B-rep Matching for Collaborating Across CAD Systems

BENJAMIN JONES®, University of Washington, USA
JAMES NOECKEL", University of Washington, USA

MILIN KODNONGBUA*, University of Washington, USA

®

Import Update

ILYA BARAN, PTC, USA
ADRIANA SCHULZ, University of Washington, USA

\‘ Design
Iterations
Team A on /
CAD System A q)

a

Team B on
CAD System B

Automatic B-rep Matching

Automatically
Updated
References

Original B-rep

Updated B-rep

Fig. 1. Example of collaborative workflow. Team B is modeling an engine in System B and importing a cylinder that is designed by team A in a different
CAD system. The engine’s cylinder base geometry is referenced off of the imported cylinder to ensure proper fit. When team A updates the cylinder design,
team B imports the new B-rep model and our method enables references to be automatically re-assigned. This enables the CAD model in System B to be
automatically updated to match the edits made by user A. In this example, the size and positions of cutouts are updated to align with the new model, and the
overall length of the base plate changes, becoming smaller to match the new cylinder dimensions.

Large Computer-Aided Design (CAD) projects usually require collaboration
across many different CAD systems as well as applications that interoperate
with them for manufacturing, visualization, or simulation. A fundamental
barrier to such collaborations is the ability to refer to parts of the geometry
(such as a specific face) robustly under geometric and/or topological changes
to the model. Persistent referencing schemes are a fundamental aspect of
most CAD tools, but models that are shared across systems cannot generally

“Equal contribution

Authors’ addresses: Benjamin Jones, University of Washington, USA; James Noeckel,
University of Washington, USA; Milin Kodnongbua, University of Washington, USA;
Ilya Baran, PTC, USA; Adriana Schulz, University of Washington, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART1 $15.00

https://doi.org/10.1145/3592125

make use of these internal referencing mechanisms, creating a challenge
for collaboration. In this work, we address this issue by developing a novel
learning-based algorithm that can automatically find correspondences be-
tween two CAD models using the standard representation used for sharing
models across CAD systems: the Boundary-Representation (B-rep). Because
our method works directly on B-reps it can be generalized across different
CAD applications enabling collaboration.

CCS Concepts: « Computing methodologies — Shape analysis.

Additional Key Words and Phrases: Computer-Aided Design, Parametric
Modeling, Geometric Correspondence, Machine Learning

ACM Reference Format:

Benjamin Jones, James Noeckel, Milin Kodnongbua, Ilya Baran, and Adriana
Schulz. 2023. B-rep Matching for Collaborating Across CAD Systems. ACM
Trans. Graph. 42, 4, Article 1 (August 2023), 13 pages. https://doi.org/10.1145/
3592125

1 INTRODUCTION

Most manufactured objects are designed with commercial Computer-
Aided Design (CAD) systems. There is a large number of such

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592125
https://doi.org/10.1145/3592125
https://doi.org/10.1145/3592125

1:2 « Jonesetal.

systems on the market as well as applications that interoperate
with them, including Computer-Aided Manufacturing (CAM) sys-
tems, visualization systems, and simulations/analysis systems. Large
projects typically require collaboration across several such systems.
For example, a team of engineers, B, may design an engine in one
CAD system using a cylinder that is designed by team A in another
system. When designing the engine, team B would import the cylin-
der’s model into their CAD system and use its features as references
(see Figure 1). A fundamental challenge with such collaborations is
preserving such references after models are updated—e.g, if team B
modifies the piston and sends the updated model to team A.

Persistent referencing is the ability to programmatically refer to
parts of a CAD model and it is a fundamental construct of modern
CAD systems—for example, the chamfer operation references the
specific edge where it should be applied. CAD references enable ro-
bust design iteration— for instance, if the CAD program parameters
are changed, altering the shape and position of that edge, the CAD
system still “knows” which edge needs to be chamfered. However,
models that are shared across systems cannot generally make use of
these referencing schemes common CAD exchange formats lack the
data structures CAD systems use internally to track entities across
edits. This creates a challenge for collaboration, since users would
need to manually specify all references every time they re-import a
model that has been updated in a different system.

In this work, we address this need by proposing a novel approach
to persistent referencing that is agnostic to the CAD system: geo-
metric matching. We observe that what makes CAD referencing
system-specific — inhibiting collaboration — is that they are unique,
proprietary, and rely on the program history: the sequence of CAD
operations that construct the shape. The reason why programmatic
tracking approaches have been favored over purely geometric mod-
els is, of course, the great challenge of robust geometric matching
under the wide range of topological variations common in CAD
design iterations. Since program-based historical information is
available within a single CAD system, it can be leveraged to con-
struct heuristic-driven tracking. In this paper, we ask: can we learn
geometric matching from programmatic tracking schemes?

Our method takes as input two CAD models: the original 5,
and the updated version B,,. These models are expressed in the
standard geometric representation used across all CAD systems: the
Boundary-Representation (B-rep). B-rep represents CAD models
with infinite resolution, as a topological graph of entities (faces,
edges, and vertices) each of which has an associated parametric
geometry (surfaces, curves, and points, respectively). Our method
automatically computes matches between entities of B, and 8B,,. By
transferring references across the matched entities, this algorithm
allows for seamless collaboration across CAD systems. An example
use case is illustrated in Figure 1. In the example, the cylinder is
updated and its B-rep is re-imported into the CAD system where
the engine is being designed. Our method then automatically finds
correspondences between the new geometry and the previous im-
port allowing references to be directly transferred. As a result, the
cylinder valve is automatically updated when the CAD program is
executed with the updated references, changing overall dimensions
and position of cutouts to match the imported geometry.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Our matching algorithm is based on two observations. First, we
observe that matches depend not only on the geometric features of
B-rep entities but also on the topological similarities—e.g. a model
may have many edges that are geometrically similar (straight curves)
but they may be easy to distinguish based on the neighboring faces.
Second, we observe that CAD model updates tend to affect entities in
anon-uniform manner, as some regions of the model may drastically
change while others stay intact. As a result, some regions of the
model are “easier” to match, while others are “harder”.

Based on these two observations our key insight is to use an
iterative approach that can leverage the “easier” matches to find
“harder” ones from neighborhood information. At each iteration,
our algorithm will take a partially matched B-rep pair, and suggest
the most likely best match to add to the partial matching. Since
deterministic algorithms for scoring such matches are challenging
to design and lack robustness, we propose to use machine learning
for match selection. We bootstrap this algorithm by initializing the
partial match with a geometric matching algorithm that searches
for entities that are unchanged between the B-reps. This step can
be done robustly with a conservative geometric algorithm.

Our proposed framework has three technical contributions. First,
we generate a synthetic dataset of B-rep pairs for training and we
release this collection for future research. Second, we develop an in-
ference algorithm for scoring partial matches that can be used at any
matching stage (number of partial matches). Finally, we develop an
end-to-end algorithm for matching B-reps that combines geometric
bootstrapping with iterative inference. We evaluate our approach on
synthetically generated ground truth, compare it to different base-
lines, and further evaluate on a smaller expert-generated dataset to
validate that our approach is applicable to real CAD workflows.

2 BACKGROUND AND RELATED WORK

We review the state of the art of referencing and B-rep matching in
commercial CAD systems, then discuss related research on shape
matching and B-rep learning.

2.1 CAD Referencing

CAD models are constructed by tens to thousands of CAD opera-
tions (called features), most of which use references to intermediate
geometry (see Figure 2). Persistent referencing is therefore prevalent
in the CAD pipeline and has been the topic of decades of active
research both in academia and in industry. Typical approaches fall
within two categories. State-based referencing schemes allow users
to provide custom geometric logic and are common in procedural
interfaces (such as CadQuery, Grasshopper, and Houdini). Interac-
tive CAD systems (such as OnShape, SolidWorks, and Fusion360),
on the other hand, automatically generate referencing code from
user interactions. Such tracking algorithms typically incorporate
historical feature information in addition to geometric cues—e.g., a
face created by an extrude operation is labeled as the result of that
extrude [Bidarra and Bronsvoort 2000; Bidarra et al. 2005; Cheon
et al. 2012; Farjana and Han 2018]. It is important to note persistent
referencing is an inherently ambiguous problem and that typical
tracking schemes use heuristics to resolve them, leading to system

fragility [Dorribo Camba et al. 2016; Yares 2013]. That said, by lever-
aging information from the program history in addition to pure
geometric information these algorithms perform significantly better
than any heuristic that can be developed without this additional
contextual data. The goal of this paper is to bridge the gap between
schemes based on programmatic tracking, and geometric matching.
Instead of proposing novel heuristics, our approach is to learn from
data.

Reference \ \

C)

(a) Modern CAD (b) Constructive Solid Geometry (CSG)

Fig. 2. We compare the task of rounding an edge in a modern CAD system
(Onshape) and in Constructive Solid Geometry (CSG). While CSG would
require a user to manually specify appropriate parameters (translations,
scaling) in addition to the sequence of boolean operations, a modern CAD
system would allow the user to simply call the fillet operation with a ref-
erence to the edge. This means that the user can change the radius of the
fillet by changing only one parameter. Further, and importantly, if the rest
of the model is updated (e.g. the cube is resized or the hole is removed),
CAD systems can identify the edge and apply the fillet.

2.2 B-rep Matching in Commercial CAD Systems

Since enabling collaboration across CAD systems is a fundamental
part of the CAD pipeline, some CAD systems enable some form of
matching across systems. A common approach is to use the refer-
encing intelligence of the exporting software system, either via an
API connection (which requires both systems installed on the same
computer) or by reverse-engineering the proprietary CAD-specific
file format. For example, CREO’s Unite Technology includes special-
purpose methods to enable collaboration with CATIA, Siemens NX,
SolidWorks, and Autodesk Inventor. Though these techniques are
proprietary, some are outlined in published patents [Spitz and Rap-
poport 2007; Vandenbrande et al. 2013]. Notably, these approaches
rely on specialized data formats and are therefore not general to all
CAD systems.

To enable collaboration across any CAD system, some effort has
been made to automatically compute correspondences directly on B-
reps. Many systems (e.g., Solidworks) can match topological entities
that are not modified during the update. A more general method is
described in [Vandenbrande et al. 2013], but it requires planar faces,
cannot handle large modifications of the model, and only produces
a rigid motion. Finally, Kirkwood and Sherwood [2018] propose
a user-assisted matching tool that uses heuristics to suggest new
matches based on user input. To the best of our knowledge, ours

B-rep Matching for Collaborating Across CAD Systems + 1:3

is the first fully automatic approach that can automatically match
entities without relying on hand-crafted rules and has been shown
to perform well through extensive evaluations.

2.3 Shape Correspondence and Retrieval

Computing correspondences between two shapes is a well-studied
topic in computer graphics. A thorough review of this literature is
beyond the scope of this work, so we refer the reader to recent sur-
veys [Deng et al. 2022; Sahillioglu 2020]. Typical methods compute
a deformation field that aligns a source surface with a target surface.
Representations for such fields include sampled points, patches,
and implicit or parametric functions. Conversely, the problem we
address is to find a set of pairwise matches between discrete sets
of B-rep entities (faces, edges, and vertices). It has been shown that
methods that simply transfer learned correspondences from more
general representations such as point clouds perform significantly
worse than methods that learn to match directly on the B-rep enti-
ties [Jones et al. 2021] For this reason, our approach works directly
with CAD B-reps.

There is also a body of work on CAD assembly retrieval, which
use geometric or topological information to retrieve assemblies, or
partial assemblies, similar to a query CAD model [Lupinetti et al.
2019]. A myriad of geometric features (curvature, dihedral angle,
and other surface information), along with shape descriptors (shape
distribution, 2D projections, angle distribution, spherical harmon-
ics), have been used to find similar CAD models in large databases.
In particular, [Tao et al. 2013] performs partial retrieval of CAD
models represented as B-reps, and identifies useful geometric and
topological descriptors that facilitate finding matching regions of
CAD models, such as surface parameters and convexity of adjacent
faces. However, we are concerned with matches between individual
discrete elements of a B-rep, including separate faces, edges, and
vertices, rather than whole regions or parts. Moreover, the exist-
ing CAD model matching literature is predominantly focused on
query-based part retrieval, with a resulting preference for false pos-
itives over false negatives. In our setting, the opposite is true; is is
more important not to falsely label matches for the purpose of CAD
references.

2.4 Learning from CAD Data

Algorithms for learning on CAD B-rep representations have seen
increasing use, driven in part by the release of large CAD datasets
such as the Onshape Public dataset[Koch et al. 2019], the Fusion 360
dataset [Willis et al. 2020], and others [Seff et al. 2020]). Another
driving factor has been advances in representation learning tech-
niques for CAD-formatted 3D data. Graph neural networks on the
topological graphs of the B-rep solids are the prevalent strategy for
learning on B-rep data; this is the approach of BRepNet [Lambourne
et al. 2021], UV-Net [Jayaraman et al. 2021], SB-GCN [Jones et al.
2021]. While the first two approaches learn over a reduced graph of
B-rep faces, the latter considers all topological entities (faces, edges,
and vertices) and is therefore the architecture we leverage in this
work to initially embed our input, with key modifications to account
for partially known matches between topological entities.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 « Jonesetal.

Data-Driven CAD Applications. Several methods have been de-
veloped to assist users in various aspects of computer-aided design.
For example, AutoMate [Jones et al. 2021] and JoinABLe [Willis
et al. 2021] learn to assemble CAD models from known parts. [shi
2022] use graph neural networks to automatically predict correct
materials for parts in assemblies, although they do not deal with
CAD geometry representations directly, instead using part metadata
and rendered images as part-level features.

Another direction that some recent works on CAD learning have
taken is to treat CAD B-reps or programs as sequential input, and
utilize transformer encoders/decoders to embed or generate entire
CAD models. Generative models using transformers have been
developed for CAD shapes represented as programs [Wu et al. 2021;
Xu et al. 2022] and B-reps [Guo et al. 2022; Jayaraman et al. 2022],
demonstrating the ability to produce plausible examples of CAD
models, albeit with limited scale and complexity.

Other data-driven CAD applications include segmentation [Cao
et al. 2020], classification [Bharadwaj et al. 2019], and reverse engi-
neering of editable models [Lambourne et al. 2022; Uy et al. 2022;
Xu et al. 2021]. Recent work looks at reducing the size of the dataset
necessary to train these models using self-supervison [Jones et al.
2022]. To the best of our knowledge, we are the first to address
the issue of finding correspondences between an original and an
updated version of a B-rep.

3 OVERVIEW

The goal of our work is to allow references to be propagated from
different versions of CAD models once they are exported into the
common sharing formats used when collaborating across CAD sys-
tems. This format, the B-rep, represents the geometry as a graph
of entities (including faces, edges, and vertices). Graph nodes are
associated with parametric equations that define their associated
geometry (surfaces, curves, and points, respectively). Graph edges
denoting boundary relationships; vertices bound edges, and closed
loops of edges bound faces. Since loops aggregate other geometry,
they do not have an associated parametric definition, but instead a
label denoting if they are an inner or outer boundary of the face they
bound. Our task is to search for pairs of matched primary entities —
faces, edges, and vertices — across the two B-reps. An overview of
our system is depicted in Figure 3.

Maintaining references across multiple CAD environments is
challenging since imported models contain only geometric infor-
mation, lacking the CAD program history normally used to track
entities that change due to edits. One of our key observations is that
while history-based tracking cannot be replicated in our context,
it can instead be learned. We propose to use this logic to generate
a large dataset of matches with ground truth labels. By analyzing
a smaller set of expert-designed pairs of models and their varia-
tions, we identify the key variations that happen across versions:
geometric deformations and constructive operations. We develop
algorithms for automatically generating these kinds of variations
within a CAD system and use its tracking mechanism to generate
matching labels.

Our method for learning to match over this dataset is designed
around the insight that B-rep entity correspondence is informed

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

not only by the geometry of an entity but also by its neighborhood
information. This indicates that when some matches are known,
they can be leveraged to find novel matches. Our method, there-
fore, starts by first taking advantage of geometric information to
find and match geometrically equivalent B-rep entities—i.e., entities
that were not altered between versions. We then use this matching
to bootstrap an iterative process that takes advantage of known
matches to consecutively tackle increasingly difficult matches. We
use a graph neural network to embed the geometric and topolog-
ical information of entities in both B-reps, and combine this with
a partial match to score all potential next matches, from which we
greedily choose the next most likely match. We then iteratively
re-score the remaining matches using the updated match prior, and
continue until a likelihood cutoff is reached.

4 DATA GENERATION

To train and validate our data-driven matching algorithm, we col-
lect models using Onshape’s public data repository and scripting
capabilities, and either generate or find variations representative of
typical CAD revision updates.

Expert Collection. To validate our method on real-world use cases,
we collected examples of updated imports—instances where a B-
rep was imported first into Onshape from a different source and
the content was then updated to a new version—from Onshape’s
public repository. While this scenario matches directly to our target
application, such examples are challenging to find because doing
so requires a partially manual search. This workflow is also more
common in Onshape enterprise users (companies that work on large
collaborative projects) and those models are not made public.

However, since Onshape has a built-in version control system,
examples of CAD revisions are easily accessible for every model
in their collection by looking backward in the history of a model.
Because only certain points in the revision history correspond to
versions that are ready to be exported (for example, finished versions
versus edits-in-progress), we manually searched the collection with
the help of a CAD expert to identify version pairs representative of
typical CAD workflows.

Using these two methods, we compiled a collection of 25 models:
5 from re-imports and 20 from version control revisions. Although
this dataset lacks ground truth labels, and is not large enough to
train over, it is a representative sample of our target application that
can be used to validate our algorithm. We further take inspiration
from the variations observed in these examples in constructing our
synthetic training dataset.

Synthetic Variation Collection. We built a collection of synthetic
variations of human-designed CAD models by scraping 2,400 public
models of varying complexity from Onshape’s public repository,
then automatically applying variations similar to those we observed
in the expert validation set. We develop our variation algorithm
within the scripting environment of a CAD system. This allows us
to make use of internal mechanisms for entity tracking based on
program history to create ground truth matches.

By analyzing our expert collection we observe that variations
fall within two categories which we term constructive operations

B-rep Matching for Collaborating Across CAD Systems « 1:5

Large CAD Repository Synthetic Variation Part Pair Bo, By
Generaton
% NN / NN / % NN /
! l C l
Pair-wise .
Scores
Pick the B A fe-w Highest score
highest score iterations g
later. lower than
a threshold
A
1
1
= aﬁ, = % J = h
[—
Ground truth extracted fro;';1
programmatic entity matching J 5
| N —
Partial Match Partial Match Partial Match Partial Match
My M, Ms M
(a) Data Generation (b) Our iterative B-rep matching algorithm

Fig. 3. (a) Overview of our methods for data generation of B-rep matching. We draw human-created models from a large public CAD repository, and
programmatically apply constructive operations and geometric deformations to create part variations. Because these edits are applied programmatically
within the CAD system, we can use its programmatic entity tracking to extract ground-truth matches. (b) We use this data to train a neural network that
scores potential entity matches given the geometry and topology of two B-reps and a partial matching. Our matching algorithm initializes the partial matching
with exact geometric matches, then iteratively selects the next most likely match then re-evaluates matching likelihoods up to a user specified threshold.

¢

I
S
?
)

-
|
;

¥y

Fig. 4. (a-c) Examples of geometric deformations, constructive operations, and our complete synthetic dataset, respectively. Red and blue depicts the exclusive
regions of original and updated B-reps, respectively, and gray depicts shared regions between the two.

3
|

(a) Geometric Only (b) Constructive Only (c) Complete

and geometric deformations. We developed custom operations that Constructive operations add or remove material from the model—
automatically generate variations of each type. for example, making a hole for a screw, filleting (rounding) an edge,

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 « Jonesetal

or adding more detail by sketching and extruding some new ge-
ometry. While these operations can modify the existing geometry
(e.g., a face becomes shorter as its adjacent edge is filleted), these
modifications tend to be minor. There is a much greater impact on
the model topology: new entities are created, some are removed, and
neighborhood information is fundamentally changed. Our custom
constructive operations select faces and extrude polygonal sketches
or circles to add or remove material. They can also fillet or chamfer
edges. To achieve diverse variations that resemble the operations in
the expert collection, we use a biased randomization to select the
entities on which to apply these operations as well as the ranges for
parameters of the operations that depend on model dimensions.

Geometric deformations, on the other hand, directly alter the
geometric properties of existing elements. These typically corre-
spond to parametric variations such as changing the length of an
extrusion or modifying a sketch. While the topology can locally
change under these variations, it can also be preserved, while the
shape and position of entities can vary greatly. Since finding the
right CAD parameters to tune without breaking the models is often
challenging if they are not exposed by the designer, we instead
resort to direct editing functionality that consists of moving around
groups of entities. We use several heuristics to group parts of the
model in direct editing move operations, then run validations to dis-
card changes that result in undesirable changes (e.g., models being
divided into two parts). We again use biased randomization when
selecting which faces to move and how to move them.

Our complete data set is generated by first introducing geometric
deformations and then constructive operations over the resulting
variations. We generate 4-18 variations selected from a random
distribution biased by the size of the model. We also run ablations
of our method over a data set of exclusively geometric deformations
and one with exclusively constructive operations. Figure 4 shows
examples of all three sets. We have released our code on Onshape’s
public library for reproducibility.

5 B-REP MATCHING ALGORITHM

At its core, our method is an iterative greedy matching of two B-
rep graphs, B, and B, to obtain an element-wise matching M
between their topological entities. The basic algorithm is defined by
Equation 1: at each iteration we add the highest probability matching
pair from unmatched candidate pairs C of similar topological type
(faces with faces, edges with edges, etc.)

Mps1 =My U max po(i, j | Bo, Bu, Mn) 1)
(i.j)eC

Crucially, this probability p is conditioned not only on the topol-
ogy and geometry and the B-reps, but also on the previous partial
matching M,,. Because typical CAD edits leave some portion of
the model unchanged, we are therefore able to use exact geometric
matching to effectively bootstrap this method. For the other enti-
ties, we propose to learn pg from data, the synthesis of which is
described in Section 4. We continue this iteration until max; ;y p
is below a user-specified threshold; this allows us to control the
precision-recall trade-off at run-time.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

5.1 Learning Matchings from Data

The scoring function p at the core of our iterative method needs to
be able to pick the next most probable match given any particular
partial matching Mp,. Given a dataset D = {(89, B, M?),...} of
variation pairs and ground truth matchings, we want to find py that
minimizes the error over all partial matchings:

min Y Y = D Lol |50 Bu M) MG)
(o B pepm I (ijee
_ _©
where M is one potential partial matching, C = 8, ® 8, \ M is
the set of candidate unmatched pairs relative to ‘M, and M(i, j)
denotes whether (i, j) € M.!

For our application, match precision is more important than recall.
When a match used as a reference to a CAD operation is missed, the
CAD program will throw an error on that operation and label the
error as a missed reference. If an entity is incorrectly matched the
operation may go through, causing downstream errors that are more
difficult to debug. Therefore, we employ a weighted binary-cross
entropy loss that gives more weight to negative match examples:

L(p.p)=—1[p-log(p) +w- (1-p)-log(1-p)], ®)

where w is the weighting constant. Higher w means fewer errors
but with the cost of fewer predicted matches. We choose w = 2 in
our experiments.

In practice, training over every possible partial matching is infea-
sible, so we estimate 0 as

& 1
argmin Z —

= > L(poli | o B M) MG)
0 20 (8,8 M)eD Il

(i.))€Cr

B @
Here My is a partial match consisting of 50% of the ground truth

match M chosen randomly in the kth training epoch. We train

for N = 1000 epochs and select by minimum loss on a held out

validation set with random but fixed partial matches.

5.2 Network Architecture

Our match scoring function pg (i, j | Bo, By, M) is conditioned on
the geometric and topological structure of the two B-reps, B, and
By, as well as any prior information we have about correspondences
between them M. We encode the geometric and topological infor-
mation of B-rep entities using a hierarchical graph convolutional
network, Structured B-rep GCN (SB-GCN) [Jones et al. 2021]. This
takes as input both the parametric definitions of geometry, numeri-
cally computed statistics about each entity (such as bounding box,
surface area, and center of mass), and the topological B-rep graph,
and outputs an embedding vector for each B-rep entity. In our exper-
iments, we use a 6-layer SB-GCN with a 64-dimensional embedding
space.

To further condition on prior matching information, we use these
embeddings as node features in a second graph convolutional net-
work that performs message passing both within and between the

!® denotes a Cartesian product of graph nodes limited to pairs of like topology (faces
X faces, etc.).

Partial Matcheg

w0 @ 00 o ee e
o @ @ @ © TR
e &0 O @ e 0

e 00 oo de

Updated B-rep
Embeddings

Vertices

Original B-rep
Embeddings

Fig. 5. Partial match conditioning for the GAT. Partial matches are repre-
sented as cross-graph edges in unification of the B-rep graphs 8, and B,,.

Partial Matches
\

9. }
Original g g E .

B-rep e = g

Z

D] l D Pair-wise Pair-wise
Updated Embedding Match Score

B-rep

Fig. 6. Scoring network overview. Given the original and updated B-reps,
the SB-GCN computes the embeddings for each topological entity. The GAT
takes partial matches and do message passing on the embeddings across
two B-reps. The two sets of embeddings are pair-wise concatenated and
passed to an MLP to get pair-wise match scores.

parts. To achieve this, we construct a joint-part graph, encoding
both the internal topology of both B-reps, as well as matches be-
tween entities of the same type as cross-part edges (see Figure 5).
Node embeddings are initialized as SB-GCN embedding vectors.
Edges are undirected, and carry a one-hot encoded type, specifying
them as vertex-edge, edge-loop, loop-face, face-face, or prior-match.
We compute our final node embeddings using a Graph Attention
Network (GAT) with additive edge messages [Velickovi¢ et al. 2018].
In our experiments we use a 4-layer GAT with 8 attention heads
per layer and a 64-dimensional embedding space. Embeddings of
candidate pairs are embedded as input to a 2-layer MLP to produce
matching score logits. The full scoring architecture is illustrated in
Figure 6.

5.3 Bootstrapping Matches

Our scoring model is conditional on matching priors. These have
two sources, exact geometric matches, and predictions from previous
iterations of our model.

As previously discussed, unchanged entities are common in CAD
design updates since iterations tend to affect only sections of the
model. We can use a B-rep kernel (e.g. Parasolid) to check if two
entities are coincident. To speed up processing, rather than checking
every pair, we only check the models whose centroids match, which

B-rep Matching for Collaborating Across CAD Systems + 1:7

can be checked for efficiently by hashing the 3D vector representing
the centroid of each topological entity in the old body. To account
for tolerances, we propose a 3D nearest neighbor structure using
shifted grids, which is efficient in low dimensions and deterministic
(see Figure 7).

25 30

Fig. 7. We illustrates our hashing approach using shifted grids. The top left
corner illustrates the grids in one dimension for finding solutions that are
close up to tolerance &. In this case we have two grids where each cell has
length 26 and the cells are shifted by §. Notice that if two points are close
within tolerance &, there will always exist one cell either on the top or the
bottom grid that contains both points. To expand this to higher dimensions
vectors, we must create D + 1 grids, of edge length (D + 1)8, where D is
the number of dimensions. We illustrate an example of shifted grids for
two dimensions (right) and illustrates why simply using two shifted grids
does not generalize for higher dimensions (bottom left). While this method
deterministically ensures that pairs of points within tolerance are found,
it may further return points that are not within tolerance. Specifically, it
may return points that are at most (D + 1) VD§ apart (the dimensions of
the diagonal of the grid cell.) In our solution we further check those points
and filter them out.

6 RESULTS

Our method was trained using our synthetic data. The training
took 12 hours on average using a single NVIDIA RTX 2080 Ti. The
trained network was evaluated against the generated ground truth
and we further evaluate our approach over the expert data set to
validate that our method, trained on synthetic data, generalizes well
to real-world data.

6.1 Synthetic Data Evaluation

We constructed a synthetic variation dataset using the geometric
deformations and constructive operations described in Section 4.
We collected 2,400 CAD models and generated 3 variations of each.
After filtering parts that caused import errors and scale outliers
over 100 times the size of the median part, our dataset contains
2,266 original models and 6,257 variations. We split this dataset by
original model 80-10-10% for training, validation, to ensure both
models remain unseen between training and testing. We report the
results of our approach and compare them to deterministic baselines
and ablations. We refer readers to the table in the supplemental for
numerical comparisons between methods.

Results Across Different Entity Types. Our method correctly matches
91.5%, 92.1%, and 94.9% of faces, edges, and vertices, respectively.
We note that not all entities have ground truth matches because

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 « Jonesetal.

entities can be added or deleted over design iterations. Our goal is
to match as many entities as possible while avoiding errors. We,
therefore, evaluate our results by categorizing the entities in 8,
into five groups:

e True Positive. Entities from $B,, that had a ground truth match in
B, and were matched correctly by our algorithm.

o True Negative. Entities from $;, that did not have a ground truth
match in B, and were labeled as unmatched by our algorithm.

o Missed. Entities from $;, that had a ground truth match in 8, but
were labeled as unmatched by our algorithm

o Incorrect. Entities from 8, that had a ground truth match in B,
but were matched by our algorithm to a different entity in B,.

e False Positive. Entities from B,, that had no ground truth match
but were matched by our algorithm .

Table 1 reports the percentage of total entities in B, that fall
within each category. On average, the exact matching finds 15.7%,
23.8%, and 35.4% of the total matches for faces, edges, and vertices.
Our neural network finds an additional 72.6%, 63.9%, and 55.2% of
the total matches, while maintaining a 2.8%, 1.9%, and 1.1% error
rate.

In Figure 8, we report the breakdown over different thresholds
used as the stopping criteria for the iterative matching algorithm.
We stress that for our application, entities that are matched but
should not have been matched (both incorrect or false positives, in
shades of red) create greater issues for users than missed matches
(in beige) as they are more difficult to debug.

As seen in the third column, which is the result using the complete
synthetic data, our method is effective at trading-off errors and the
number of correct matches as this threshold varies and we have
manually selected a threshold of 0.7 based on this result (reported in
Table 1). We note that while other thresholds would result in even
fewer errors, the 1-3% error rate makes these occurrences already
very infrequent. Further, not all entities are used for references, so
when composed with the likelihood of it being used, the chance
of these errors causing issues for the user will be even lower. We
finally note that zero error is not a realistic goal because of potential
ambiguities in the ground truth data and potential one-to-many
matches we have not accounted for.

The first two columns of Figure 8 show our model when trained
and evaluated on synthetic data generated by two simplifications of
our variation algorithm: one using exclusively geometric deforma-
tions and the other using exclusively constructive operations. We
compare these results with the complete synthetic data. We observe
that constructive operations lead to a much larger number of true
negative, which is to be expected as those operations create new
entities that do not have a previous match. They are also signifi-
cantly easier to match since geometric changes are small. Geometric
deformations, on the other hand, create more challenges for match-
ing. Results over the complete dataset have a similar number of
true negatives as constructive operations because it incorporates
those changes, and also similar to geometric deformations, it has
to trade-off missing to incorrect labels because of the challenges
created by geometric changes.

Deterministic Baselines. We consider three deterministic baselines
which incrementally increase the number of potential matches by

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Table 1. Our results on complete synthetic data reported at threshold 0.7.

Faces Edges Vertices

Exact True Positive 11.0% 14.0% 17.1%

Ours True Positive 62.0% 51.6% 43.8%
True Negative 29.5% 40.5% 51.1%

Missed 5.6% 6.0% 4.0%
Incorrect 2.0% 1.2% 0.5%
False Pos 0.8% 0.7% 0.6%

Correct Label 91.5% 92.1% 94.9%
Incorrect Label 2.8% 1.9% 1.1%

Geometric Only Constructive Only Complete

% of new model
sa08]

% of new model

S9011I87.

0.0

% of new model
e e 2 4 =g
© S By 3

0.4 0.6 0.8

. X 0.4 0.6
Threshold

. X 0.2 0.4 0.6 0.8
Threshold Threshold

mmm True Positive @ True Negative Missed ~ ®m Incorrect WEE False Positive

Fig. 8. Metrics breakdown at different thresholds on synthetic data

trading-off potential errors: coincidence matching, overlap match-
ing, and adjacency propagation. The coincidence matching baseline
enables us to evaluate the lift that our network has over exclu-
sively applying the coincidence matching algorithm described in
Section 5.3.

There are many cases where the coincidence matching algorithm
will fail to match entities with minimal edits to the geometry. These
are very common under constructive operations: for example, a face
whose edge has been filleted or where a hole has been applied will
only reduce in size by a small amount but the underlying parametric
geometry will remain unchanged. This observation inspires our
second baseline, which matches both entities that are coincident,
and ones that have a significant overlap. Our overlap matching
function looks for pairs of edges and faces that were not matched
by coincidence matching and whose associated geometry (curves
and surfaces) are identical. For each pair, we then compute their

Geometric Only

Constructive Only Complete

% of new model
s808]

% of new model
sebpg

% of new model
FERREIN

Exact Exact Adjacency Ours Exact Exact Adjacency Ours Exact Exact Adjacency Ours
+ . Prop. Prop.

Overlap Overlap Overlap

B True Positive I True Negative Missed ~ WM Incorrect B False Positive

Fig. 9. Comparisons with deterministic baselines on synthetic data

overlap, and if the overlap is a large enough fraction (80% in our
implementation) of the smaller of the two entities, the pair is con-
sidered matched. This computation accelerated by hashing common
geometric types and using the shifted grids algorithm described in
Figure 7.

Finally, we consider an iterative solution that matches over deter-
ministic signatures of adjacency. This method work by first match-
ing by coincidence and overlap, then iteratively matching entities
that have a matching adjacency signature. To create an adjacency
signature for a given entity, we traverse its neighborhood graph in
counterclockwise order and store the match index of each entity
in the neighborhood (using a special value of -1 if that entity is
unmatched). We use lexicographical sorting to avoid the ambigu-
ity of which entity to start with, treating loops individually and
aggregating them in lexicographic order. Adjacency signatures are
computed for entities in B, and put in a priority queue based on the
ratio of matched to unmatched entities (so that the function matches
based on more matching adjacency first). We go over this priority
queue creating matching if (a) there is a unique entity if 8, with
the same adjacency signature, or if these can be disambiguated by
the geometric heuristics (like preferring maintaining curve/surface
types or matching coaxial cylinders). The adjacency signatures are
updated every time a match is found and the algorithm terminates
when no more matches can be found. This final baseline describes
our best attempt at addressing this problem in a deterministic man-
ner. This algorithm has been integrated into the Onshape software
and is currently executed every time an Onshape user re-imports a
model. See more details in the published patent [Baran and Schulz
2020].

B-rep Matching for Collaborating Across CAD Systems « 1:9

@@@@@
Passse

TE90 @
- S¢S ®
R R
c R R g g

%

Exact Exact Adjacency Ours Ground
+ Overlap Propagation Truth
[I
True positive Missed False positive True negative

or Incorrect

Fig. 10. Gallery of B-reps pairs matched by different deterministic baselines,
as compared with our method. The first column shows the difference be-
tween original and updated B-reps. The remaining columns shows matching
performance by different algorithms. For each pair, the top is the original
and the bottom row is the updated B-rep. Entities (top and bottom) that
were matched are rendered with the same color. True positives are in shades
of blue-green; incorrect labels (incorrect and true negatives) in shades of
pink-red; missed matches in shades of yellow; and true negatives in gray.

We compare our solution with these three deterministic meth-
ods in Figure 9, showing results over different entities and testing
sets, and in Figure 10 for visualizations. Our method significantly
outperforms all baselines. In the complete synthetic data set, when
comparing our method with exact matching, we see a lift of 50.2,
37.1, and 26.3 percentage points of correctly labeled faces, edges,
and vertices (both shares of blue).

We also observe a large lift over overlap matches: 29.8 and 28.3
percentage points of correctly labeled faces and edges, respectively.
We note that such lift is significantly smaller if we do not consider
geometric deformations, as overlap matches will handle the majority
of constructive operations (See the second column of Fig. 9).

Finally, when compared to adjacency propagation, our method
not only improves the number of correct labels but is also signifi-
cantly more robust. For example, in Fig. 10b, our method was able
to correctly match most of the gear teeth while the adjacency prop-
agation method failed to distinguish between them because they
are topologically the same. Another common pattern is that the ad-
jacency propagation method will match one the filleted edges (See

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 « Jones et al.

Fig. 10a and c). Our method learns not to match these one-to-many
cases.

Contrastive Learning Baseline. In addition to these deterministic
baselines, we compare against a contrastive learning representation
(CLR)-based method that computes matches by greedy matching
of per-element embeddings produced by SBGCN, up to a minimum
cosine similarity threshold. We use an N-tuplet contrastive loss to
encourage matching elements to have similar embeddings. With
this method, we find that there exists no similarity threshold that
provides a good tradeoff between the number of missed matches
and the amount of error. Compared to this baseline, our method has
a lift of 48.5, 35.4, and 25.8 percentage points of correctly labeled
faces, edges, and vertices. Despite attempting many variations of
this approach with different loss functions and geometric features
presented to the encoder, such as UV-Net embeddings of faces and
edges, we were ultimately unable to improve on the quality of results
using this method.

Ablations. We compare the performance of our method against
the adjacency propagation baseline, the presence or absence of
various architectural choices, and the CLR baseline, and we show
dominance of our final method using Pareto plots in Figure 11. This
plot reports the possible trade-offs between correct (true positive
and true negative) and incorrect (incorrect match and false positive)
labels. Our method significantly outperforms the adjacency propa-
gation baseline (represented by the pink dot in the plots), especially
in terms of the amount of false matches found.

Other design choices we test are preconditioning on partially
known and incrementally inferred matches, weighted binary cross-
entropy loss, and graph message passing layers along overlap matches
(adding them to the match condition GAT as an additional edge
type). We note that the iterative approach and preconditioning on
partial matches are the most important components we evaluated,
as removing them leads to a significant worsening of results across
all combinations of topology types and datasets (see the red and
orange curves). Both of these curves represent the performance of
the single-shot algorithm where all scores are predicted at once,
one with preconditioning on exact partial matches and one without.
We also show that removing the weighted cross entropy loss that
weights incorrect matches more heavily (green) harms performance,
especially increasing the incorrect matches over the other meth-
ods compared. Finally, we evaluate the effect of additional message
passing layers between entities matched by overlap (purple), but
this did not consistently improve results to warrant the increased
complexity, so it was excluded from our final method (blue).

We also evaluate the sensitivity from initialization by initializing
our method with different percentages of exact matches. Initializing
with only 30% of the exact matches reduces performance by about
1 percentage points (cyan). However, removing initialization com-
pletely reduces performance by 8.1, 7.2, and 5.7 percentage points
for faces, edges, and vertices, respectively (yellow).

6.2 Expert Data Evaluation
We evaluate our method using the expert collected dataset described

in Section 4. Because this dataset does not contain ground truth

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Geometric Only Constructive Only Complete

7/

sooeg

True Pos + True Neg

True Pos + True Neg
\ | \ \\\
| |

sobpg

True Pos + True Neg
seonIoA

0% 1% 2%
Incorrect + False Pos

4% 5% 6% 0% 1% 2% 3% 4% 5% 6% 0% 1% 2% 3% 4% 5% 6%
Incorrect + False Pos Incorrect + False Pos

Adjacency Propagation —— No Preconditioning Init w/ 30% Exact

—— CLR Baseline No Iteration —— Ours
—— No Weight No Init —— Ours + MP on Overlap

Fig. 11. Comparisons between variations of our method. The plot shows
trade-offs between correct labels (true positive and true negative) and incor-
rect labels (incorrect and false positive) (upper-left is better) The adjacency
propagation baseline is shown as a single point for reference.

labels, we showed our method’s predictions to a CAD expert and
asked them to annotate matches they perceived as missing, incorrect,
or extraneous through the use of an interactive GUIL The interface
presented them with paired 3D visualizations with our predicted
matches highlighted on a 3D model of both the original part and
the variation and asked them whether the corresponding matches
(or lack thereof) contained any errors. When a match was found,
they might report that either no match should have been found, or
the match found was incorrect. In addition, we filtered the expert
collection to 16 examples which had a reasonable number of entities
to manually annotate.

Statistics over this dataset are reported in 2 validating whether our
method trained on synthetic data generalizes to real-word examples
created by CAD designers. We illustrate some of these matches
in Figure 12 which show a large number of accurate matches for
substantial geometric and topological variations.

Examples of errors found by the expert are shown in Figure 13.
Missed matches (a) are the most common type of error, owing to
the difficulty of tracking the correspondence of topological entities
that have changed geometrically (which can be an ambiguous task).
In rarer cases, structural changes can lead to topological entities
neighboring the change being mismatched (Figure 13 (b)). Finally,
the rarest type of error (occurring in less than 1% of entities) is for
the model to predict a match where none should exist. For instance,
when parts of the model drastically change, such as the “T” shape

(2) (b)

B-rep Matching for Collaborating Across CAD Systems « 1:11

(d)

Fig. 12. Examples of models from our expert data set where matches are shown from two views (columns). The top row shows shows the difference between

original and updated B-reps. The second and third rows show the original and updated B-reps, respectively, with faces color-coded based on matches found by

our algorithm (no ground truth is reported).

Py
I 4

(a)
Fig. 13. Examples of failure cases on the expert dataset. Some of the cases
where this happens are large geometric changes (a), total replacement of
sections of a part (b), and topological changes that confuse neighboring
matches (c).

(o)

turning into a “B” in Figure 13 (c), our model may find some spurious
matches along the letter profiles, despite the different-shaped letters
not corresponding in any meaningful way.

6.3 Limitations and Future Work

A fundamental limitation of our method is that correspondences
are often ambiguous and users will disagree about how matches
propagate with changes. While we have used Onshape’s program-
matic tracking scheme as ground truth, that algorithm has its own
limitations as it is driven by heuristics and may not match users’
expectations in every circumstance. We argue, however, that while
such ambiguities are common and will be present in a large portion
of models, they typically account for a small portion of the entities
within these models. This is what ensures the high performance of

Table 2. Our results on the expert collection validated with user study. All
numbers are percentages of 8, entities.

Faces Edges Vertices

Exact True Positive 32.1% 40.9% 45.3%

Ours True Positive 74.2% 65.1% 61.0%
True Negative 15.3% 22.0% 27.8%

Missed 8.2% 11.1% 9.9%
Incorrect 1.8% 1.7% 0.5%
False Positive 0.5% 0.0% 0.9%

Correct Label 89.5% 87.1% 88.8%
Incorrect Label 2.3% 1.7% 1.4%

our method: typical models have hundreds of entities and only a
very small portion of them will have ambiguous matches.

One way to address this ambiguity in future work is to incor-
porate a user in the loop. Since our method is iterative and driven
by previously known matches, it lends itself well to this type of
workflow. For example, future directions could explore additional
message passes across user-specified matches for resolving ambi-
guities, as prototyped in Figure 14. Efforts to address ambiguities
should also consider one-to-many and many-to-one matches. CAD
referencing schemes that have access to the program history can
output one-to-many or many-to-one correspondences. Since finding
such maps is challenging with no contextual information and can
lead to errors, we have chosen a conservative approach that only
maps one entity to another, randomly selecting a match as ground
truth if the historical referencing scheme returns a one-to-many
match. Future directions should consider both one-to-many and
many-to-one matches.

Another consideration is that many CAD models are made of
multiple bodies and those can be exported in a single B-rep file.
Out of the 25 expert examples we collected, 8 of them had more

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 « Jones et al.

&

Original B-rep

Our method
completes matching

User labels
ambiguous matches

Fig. 14. An example of user guidance that can be further explored in future
work. Here the updated B-rep includes a 90-degree rotation of the two
circular cutouts making the match ambiguous. With only one user-specified
match (face in purple), our algorithm is able to infer the rest of the matched
entities.

than one body as part of the original model. Since the algorithm
we discussed in this paper is focused on single-body matching, for
the experiments we reported above, we used only a single body as
input by either selecting the main body or unioning bodies together.
One option to handle multiple bodies is to first match the bodies
and then use our method on each body. While body-matching can
be addressed by user input or using unique names (body names are
exported in the standard B-rep format), automatic body-matching
is a potential area of future research. Another approach is to use
our method directly on the entities of all bodies. While there are no
representation constraints that would inhibit our architecture from
handling this type of data, future work should collect a dataset of
multiple bodies for further training and validation.

Lastly, there are many additional geometric features that we might
consider as additional inputs to our system, potentially strenghen-
ing results. In particular, shape descriptors with proven utility in
the related area of shape matching might be employed [Gal and
Cohen-Or 2006], as well as the geometric and topological descrip-
tors used in prior CAD model retrieval literature [Tao et al. 2013].
These methods could also be employed as stronger baselines—our
current baselines depend on exactly overlapping geometry, and fail
to capture common rotations or translations of pieces. We leave it to
future work to adapt these approaches to the setting of producing
conservative matches between discrete B-rep elements.

7 CONCLUSION

In this work, we present the first fully-automatic learning-based
approach for matching topological entities across variations of CAD

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

models and show that it outperforms existing baselines by thor-
oughly evaluating it against synthetic and expert data. We moti-
vate the need for such an algorithm as an essential part of the
CAD pipeline to enable collaborative workflows involving model re-
imports. In addition to directly addressing this need, our proposed
method and accompanying dataset pave the way for new research
opportunities.

The first opportunity lies within the space of CAD manipulation.
Direct editing systems have been proposed to make CAD manipu-
lation easier, but they lack the generality and consistency that can
be achieved through program representations. While some works
address the problem of combining direct manipulation and program
representations, they struggle with persistent referencing when
direct editing is used and the program representation cannot be
kept in sync [Cascaval et al. 2021; Chugh et al. 2016; Hempel et al.
2019; Michel and Boubekeur 2021]. By enabling references to be
propagated directly over geometry, the methods proposed in this
paper can potentially enable novel CAD manipulation workflows.

The second opportunity lies in transferring this information to
other geometric formats, such as meshes. While shape correspon-
dence on geometry represented as meshes or point clouds is a well-
studied problem, transferring shape correspondence learned from
CAD B-reps to these domains may provide a fresh perspective to
the problem of shape correspondence on CAD-adjacent data, such
as the vast amount of CAD models that are only available in mesh
form.

8 ACKNOWLEDGEMENTS

This work was supported by NSF awards 2219864, 2212049, and
2017927 as well as gifts from Adobe, Intel, Meta, and Amazon. The
authors further thank the whole Onshape, PTC team for their guid-
ance and technical support. James Noeckel also acknowledges the
funding he received from UW Reality Lab, Meta, Google, OPPO, and
Amazon.

REFERENCES

2022. Material Prediction for Design Automation Using Graph Representation Learn-
ing. International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Vol. Volume 3A: 48th Design
Automation Conference (DAC). https://doi.org/10.1115/DETC2022-88049
arXiv:https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-
CIE2022/86229/V03AT03A001/6943080/v03at03a001-detc2022-88049.pdf
VO03AT03A001.

Ilya Baran and Adriana Schulz. 2020. B-rep matching for maintaining associativity
across CAD interoperation. US Patent App. 16/735,194.

Akshay Bharadwaj, Yang Xu, Atin Angrish, Yong Chen, and Binil Starly. 2019. Develop-
ment of a Pilot Manufacturing Cyberinfrastructure With an Information Rich Me-
chanical CAD 3D Model Repository (International Manufacturing Science and Engi-
neering Conference, Vol. Volume 1: Additive Manufacturing; Manufacturing Equipment
and Systems; Bio and Sustainable Manufacturing). https://doi.org/10.1115/MSEC2019-
2882

Rafael Bidarra and Willem F Bronsvoort. 2000. Semantic feature modelling. Computer-
Aided Design 32, 3 (2000), 201-225.

Rafael Bidarra, Paulos J Nyirenda, and Willem F Bronsvoort. 2005. A feature-based
solution to the persistent naming problem. Computer-Aided Design and Applications
2, 1-4 (2005), 517-526.

Weijuan Cao, Trevor Robinson, Yang Hua, Flavien Boussuge, Andrew R. Colligan,
and Wanbin Pan. 2020. Graph Representation of 3D CAD Models for Machining
Feature Recognition With Deep Learning (International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Vol. Volume
11A: 46th Design Automation Conference (DAC)).

Dan Cascaval, Mira Shalah, Phillip Quinn, Rastislav Bodik, Maneesh Agrawala, and
Adriana Schulz. 2021. Differentiable 3D CAD Programs for Bidirectional Editing.

https://doi.org/10.1115/DETC2022-88049
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2022/86229/V03AT03A001/6943080/v03at03a001-detc2022-88049.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2022/86229/V03AT03A001/6943080/v03at03a001-detc2022-88049.pdf
https://doi.org/10.1115/MSEC2019-2882
https://doi.org/10.1115/MSEC2019-2882

CoRR abs/2110.01182 (2021). arXiv:2110.01182 https://arxiv.org/abs/2110.01182

Sang-Uk Cheon, Duhwan Mun, Soonhung Han, and Byung Chul Kim. 2012. Name
matching method using topology merging and splitting history for exchange of
feature-based CAD models. Journal of mechanical science and technology 26, 10
(2012), 3201-3212.

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic
and Direct Manipulation, Together at Last. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’16). ACM,
Santa Barbara, CA, USA, 341-354.

Bailin Deng, Yuxin Yao, Roberto M Dyke, and Juyong Zhang. 2022. A Survey of Non-
Rigid 3D Registration. In Computer Graphics Forum, Vol. 41. Wiley Online Library,
559-589.

Jorge Dorribo Camba, Manuel Contero, et al. 2016. Parametric CAD modeling: An
analysis of strategies for design reusability. (2016).

Shahjadi Hisan Farjana and Soonhung Han. 2018. Mechanisms of persistent identifi-
cation of topological entities in CAD systems: A review. Alexandria engineering
Journal 57, 4 (2018), 2837-2849.

Ran Gal and Daniel Cohen-Or. 2006. Salient geometric features for partial shape
matching and similarity. ACM Transactions on Graphics 25, 1 (Jan. 2006), 130-150.
https://doi.org/10.1145/1122501.1122507

Hao-Xiang Guo, Shilin Liu, Hao Pan, Liu Yang, Xin Tong, and Baining Guo. 2022.
ComplexGen: CAD Reconstruction by B-Rep Chain Complex Generation. ACM
Transactions on Graphics (TOG) 39, 4 (2022), 106:1-106:14.

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed
Programming for SVG. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology. 281-292.

Pradeep Kumar Jayaraman, Joseph G Lambourne, Nishkrit Desai, Karl DD Willis, Aditya
Sanghi, and Nigel JW Morris. 2022. SolidGen: An Autoregressive Model for Direct
B-rep Synthesis. arXiv preprint arXiv:2203.13944 (2022).

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G Lambourne, Karl DD Willis,
Thomas Davies, Hooman Shayani, and Nigel Morris. 2021. UV-Net: Learning From
Boundary Representations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11703-11712.

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and
Adriana Schulz. 2021. AutoMate: A Dataset and Learning Approach for Automatic
Mating of CAD Assemblies. ACM Transactions on Graphics 40, 6, Article 227 (dec
2021), 18 pages. https://doi.org/10.1145/3478513.3480562

Benjamin T. Jones, Michael Hu, Vladimir G. Kim, and Adriana Schulz. 2022. Self-
Supervised Representation Learning for CAD. https://doi.org/10.48550/ARXIV.
2210.10807

Robert Kirkwood and James A Sherwood. 2018. Sustained CAD/CAE integration:
integrating with successive versions of step or IGES files. Engineering with Computers
34,1 (2018), 1-13.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big
CAD Model Dataset for Geometric Deep Learning. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA,
9593-9603. https://doi.org/10.1109/CVPR.2019.00983

Joseph George Lambourne, Karl Willis, Pradeep Kumar Jayaraman, Longfei Zhang,
Aditya Sanghi, and Kamal Rahimi Malekshan. 2022. Reconstructing Editable Pris-
matic CAD from Rounded Voxel Models. In SIGGRAPH Asia 2022 Conference Papers
(Daegu, Republic of Korea) (SA "22). Association for Computing Machinery, New
York, NY, USA, Article 53, 9 pages. https://doi.org/10.1145/3550469.3555424

Joseph G. Lambourne, Karl D. D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter
Meltzer, and Hooman Shayani. 2021. BRepNet: A topological message passing system
for solid models. arXiv:2104.00706 [cs] (April 2021). http://arxiv.org/abs/2104.00706
arXiv: 2104.00706.

Katia Lupinetti, Jean-Philippe Pernot, Marina Monti, and Franca Giannini. 2019.
Content-based CAD assembly model retrieval: Survey and future challenges.
Computer-Aided Design 113, C (Aug. 2019), 62-81. https://doi.org/10.1016/j.cad.
2019.03.005

Elie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse Control of
Parametric Shapes. ACM Transactions on Graphics 40, 4 (2021), 173:1-173:14.

Yusuf Sahillioglu. 2020. Recent advances in shape correspondence. The Visual Computer
36, 8 (2020), 1705-1721.

Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P Adams. 2020. Sketchgraphs: A large-
scale dataset for modeling relational geometry in computer-aided design. arXiv
preprint arXiv:2007.08506 (2020).

Steven Spitz and Ari Rappoport. 2007. Boundary representation per feature methods
and systems. US Patent 7,277,835.

Songgiao Tao, Zhengdong Huang, Lujie Ma, Shunsheng Guo, Shuting Wang, and
Youbai Xie. 2013. Partial Retrieval of CAD Models Based on Local Surface Region
Decomposition. Comput. Aided Des. 45, 11 (nov 2013), 1239-1252. https://doi.org/
10.1016/j.cad.2013.05.008

Mikaela Angelina Uy, Yen yu Chang, Minhyuk Sung, Purvi Goel, Joseph Lambourne,
Tolga Birdal, and Leonidas Guibas. 2022. Point2Cyl: Reverse Engineering 3D Objects

B-rep Matching for Collaborating Across CAD Systems « 1:13

from Point Clouds to Extrusion Cylinders. In Conference on Computer Vision and
Pattern Recognition (CVPR).

Jan H Vandenbrande, Thomas A Grandine, Miriam Lucian, and John Monahan. 2013.
Methods and apparatus for automated part positioning based on geometrical com-
parisons. US Patent 8,576,224.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. 2018. Graph Attention Networks. International Conference on
Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ

Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele
Grandi, Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama,
et al. 2021. JoinABLe: Learning Bottom-up Assembly of Parametric CAD Joints.
arXiv preprint arXiv:2111.12772 (2021).

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne,
Armando Solar-Lezama, and Wojciech Matusik. 2020. Fusion 360 Gallery: A Dataset
and Environment for Programmatic CAD Reconstruction. arXiv:2010.02392 [cs] (Oct.
2020). http://arxiv.org/abs/2010.02392 arXiv: 2010.02392.

Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Genera-
tive Network for Computer-Aided Design Models. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE, Montreal, QC, Canada, 6752-6762.
https://doi.org/10.1109/ICCV48922.2021.00670

Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D. Willis, and Daniel Ritchie. 2021.
Inferring CAD Modeling Sequences Using Zone Graphs. In CVPR.

Xiang Xu, Karl D.D. Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar
Jayaraman, and Yasutaka Furukawa. 2022. SkexGen: Autoregressive Generation of
CAD Construction Sequences with Disentangled Codebooks. In Proceedings of the
39th International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (Eds.). PMLR, 24698-24724. https://proceedings.mlr.
press/v162/xu22k html

Evan Yares. 2013. The failed promise of parametric CAD part 1: From the beginning.
https://www.3dcadworld.com/the-failed- promise- of-parametric-cad/. (Accessed
on 09/06/2019).

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://arxiv.org/abs/2110.01182
https://arxiv.org/abs/2110.01182
https://doi.org/10.1145/1122501.1122507
https://doi.org/10.1145/3478513.3480562
https://doi.org/10.48550/ARXIV.2210.10807
https://doi.org/10.48550/ARXIV.2210.10807
https://doi.org/10.1109/CVPR.2019.00983
https://doi.org/10.1145/3550469.3555424
http://arxiv.org/abs/2104.00706
https://doi.org/10.1016/j.cad.2019.03.005
https://doi.org/10.1016/j.cad.2019.03.005
https://doi.org/10.1016/j.cad.2013.05.008
https://doi.org/10.1016/j.cad.2013.05.008
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/2010.02392
https://doi.org/10.1109/ICCV48922.2021.00670
https://proceedings.mlr.press/v162/xu22k.html
https://proceedings.mlr.press/v162/xu22k.html
https://www.3dcadworld.com/the-failed-promise-of-parametric-cad/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 CAD Referencing
	2.2 B-rep Matching in Commercial CAD Systems
	2.3 Shape Correspondence and Retrieval
	2.4 Learning from CAD Data

	3 Overview
	4 Data Generation
	5 B-rep Matching Algorithm
	5.1 Learning Matchings from Data
	5.2 Network Architecture
	5.3 Bootstrapping Matches

	6 Results
	6.1 Synthetic Data Evaluation
	6.2 Expert Data Evaluation
	6.3 Limitations and Future Work

	7 Conclusion
	8 Acknowledgements
	References

