment, we managed to retrieve the correct
mean shape only 29% of the time.

We also compare our sampling scheme with the naive approach
that represents the manifold by randomly sampling a fixed number
of points from the parameter space of each model. The advantages
of our approach are threefold. First, distributing samples uniformly
over the descriptor space rather than over the parameter space pro-
vides better coverage of the manifold. Second, fixing the value of
8 for each shape allows the number of samples per shape to vary
according to the size of the corresponding manifold in the descrip-
tor space. Third, by storing both points and tangent primitives we
reduce the storage cost.

To compare the two methods we evaluate their performance on
retrieval of points sampled from our parametric shape collection.
Naturally, if we sample these points randomly over parameter space
the naive approach will have a better performance on average since it
matches the distribution. Alternatively, if we sample uniformly over
descriptor space, our approach does much better on average. For a
fair comparison, we sample uniformly over the parametric space,
but evaluate the worst-case, rather than the average error, measured
as the distance to the closest primitive on the correct manifold
minus the distance to the closest primitive on a wrong manifold. As
a result, the error does not depend on the query distribution, but on
how well our samples cover the space. Since the error is measured
in descriptor space and needs a reference to interpret, we plot it
against the target error § (also in descriptor space) for our method
in Figure 11. For an “equal cost” comparison, we plot the error of
the naive method using the same amount of storage as our method.
We plot the results sampling both over the full database and over
individual categories.

The results show that the error for our method is not only smaller
(close to §), but is also consistent. For example, airplane models
present very small variations in the D2 descriptor space and can
therefore be well represented with only a few samples. On the other
hand, chair and lamp variations are much more dramatic, and there-
fore need more samples. Our method automatically handles this
difference and allocates more storage to represent larger manifolds.
We therefore notice that our method performs consistently better
across all categories.

Finally, we show retrieved results for models in each category
that were collected from online shape repositories. In these ex-
periments, retrieval times for each model were in the order of 10
milliseconds. Figure 12 shows the top result for both descriptors
for varying targeted errors, §. Results for additional query shapes
are included in the supplemental material. The retrieved results are
shown with the parameter settings of the closest primitive. In the
case of tangent primitives we simply use the center of the ellipsoids
and no additional projection. As discussed in Section 5, an addi-
tional fitting step would be required to select the optimal parameter
configuration.

The quality of our retrieval results is obviously heavily depen-
dent on the descriptor (Figure 12). For example, while the Voxel
descriptor visually outperforms the D2 descriptor with chairs, the
D2 descriptor appears to do better at retrieving lamps. As expected,
the Light Field descriptor retrieves better results in every category.
The figure also illustrates results for different target errors. Using
measurements based on the descriptor space metric, we confirm
that with smaller target errors the retrieved shapes are closer to
the query. However, the relationship between the visual similarity
and proximity in descriptor space highly depends on the quality of
the descriptors. For example, using the D2 and Voxel descriptors,
smaller §’s result in shapes that are visually less similar for the

Retrieval on Parametric Shape Collections 11:11

Chairs y Planes y Boats Full Database
L 9 1'2 5 1'2 14
g 12 g . gr
ot Bt | 12
%08 ya %08 2 08 -
]
8 0.6 / Qo6 O o6 4
+ / 2 3 / a1
804 £04 £ 04 7
S 202 S 02 £
B 0.2 g .. 3 .. =
0 o o g 08
0 02 04 06 0 02 04 06 0 02 04 0s &
Target Error for Our Method Target Error for Our Method Target Error for Our Method . 06
g /
Lamps Carts Tables % 0s /
1 14 14
8 12 / 512 812 /
e 7 Ee £
1 d 1 & 1
$ o0s / Fos fo8
T / T i / 0
2 06 7 Oos 1 Qos 0 01 02 03 04 05
o - / /
g 0.4 goA [§°~4 Target Error for Our Method
2 02 % 202 7@ S o.(z) —
0 0 .
0 02 04 06 0 02 04 06 0 02 0.4 06 =—Our Method ——Naive Method

Target Error for Our Method Target Error for Our Method

Fig. 11.

Target Error for Our Method

Comparison between our approach and the naive one. We measure the difference between the distance to the closest primitive in the collection and

the distance to the correct manifold and show the worst case for both approaches for querying points sampled on the full database and on individual categories.
From these results we verify that our method has a better performance across all categories.

&> g &
9% ®
H §ow
™o o

§=0.05 &=0.1 G=10.2 G=10.4
Closest Shape for D2 Descriptor

Query 6= 0. 075

shape

R RO
o N
- & Y
T T TS
Tl

FEHEW

6= 0.1

Closest Shape for Voxel Deseriptor

R R B A
N N N N
d 4 4%
wEW
™™

5=10.6 6= 0.8 8= 1.0 G= 2.0
Closest Shape for Light Field Descriptor

=02 &= 04

Fig. 12. Results of retrieval. From left to right: query shape, results for D2 descriptor (for increasing target errors), results for Voxel descriptor (for increasing
target errors), and results for the Light Field descriptor (for increasing target errors).

airplane query example. Nevertheless, we argue that since the re-
trieved results are actually closer according to the descriptor metric,
better descriptors will retrieve more visually accurate results. In fact,
this is what happens with the Light Field descriptor.

Classification. Searching in the space of parametric shapes allows
capturing structure preserving variations during retrieval. When
parametric variations are taken into account using our manifold
representation, each shape covers a much larger area on the search
space. This change of the search space can affect classification in

nontrivial ways and is also very dependent on the choice of de-
scriptor. We analyze the effects in classification using Table II and
Figure 13.

Table II compares the search space for different descriptors when
single mean shapes are used and when the full manifolds are repre-
sented. The distance between categories is measured as the average
of the pairwise minimal distance between categories. The category
size is measured by the maximal distance between two shapes in a
category and the average across all categories is shown. This result
shows that when parametric representations are used the classes

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

11:12 o A. Schulz et al.

Table II. Comparison between Coverage Regions
in Descriptor Space

Distance Between Categories || Average Category Size

Descriptor || Mean Shape | Manifold Mean Shape | Manifold
D2 0.16 0.02 0.98 1.83
Voxel 0.40 0.16 1.17 1.54
Light Field 1.75 1.12 3.61 5.37

06

04

08 - \
\
NS

Precision

02 -

0 0.25 0.5 0.75 1

Recall

===D2 (Mean Shapes) Voxel (MeanShapes) Light Field (Mean Shapes)

@mm=D)2 (Manifold) @'\ 0xel (Manifold) @ ight Field (Manifold)

Fig. 13. Precision-recall plots evaluating classification accuracy for our
method compared to using only mean shapes for different descriptors.

become closer to each other and the space covered by each class be-
comes larger. This is expected since parametric shapes include struc-
ture preserving variations. There are, however, significant variations
depending on the descriptor. While the average distance between
categories is reduced by 93% for the D2 descriptor, the reduction is
only 31% for the Light Field descriptor.

Figure 13 shows the standard precision recall plot, which mea-
sures classification accuracy. Curves closer to the horizontal line
at precision = 1.0 indicate superior retrieval results. Since classi-
fication depends on the descriptor, we notice a clear improvement
in performance in the Light Field descriptor when compared to the
D2 and Voxel descriptor. This result is consistent with mean shapes
and the manifold representation. We notice, however, that while the
manifold representation outperforms the mean shape on the Light
Field descriptor, the results are equivalent (or slightly worse) for
the other two descriptors.

From Figure 13 and Table II we conclude that when low quality
descriptors are used, classifiers have poor predictive performance
and the additional complexity added by the deformation parameters
cannot be captured. Therefore, they do not help performance and can
even act as noise, increasing the error. However, when high quality
descriptors are used, the variations of the parametric representa-
tions allow better coverage of the space, improving classification
performance.

We emphasize, however, that the application of retrieval in para-
metric shape collections goes beyond classification. This is illus-
trated in Figure 14, which uses the Light Field descriptor and
compares the mean shapes and the manifold approximation. Re-
sults show that the increased variability in the search allows closer
matches to be found. In some cases the retrieved results remain in
the same category (see the boat, lamp, and cart examples). For the
table example, however, the parametric shape space search returns
a stool that although it belongs to different category (chairs), it can

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

Fig. 14. Comparison of retrieval with mean shapes only and manifold rep-
resentation for the Light Field descriptor. From left to right: query shape
(green), closest mean shape retrieved (gray), closest parametric shape re-
trieved with parameter fitting (blue) with its corresponding mean shape
(gray). We observe that using the parametric shapes we retrieve models that
are more similar in geometry but may lie on a different class.

be deformed to resemble a table. Although in terms of classification
this is an inaccurate result, we notice an improvement in geometric
proximity when comparing it to the table retrieved by querying the
collection of mean shapes. In the case of a bench query, since we
have no database models in this category, the mean shape search
finds a boat that has similar dimensions. Our approach, on the other
hand, can represent variations of the chair category that make it
resemble a bench. This added capability of our technique is not
captured by simply using precision-recall classification metrics.

8. LIMITATIONS AND FUTURE WORK

Although the main focus of this work is a method to represent
a manifold created by parametric shapes in descriptor space, the
results of retrieval will always rely on the quality of the actual

descriptor. We have tested the retrieval on three different descriptors
and observed a large variation in performance. Other descriptors
could be tested in our approach as long as they are smooth, that
is, that the region covered by the parameters in descriptor space is
close to a manifold.

Another important limitation to discuss is scalability. In our al-
gorithm, storage size is not directly determined by the number of
parameters (i.e., dimensionality) but by the volume of descriptor
space relative to the tolerance. This volume indicates the variability
of valid shapes for a given parametric model, which depends not
only on the number of dimensions but also on the ranges of the
parameters. For example, one of our airplane models with eight
parameters needs less than a third of the storage of a lamp model
with only three parameters. Nevertheless, in theory, the volume can
increase exponentially with the number of parameters and there-
fore, our method, like most dimension-dependent representations,
would not scale. We argue, however, that, in practice, models with
a large number (and volume) of meaningful parameters are not
frequently encountered. This is true because although parametric
CAD allows for many independent variables, these are often con-
strained by manufacturing considerations and the need to interface
with other models. Therefore, the volume of useful variations of a
single design tends to be relatively small.

Another assumption that we make is that the feasible set A is
connected. This is mostly relevant for approximating regions of the
manifold using tangent spaces and computing boundaries of the
ellipsoids. An extension of our work can represent A as a union
of connected sets. It would also be interesting to handle complex
boundaries (originated by an arbitrary number of nonlinear con-
straints) as well as a mixture of continuous and discrete parameters.
These cases would require more primitives since tangent approxi-
mations can only be used on the continuous regions.

Lastly, another limitation of our method is that the time for com-
puting queries scales linearly with the size of our database since
we currently use a naive search approach. In high-dimensional de-
scriptor spaces, algorithms based on Locality Sensitive Hashing
(LSH) [Datar et al. 2004] can solve the nearest neighbor problem in
sublinear time. While LSH algorithms typically work with points,
one can imagine using ellipsoid centers with LSH to prune obvi-
ously far-away regions of the descriptor space and take advantage
of such search structures. The effectiveness and feasibility of such
methods would need to be tested by experiments.

9. CONCLUSIONS

In this work, we present the first approach for efficient retrieval on
a collection of parametric shapes that improves upon the standard
scheme of first fitting parameters and subsequently computing the
distance to the query shape. We address this problem by using shape
descriptors and representing parametric shapes as manifolds in this
space.

Using a metric for manifold approximation error based on re-
trieval performance, we propose an algorithm for approximating a
parametric shape given a target error. Our approximation consists
of a mixture of points and bounded tangent primitives. We discuss
how to bound the tangent primitives based on curvature and distance
to the boundary. We also define a strategy for optimally selecting
primitive types to minimize storage.

Our experiments validate the accuracy of our representation and
show that our proposed hybrid representation consistently outper-
forms approximations that use a single primitive type. Finally, we
demonstrate the performance of our method using three different

Retrieval on Parametric Shape Collections o 11:13

types of descriptors for retrieval on a database of parametric shapes
of multiple categories. We observe that the method efficiently re-
trieves the closest geometry according to the descriptor metric.
These may lie outside the original shape categories because of the
significant variations imposed by the parametric changes. We envi-
sion this approach being particularly useful for systems that query
for parametric parts and then assemble them [Shen et al. 2012].

We observe a trend of using parametric shapes in both commercial
software and research works. We anticipate that there will soon be
large repositories of parametric shapes available and that they will be
increasingly used in data-driven modeling systems. In this context,
analysis tools that deal with these types of shapes will be of great
importance. We hope that this work, together with the database we
are releasing will inspire future work in this area.

ACKNOWLEDGMENTS

The authors would like to thank Professor Charles K. Smart for help-
ful suggestions and discussions; Baker Logan, Marie P. E. Moudio,
and Jacob Haip for designing the models in the database; and Megan
C. Chao for help with renderings.

REFERENCES

Mihael Ankerst, Gabi Kastenmller, Hans-Peter Kriegel, and Thomas Seidl.
1999. Nearest neighbor classification in 3D protein databases. In Pro-
ceedings of ISMB (1999), 34-43.

Melinos Averkiou, Vladimir Kim, Youyi Zheng, and Niloy J. Mitra. 2014.
ShapeSynth: Parameterizing model collections for coupled shape explo-
ration and synthesis. Computer Graphics Forum (Special Issue of Euro-
graphics 2014) (2014), 10.

Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ.

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun.
2012. An algebraic model for parameterized shape editing. ACM Trans-
actions on Graphics 31, 4 (2012), 78:1-78:10.

Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas, and
Maks Ovsjanikov. 2011. Shape google: Geometric words and expressions
for invariant shape retrieval. ACM Transactions on Graphics 30, 1, Article
1(2011), 1:1-1:20.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003.
On visual similarity based 3D model retrieval. Computer Graphics Forum
22,3 (2003), 223-232.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.
Locality-sensitive hashing scheme based on p-stable distributions. In Pro-
ceedings of the 20th Annual Symposium on Computational Geometry.
ACM, 253-262.

Manfredo Perdigao Do Carmo. 1976. Differential Geometry of Curves and
Surfaces. Vol. 2. Prentice-Hall, Englewood Cliffs.

Thomas A. Funkhouser, Michael M. Kazhdan, Philip Shilane, Patrick Min,
William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David P. Dobkin.
2004. Modeling by example. ACM Transactions on Graphics 23,3 (2004),
652-663.

Ran Gal, Ariel Shamir, and Daniel Cohen-Or. 2007. Pose oblivious shape
signature. /EEE Transactions of Visualization and Computer Graphics
13,2 (2007), 261-271.

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. IWIRES:
An analyze-and-edit approach to shape manipulation. ACM Transactions
on Graphics 28, 3 (2009).

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

11:14 o A. Schulz et al.

Zoubin Ghahramani, Geoffrey E. Hinton, et al 1996. The EM Algorithm for
Mixtures of Factor Analyzers. Technical Report CRG-TR-96-1, University
of Toronto.

Qixing Huang, Hai Wang, and Vladlen Koltun. 2015. Single-view re-
construction via joint analysis of image and shape collections. ACM
Transactions on Graphics 34, 4, Article 87 (July 2015), 10 pages.
DO1I:http://dx.doi.org/10.1145/2766890

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen
DiVerdi, and Thomas Funkhouser. 2013. Learning part-based templates
from large collections of 3D shapes. ACM Transactions on Graphics
(Proceedings of SSIGGRAPH 2013) (2013).

Niloy J. Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas.
2004. Registration of point cloud data from a geometric optimization
perspective. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing. ACM, 22-31.

Liangliang Nan, Ke Xie, and Andrei Sharf. 2012. A search-classify ap-
proach for cluttered indoor scene understanding. ACM Transactions on
Graphics 31, 6, Article 137 (Nov. 2012), 10 pages. DOI : http://dx.doi.org/
10.1145/2366145.2366156

Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin.
2001. Matching 3D models with shape distributions. In Proceedings of the
International Conference on Shape Modeling & Applications (SMI'01).
IEEE Computer Society, Washington, DC, 154.

Maks Ovsjanikov, Wilmot Li, Leonidas J. Guibas, and Niloy J. Mitra. 2011.
Exploration of continuous variability in collections of 3D shapes. ACM
Transactions on Graphics 30, 4 (2011), 33.

Helmut Pottmann and Michael Hofer. 2003. Geometry of the Squared Dis-
tance Function to Curves and Surfaces. Springer.

Helmut Pottmann, Stefan Leopoldseder, and Michael Hofer. 2004. Regis-
tration without ICP. Computer Vision and Image Understanding 95, 1
(2004), 54-71.

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear dimensionality re-
duction by locally linear embedding. Science 290, 5500 (December 2000),
2323-2326. DOI : http://dx.doi.org/10.1126/science.290.5500.2323

Adriana Schulz, Ariel Shamir, David 1. W. Levin, Pitchaya Sitthi-amorn,
and Wojciech Matusik. 2014. Design and fabrication by example. ACM
Transactions on Graphics 33, 4, Article 62 (July 2014), 11 pages.
DO1I:http://dx.doi.org/10.1145/2601097.2601127

Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. 2012. Struc-
ture recovery by part assembly. ACM Transactions on Graphics 31,

ACM Transactions on Graphics, Vol. 36, No. 1, Article 11, Publication date: January 2017.

6, Article 180 (Nov. 2012), 11 pages. DOI:http://dx.doi.org/10.1145/
2366145.2366199

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser.
2004. The Princeton shape benchmark. In Proceedings of the Shape Mod-
eling International 2004. 167-178.

SHREC. 2014. 3D Shape Retrieval Contest at EUROGRAPHICS. Retrieved
June 2, 2015 from http://3dor2014.ensea.fr/SHREC2014.html.

Anuj Srivastava, Shantanu H. Joshi, Washington Mio, and Xiuwen Liu.
2005. Statistical shape analysis: Clustering, learning, and testing. /EEE
Transactions on Pattern Analysis and Machine Intelligence 27, 4 (2005),
590-602.

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomir Méch, and
Vladlen Koltun. 2011. Metropolis procedural modeling. ACM Transac-
tions on Graphics 30, 2, Article 11 (April 2011), 14 pages. DOI : http://dx.
doi.org/10.1145/1944846.1944851

Johan W. Tangelder and Remco C. Veltkamp. 2008. A survey of content
based 3D shape retrieval methods. Multimedia Tools and Applications 39,
3 (2008), 441-471.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A global
geometric framework for nonlinear dimensionality reduction. Science
290, 5500 (2000), 2319.

Nuno Vasconcelos and Andrew Lippman. 2005. A multiresolution manifold
distance for invariant image similarity. IEEE Transactions on Multimedia
7, 1(2005), 127-142.

Elif Vural and Pascal Frossard. 2011. Discretization of parametrizable signal
manifolds. IEEE Transactions on Image Processing 20, 12 (2011), 3621—
3633.

Wenping Wang, Helmut Pottmann, and Yang Liu. 2006. Fitting B-spline
curves to point clouds by curvature-based squared distance minimization.
ACM Transactions on Graphics 25, 2 (2006), 214-238.

Kai Xu, Hanlin Zheng, Hao Zhang, Daniel Cohen-Or, Ligang Liu, and
Yueshan Xiong. 2011. Photo-inspired model-driven 3D object modeling.
ACM Transactions on Graphics 30, 4 (2011), 80.

Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. 2011.
Shape space exploration of constrained meshes. ACM Transactions on
Graphics 30, 6, Article 124 (Dec. 2011), 12 pages. DOI : http://dx.doi.org/
10.1145/2070781.2024158

Received September 2015; revised September 2016; accepted October 2016

http://dx.doi.org/10.1145/2766890
http://dx.doi.org/10.1145/2366145.2366156
http://dx.doi.org/10.1145/2366145.2366156
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1145/2601097.2601127
http://dx.doi.org/10.1145/2366145.2366199
http://dx.doi.org/10.1145/2366145.2366199
http://3dor2014.ensea.fr/SHREC2014.html
http://dx.doi.org/10.1145/1944846.1944851
http://dx.doi.org/10.1145/1944846.1944851
http://dx.doi.org/10.1145/2070781.2024158
http://dx.doi.org/10.1145/2070781.2024158

