
Robotic Jigsaw: A Non-Holonomic Cutting Robot and Path Planning
Algorithm

Haisen Zhao1,4, Yash Talwekar2, Wenqing Lan1, Chetan Sharma3,
Daniela Rus3, Adriana Schulz1, Jeffrey I Lipton1,2,∗

Abstract— Bladed tools such as jigsaws are common tools
for wood workers on job-sites and in workshops, but do
not currently have sufficient autonomous hardware or path
planning algorithms to enable automation. Here we present a
system of an autonomous robot and a path planning algorithm
for automating jigsaw operations. The robot can drill holes,
insert the jigsaw, and cut plywood. Our algorithm converts
complex shapes into paths for the jigsaw, drill holes, and
traversal movements for the robot. The algorithm decomposes
input shapes into cuttable sections and determines possible
locations for drilling entry holes for inserting the blade. We
cast the drill hole problem as a set coverage problem with
a trade-off between number of holes and cutting distance. We
characterize the algorithm on a series of shapes and determined
the algorithm found valid solutions. We executed an example
on the robot to demonstrate the end-to-end system.

I. INTRODUCTION

Many professions such as carpenters can see significant
improvements by small amounts of automation. A wide
variety of assembly tasks have been automated using mobile
robots, but many cutting tasks have been understudied [1],
[2], [3], [4], [5]. By automating low level cutting tasks,
we can increase worker safety, accessibility, and worker
productivity. We have developed a solution for scalable
blade-based fabrication tools such as the jigsaw. It combines
an algorithm for automatically planning cuts with bladed
tools and drills and a mobile robot capable of executing
the commands across arbitrary large surfaces. Together the
algorithm and hardware demonstrate that we can automate
many of the tasks currently done with automatic bladed tools.

Currently deployed solutions, such as stationary CNC ma-
chines and newer hand held CNC routers, rely on rotary tools
as the basis for fabrication [6]. These tools are holonomic,
and can be plunged into a surface and move in arbitrary
directions. However, these tools have significant limitations,
for instance they cannot leave a sharp corner. Carpenters
by contrast rely heavily on linear blade tools such as hand
saws, jigsaws, band saws, scroll saws and reciprocating saws
to make most of their cuts. Without automating these bladed
tools, workshop and jobsite applications will be limited.

Past researches into jobsite and workshop automation for
carpentry have developed systems for automating lumber

1Computer Science And Engineering, University of Washington, Seattle
WA, USA

2Mechanical Engineering, University of Washington, Seattle WA, USA
3CSAIL MIT, Cambridge MA, USA
4Computer Science And Engineering, Shandong University, Qingdao

Shandong, China
∗jilipton at uw.edu

Fig. 1. A shape being planned (left), a circle being cut (middle) and the
result of fabricating (right).

cutting using miter saws [7] and simple path planning algo-
rithms for 2D cuts using linear blade tools [8]. This past work
on linear bladed tools developed the foundational theory for
modeling and path planning for such non-holonomic tools
that we are building upon, but was limited by a lack of inter-
tool interaction. It did not consider the synergies of bladed
tools with drills. It assumed a single-entry point for a cut, and
therefore could only cut the exteriors of shapes and required
torturous movements between sections.

Our work extends the past research and focuses on how
a drill and bladed tool work in tandem to produce more
complex cuts. Drills fundamentally change the constraints
on bladed tools, by allowing for the insertion of the blade
into holes. This makes interior and nested cuts possible.
It introduces a trade-off between the number of insertion
points and the total cutting distance, which are two key
considerations related to fabrication efficiency. We developed
a new algorithm for planning under these new conditions and
found it able to generate solutions for almost all planned
cuts. We tested this algorithm against designs that would
have caused previous planning algorithms to fail including
designs used to make flat-pack furniture.

To prove the utility of the algorithm we built a robot
capable of executing its solutions. It can drill pilot holes
and insert and drive jigsaws over work surfaces. We used
a scalable positioning system for localization that could be
deployed to worksites. By successfully following commands
from the algorithm to fabricate parts, we demonstrate the
potential of the algorithm as well as the concept of scalable
blade based robotic fabrication.

In this paper we:

• Developed the first path planning algorithm using
bladed tools and drills for nested cuts

• Tested the algorithm on a library of shapes
• Developed a custom robot to implement and test the

algorithm

II. BACKGROUND AND RELATED WORK

A. Robot Carpentry

Many efforts in automating carpentry have relied on
robotic arms or gantries. This has included prefab hous-
ing [9], post processing [10] and even bringing robots to job
sites [11]. Efforts to find utility in bringing CNC machines to
job sites have been limited by the difficulty in transporting
machines and the inherent scale limitations on parts these
machines have. A workpiece must fit inside gantry based
CNC machines and making a larger CNC machine can
increase cost and complexity in non-linear ways since the
maximum deflection of a beam is proportional to the length
of the span to the fourth power [12]. Deployable robotic arm
based solutions have relied on moving robotic arms between
stationary points [13], [14], [15].

More recent researches on using mobile robotics for onsite
efforts have ranged from automating assembly [1] to lumber
cutting [7]. By building a mobile robot around the tool we
can decouple the robot size from the final part size. The
next generation of mobile fabrication tools such as Shaper
tools and Handibot allow a small CNC system to move
over a much larger surface and cut features [6]. However, if
you look around a workshop, almost no woodworker relies
primarily on rotary tools like Dremel tools for most of their
cuts. Instead, you will see a panoply of bladed tools.

Bladed tools defining feature is the use of a single-sided
blade that either reciprocates or is part of a continuously
moving band to cut curves [16], [17]. Aside from having a
length, the blades also have a finite width called the kerf. This
allows them to cut extremely thick parts more efficiently than
rotary tools and allows the production of angled instead of
curved corners. The cost of these advantages is the difficulty
in planning.

B. Non-Holonomic Path Planning

Past efforts at path planning for bladed carpentry tools
established that when a blade is in a work piece it can
be thought of as a modified simple car [8]. Simple cars
can move forward and backward, but have a finite turning
radius [18]. This makes bladed tools non-holonomic, signif-
icantly complicating the planning.

While past research of algorithms for simple cars can aid
in planning the unique needs and constraints on the bladed
tool problem set it apart from standard non-holonomic path
planning problems. Most past efforts focused on solving
obstacle avoidance [19], [20], [21]. By contrast cutting a
shape can be viewed as a dense version of a the traveling
salesman problem (TSP) [22]. Those that do study TSP
for non-holonomic focus on way point navigation [23],
[24], [25]. Previous solutions targeting bladed tool cutting
explored this space, but failed to account for the interaction
of the bladed tools with drills for insertion. Our work here
expands upon that previous work to develop a model to
account for insertion points.

III. PATH PLANNING ALGORITHM

A. Constraints on Bladed Tools

Bladed tools in work-pieces have a state consisting of a
position and a heading defining a full state of [X,Y, θ] like
a simple car (Figure 3A) [8]. Unlike simple cars, bladed
tools can only move backward along paths they have already
moved forwards along. Tools such as jigsaws also have
multiple solutions for path following: they can cut by moving
along a prescribed curve with the blade tangent to the curve
at each point, or they can cut a shape by using the kerf of the
blade to stop normal to the curve at a finite series of points
(Figure 3D). This Kerf cutting technique is less desirable
but can provide a rough approximation that can be cleaned
in post processing.

When a bladed tool is in a hole in the work-piece, it can
be viewed as a unicycle [18], able to turn arbitrarily but still
having an orientation (Figure 3B). To insert a blade into a
hole, the hole must have a diameter larger than the length
of the blade. When using a Jigsaw, the hole must also be
smaller than the width of the base plate plate 3B to ensure
there is sufficient down force. From a single hole, the blade
can make multiple entries into the work-piece (Figure 3C).
The blade can move along several trajectories from the same
entry point (Figure 3D). Ideally entries are either from the
same point or spaced approximately 3 kerf widths apart on
the circumference of the hole, however this spacing is a soft
constraint, because the tools can make closer cuts, but would
simply have a harder time making its transition into the work-
piece. Therefor we did not consider it in the algorithm.

To make our algorithm work with a robot that moves along
the surface of a work-piece, we have to enforce a constraint
not typically found in carpentered items. This is a non-fall
out constraint. Typically when cutting in a work-piece, if a
closed loop is cut from a shape, that region falls away and
becomes a hole. Since our robot drives along the surface
of the work-piece and is not grounded separately from the
work-piece, we cannot allow the material to fall away. With
these constraints in mind, we can design our path planning
algorithm.

B. Algorithm Overview

Our algorithm’s input is a multiply connected shape L
defined by a set of simple closed loops, C0, C1, ..., Cn,
in which C1, ..., Cn are interior to C0 and have disjoint
interiors. Each loop is represented by a piece-wise linear
function of lines between points of adaptive distance as
shown in Figure 2. Output is a cutting path which takes a
set of selected drill holes as starting points, with a trade-off
between the number of drill holes and the cutting distance.

We first section the input loops into Maximal Cut Sections
(MCS) based on the turning radius Rmin of the blade
(Section III-C). An MCS is a loop section which can be
cut in a continuous manner (Section III-D). Second, we
compute Entry Regions (ERs) for each MCS (Section III-
E), where an ER indicates practicable locations to place drill
holes as starting points to cut that MCS. Third, we determine

Fig. 2. Processing a given shape into a cuttable trajectory. The top row shows the overall shape being processed. The bottom row shows a representative
close-up being processed. The target curve A, F is decomposed into a set of Maximal Cut Sections (MCS) shown in B, G, in which each MCS is indicated
with different colors. For every MCS, we compute its Entry Region (ER) where locates the drill holes taken as the starting point to cut that MCS. In C and
H, the Entry Region is rendering with the same color as its corresponding MCS. Entry Regions of different MCS can be overlapping shown in C. Based
on MCS’s ER, a simulated annealing algorithm is applied to extract the drill holes in D, I. Then the cut trajectories are ordered together and connected
with a greedy TSP algorithm shown in E, J. Note that we use a relative larger Rmin = 7 inch in this example for better visualization.

Fig. 3. Jigsaws in the material have a modified simple car model (A).
Jigsaws can be inserted in holes and are free to rotate (B). From a single
hole blades can cut at multiple headings and radii (C) and can use the kerf
to cut normal to paths (D)

the locations of drill holes to provide coverage for the set
of MCS (Section III-F). Finally, we generate trajectories
for each MCS and connect them with a standard traveling-
salesman based method. The pseudo-code of our algorithm
can be found in Algorithm 1. In the following sections, we
will describe this in detail.

Fig. 4. The various MCS types and different cut strategies. The points on
the target curve are decomposed into closed Maximal Cut Section (S2) and
open Maximal Cut Section (such as S0, S1, S3, S4). Right-End-Cut, Left-
End-Cut and Tangent-Cut are demonstrated to generate cut-able trajectory
of S0. Normal-cut is demonstrated with S1. The red and grey dots indicate
drill holes and entry points separately. A drill hole h0 is shared by multiple
MCSes, S3, and S4.

C. Making Sections

We use a curvature test to decompose the input loops of
L into a set of Maximal Cut Sections (MCS). At each point
vi along a loop, we calculate the curvature in terms of the
change in tangents divided by the distance between the edge
centers [26]:

κi =
|ti − ti−1|

|[(vi + vi+1) /2]− [(vi−1 + vi) /2]|

where vi−1 is the preceding point of vi, vi+1 is the sub-
sequent point and ti is the middle point between vi and
vi+1. If the curvature of a point is bigger than the maximal
turning curvature defined as 1/Rmin, it is taken as a breaking
point. Each point on the input loops is then decomposed into
sections with these breaking points. These sections are taken
as Maximal Cut Sections (MCS). This enforces the minimum
turning radius constraint of the bladed tool. An MCS with
multiple points can have the blade move along the trajectory.
On the other hand, an MCS with a single point cannot be
cut along by the blade due to the turning limit, but we can
use the kerf of the blade and stop with the blade normal
to the curve at that point. A special case is that when one
point breaks the curve into two MCSes of multiple points,
we consider this point as an endpoint for its neighboring
MCSes and don’t mark it as a separate MCS of a single
point. MCSes can be closed or open curves. In Figure 4, S2

is closed MCS and S0, S1, S3, S4 are open MCSes.

D. Cut Strategies

An MCS can be cut with four different strategies, Right-
End-Cut, Left-End-Cut, Tangent-Cut, and Normal-Cut. The
Right-End-Cut (Left-End-Cut) strategy cuts an MCS starting
from the right (left) end and then traverse the section to
the left (right) end. The Tangent-Cut strategy cuts the whole
section with two internal points (pi, pj) as entry points

Algorithm 1: Process Shape L with given Rmin

1 MCSes ← MakeSections(L , Rmin);
2 foreach MCS do
3 ER ← GetEntryRegion(MCS) ;
4 end
5 holes ← SelectHoleLocations(ERs) ;
6 foreach MCS do
7 Trajs ← Trajs

⋃
GenerateTrajectory(holes) ;

8 end
9 return ConnectTrajectory(Trajs);

where pi is right-tangent-accessible and pj is left-tangent-
accessible. The set of points to the right of pi, including pi
and the set of points to the left of pj , including pj , have
an intersection with at least 1 point. For those MCSes with
a single point, pi, pj are the same point. The Normal-cut
strategy is to move the blade to the points on the section
then stopped. As shown in Figure 4 each cut strategy starts
from a drill hole and ends on the MCS. With the exception
of Normal-Cut, they start with a straight segment and an arc
segment and enter the MCS tangent to a point on the MCS,
then cut along that MCS. Normal-Cut follows the same cut
trajectory pattern but moves normal to a point on the MCS.
Note that a single drill hole can be taken as the same starting
point for multiple cut strategies.

Different cut strategies are not equivalent to each other.
We set three levels of priority. Level one is Right-End-Cut
and Left-End-Cut, level two is Tangent-Cut, and level three is
Normal-Cut. We prefer lower level solutions, because they
provide the highest quality and fastest cuts. Cutting using
Tangent-Cut is preferred over Normal-Cut because it cuts
along the curve rather than leave defects from using the
kerf. Thus, once we find a valid solution, we will pick that
solution for the given MCS and stop computing the rest of
the cut strategies. If we end up computing the Normal-Cut
and no solution is found for one point on the MCS, it means
our machine cannot cut the MCS. A specific cut strategy is
valid iff there exists a non-empty Entry Region. Next section
will detail the Entry Region detection process for each cut
strategy.

E. Entry Region Detection

This step aims to detect the region where holes can be
drilled for a cut strategy used on an MCS. This region is
called the Entry Region. The detailed detection process of
three types of cut strategies is demonstrated in Fig. 5.

For each cut strategy, we first back-trace two quarter
circles given the entering direction. Each quarter circle has
radius of Rmin to limit our search space. For P0 and P3

in figure 5, either side of the cut-in direction is a cuttable
region, because the circles do not intersect the shape L. For
{P1, P2}, we can only cut from one of the circles. Next,
we shoot rays tangent to the circle to find their intersections
against the shape L or the bounding box of the shape. We
select the closest intersection to avoid the ray cutting through

Algorithm 2: Drill Hole Selection
Data: Vinit, Tmax, Tmin and r

1 T ← Tmax; V ← Vinit;
2 C,H ← EvaluateCost (V);
3 Vbest ← V ; Cbest ← C; Hbest ← H;
4 while T > Tmin do
5 Vnew ← Modify (V);
6 Cnew, Hnew ← EvaluateCost(Vnew);
7 if exp(−(Cnew − C)/T) > rand(0, 1) then
8 V ← Vnew; C ← Cnew;
9 if Cnew < Cbest then

10 Vbest ← Vnew; Cbest ← Cnew;
11 Hbest ← Hnew;
12 end
13 end
14 T ← T ∗ r;
15 end
16 return Vbest;

the shape. Next, we connect the intersections to form an
Entry Region as shown in Fig. 5 A. If the connection segment
cuts the shape, we move the boundary segment inward until
no intersection found between it and the shape.

We discritize the Entry Region curve with a grid size equal
to the drill diameter to generate drill hole candidates. The
output is depicted by the red dots in Fig. 5 B. To prevent the
drill from drilling through the shape’s boundary, we eliminate
drill candidates that are within the distance of drill radius
around the shape.

During the Entry Region detecting process, we have four
rules to limit our search space: 1) We use a squared bounding
box to constrain the shape. 2) When computing Tangent-
Cut, we only choose the first valid solution to minimize
computation time; 3) We define a maximal leading distance
Dmax and only consider drill points within Dmax from the
entering location; 4) We trace rays on quarter circles of
Rmin, so that we have the largest valid area to find drill
points. These rules can be modified to increase the search
for valid drill holes.

Fig. 5. Showing Entry Region detection for each cut strategy, P0 (End-
Cut), {P1, P2} (Tangent-Cut), and P3 (Normal-Cut). The cyan regions in
figure A represent the Entry Regions found for each cut. The areas of red
dots in figure B represent the drill locations sampled with the size of drill
diameter within the according to Entry Regions in Figure A.

F. Drill Hole Selection

Once the shape has cut strategies with associated Entry
Regions generated for each MCS, our next step is to de-
termine a specific cut strategy and select a hole point for
each MCS. The main consideration includes two terms, the
number of holes and the total leading path distance. Our basic
idea is to apply a simulated annealing algorithm, outlined in
Algorithm 2.

We use an m-dimensional integral vector V = Vi,∈ [1,m]
to indicate which cut strategy is chosen for MCS Si. The
algorithm has three input parameters Tmax, Tmin, and r,
which indicate the starting temperature, ending temperature,
and cooling rate, respectively. In our experiment, we set
Tmax as 103, Tmin as 0.1 and r as 0.96. We first initialize
V with a vector of zeros. During each iteration, we apply
a Modify function to get a new vector Vnew. In the Modify
function, for each j ∈ [1,m], we randomly select the cut
strategy of the jth Maximal Cut Section.
V only encodes the selection of cut strategy along with

its Entry Region for each MCS. We still need a follow-up
operation to select holes from each Entry Region. This is
processed in the EvaluateCost function, which determines
the selected holes H to minimize the number of holes N
and the total leading path distance D (the total trajectory
length for the robot to move from the starting holes to the
entry points). A cost C is defined to evaluate H :

C = w · (N/Nm) + (1− w) · (D/Dm)

where the weight w ∈ [0.0, 1.0] is chosen to trade-off
between N and D. Nm and Dm is used to normalize N
and D , Nm = 2NMCS , Dm = NMCS · BB(L) in which
NMCS indicates the number of MCS before grouping one
point Cut-Normal MCSes and BB(L) is the bounding box
size of the input shape L .

As a specific set cover problem, we apply a greedy-driven
iterative process to select holes from each MCS with the
determined cut strategy for each MCS. We first get a union
region U by overlapping all candidate Entry Regions of V ,
shown in C and H of Figure 2. Each point in U is associated
with a set of MCS which can be reached from that point,
and the corresponding leading path distance. During each
iteration, search for a point in U that covers most non-
hole-assigned MCS and uses the shortest leading path. The
searching metric is w ·((Nm−Ñ)/Nm)+(1−w) ·(D̃/Dm),
where Ñ is the number of randomly selected subset of
associated MCS, and D̃ is the corresponding leading path
distance. Such iteration ends when all MCS have been
assigned with a hole. Note that our algorithm does not
explore all subset of the associated MCS of a point in U ,
the maximal subset we explored is 20 in our experiments.

G. Integration of the trajectories into a path

The final step of our algorithm is to generate a single path.
With the holes and cut strategy for each MCS, connecting
these trajectories is a standard traveling-salesman problem so
we apply a TSP-based method to minimize the path length
used to connect trajectories. Each connection trajectory starts

at a point in the MCS at the end of the cut strategy trajectory
and ends at a drill hole. There are two strategies for con-
nections: 1) the trajectory of Vi with the opposite direction
without withdrawing the blade; 2) a straight segment with
withdrawing the blade. The more efficient option is chosen
which can be evaluated with the parameters in Section VI.

IV. PATH PLANNING RESULTS AND DISCUSSION

Fig. 6. To test our algorithm, we run our algorithm on several shapes
with different complexity. A “NestedBox” shape is decomposed into 8 open
MCS and one hole is used to cut the exterior square and two holes is for
the internal square. Six holes are selected for the “InnerLoops” shape. We
could find the holes used for the “W” are heavily shared by multiple open
MCS. The “ ThroatedBox” shape is produced with 4 holes, which is taken
as a failure case in [8]. All of these shapes are processed with the same
parameters listed in Section VI.

A. Algorithm Validation

To validate our algorithm, we tested our method on a
variety of shapes shown in Figure 6. Our algorithm processed
5 shapes, including a nested square shape where a smaller
square is placed in a big one (NestedBox), a nested circle
shape where two curved sections are placed in a big circle
(InnerLoop), a square connected to a smaller inner square,
a “W” shape bounded with multiple segments (W), and a
complex “house” shape with a “heart” shape and a square in
the interior. For each input, our algorithm was able to section
the input shape into Maximal Cut Sections, compute their
Entry Regions (see Table I). The Nested Box demonstrates

our ability to plan for embedded loops. We were able to
decompose the squares into the 4 sides automatically and find
the appropriate cut strategies for Exterior paths, we were able
to find the edge based entrances, and for the interior paths
we detected the need to use the Tangent-cut strategy. The
interior loops structure shows that we can handle closed loop
shapes on the exterior as well as interior curved sections. The
throated box demonstrates the algorithm’s ability to handle
complex exteriors which create pseudo-pockets which the
previous path planning algorithm could not handle. Finally,
the House demonstrates the ability to handle multiple interior
curves in the same part. For all of the shapes, we searched
for the minimum number of holes by setting w = 0.99 that
could allow us to cut for the part and report them in Table I.
Even for the complex House shape, we found only 6 holes
were needed to make the shape. For the nested box, we found
that only 3 holes were needed to the structure.

Shape S(inch) #L #MCS #ER #EH #MH #H TER(s) TH (s)
House 70x70 3 16 20 2998 5878 6 8.4 1.25
NestedBox 16x16 2 8 12 552 1268 3 3.4 0.3
InnerLoops 72x72 3 6 6 1850 1931 6 2.8 0.1
W 80x40 1 21 30 3950 24953 6 10.3 113.1
ThroatedBox 70x70 1 12 19 1095 3274 4 4.68 0.2

TABLE I
Some statistics and running times for our algorithm. All running time is in

seconds. For each input shape, we report its size (S) and the number of
loops (#L). We test these shapes with w = 0.99 to mainly minimize the

number of holes. The number of Entry Regions (#ER), and the final
selected holes (#H) are reported in this table.

B. Algorithm Performance

Table I reports some statistics with the running time of
Entry Region Detection (TER) and Drill Hole Selection
(TH). We could find that the running time of Entry Region
detection will increase along with the number of Maximal
Cut Sections (#MCS), the number of overall holes in En-
try Regions (#EH) and the number of #EH multiplied by
how many MCS can be reached from each hole location
(#MH).clarify the definitation and update the caption. The
drill hole selection was efficient for most shapes except the
W shape which used roughly 2 minutes to extract holes.
As we can see, #MH of the W shape is much bigger
than others which indicates a lot of overlapping between
Entry Regions of Maximal Cut Sections. If a hole point is
associated with many MCS, there will be a large number
of potential coverage sets to be explored and it will take
a longer time for the greedy-driven iterative algorithm to
extract the optimal hole point. As one future work, we may
speed up this step with a heuristic-driven pruning operation
before applying the iterative algorithm.

C. Optimization Trade-off

The drill hole selection step of our algorithm considers two
objectives, minimizing the number of selected holes to cover
the whole MCS and minimizing the total leading path length.
We use a weighted cost to be the trade-off between the two

considerations. In Figure 7, we show two cases which search
for different trade-offs by setting different w. As we can see,
both cases will use more holes with a shorter leading path
when w is equal to 0.1. When w is set as 0.9, the optimization
results show less number of holes and a longer leading path.
These results prove that our algorithm supports the trade-off
optimization.

Fig. 7. Our algorithm supports different trade-offs between the number
of holes N and the total leading path length D. This figure shows the
planning results of the ‘NestedBox” shape and the “W” shape with different
w (0.9, 0.5, 0.1 from left to right column). The number of selected holes
and the leading path length (in inch) are indicated in the figure.

D. Limitations and Failure case

Our algorithm will fail when we could not find any
available Entry Region for a Maximal Cut Section. As shown
in Figure 8, in the green square, the Maximal Cut Section
between two upper leaves is not cuttable by our framework.
Since the blade cannot cut in from either endpoint, we start
to compute the Entry Region of the Tangent-Cut. Figure A
shows the quarter circles of the Tangent-Cut at the middle
point P0. The two regions bounded by the circles and the
shape have areas smaller than the circle produced by our
drill, so we cannot find a valid drill location. We then move to
compute the Normal-Cut for this MCS, but Figure B shows
how Normal-Cut would fail on P1. We can see that both
quarter circles intersect the shape from the beginning, so we
cannot find a valid Entry Region for point P1. Thus, we
cannot perform Normal-Cut on this MCS either.

One limitation of our algorithm is that we do not allow
for transitions between ends of cuts that do not involve the
removal of the blade or the reversal of the blade along a
trajectory. All starting movements for a section are assumed
to occur at an insertion site. In previous algorithms, Dubin
paths [18] were used to connect the ends of cuts. This
allowed for exterior square shapes to be cut from a single
insertion without returning to the insertion point. As seen in
the nested box example, we currently require 1-4 holes to
make this cut and we must return to the insertion point after
each cut. For some shapes, adding this capability in would
reduce cut time. However there is generally a good reason
why carpenters rarely do this maneuver, it generates a lot of
wasted material relative to simply removing and reinserting
the blade.

Another major limitation of our algorithm is the no-fall out
constraint. While this is needed for a robot to drive on the
surface of the part while cutting, applications where a jigsaw
is independently supported, or uses on tools such as scroll
saws do not have the need for this limitation. Extending this
work to scroll saw planning should remove this constraint
and take advantage of the planning freedom its removal
would generate. This algorithm is also not suited for non-
insertable blade tools such as band-saws. Our algorithm is
sensitive to the resolution of processing. For instance, in the
W shape, sections that should be cut from the edges are
instead cut using normals. This is a result of the system
being run at too large of spacing between points and the
section being seen as blocked by the curves on the edge.

Possible solutions include using a jigsaw with a smaller
turning radius and using a drill with a smaller diameter.
These will be left up for future discussion.

Fig. 8. Showing the failure case. The middle MCS between two upper
leaves is not cuttable by our machine. Figure A shows the quarter circles
of the Tangent-Cut at the middle point P0. Due to the very limited region
bounded by the circles and the shape, we cannot find a valid drill location
that fits our drill diameter. Due to no solution found in Tangent-Cut, we
compute Normal-Cut for each point on this MCS. Figure B shows the quarter
circles of one point P1 for Normal-Cut. Since both quarter circles cut the
shape from the beginning, our jigsaw cannot reach P1.

V. DESIGN OF ROBOT

Our robot was designed around a jigsaw drill pair. We used
a Festool CARVEX PSBC 420 EB 561753 Cordless Jigsaw
and a Milwaukee M12 12V 3/8-Inch Drill Driver (2407-20).
Each was placed on a screw driven linear rail to allow them
to be lifted up and driven down into the wood. The drill was
placed in front of the jigsaw. The drives were placed 306mm
apart and inline with the center of the jigsaw. This allows
for the only constraint on turning radius to be the interaction
of the saw with the wood.

To determine the force requirements on the drives we took
the jigsaw equipped with a Bosch T101B 4-Inch 10-Tooth
T-Shank blade and pulled them through 1/2inch of plywood
via a spring scale to determine the force needed. With a
cut speed of 30mm/s, 24.5N was needed, and with a cut
speed of 42mm/s, 39.2N was needed. This provided us with
a torque requirement for our system. The drive consists of
Maxon DCX motors tuned for 15RPM at 2.6Nm. Each one
is connected to the wheels through a belt transmission. The
wheels are BaneBots Wheel, 2-7/8” diameter with a 50A
durometer coating. We performed a tilt test and found the

wheels had a coefficient of friction of 0.36 on wood and
0.28 on sawdust covered wood.

To control each power tool, we routed the tools’ batteries
through relays controlled by the robot’s on-board computer.
We used a Raspberry Pi 3B+ as the on-board computer
and we drove the motors with a RoboClaw 2x7A Motor
Controller. To power the system we had a separate USB
power supply for the Raspberry Pi, two 12V 7Ah lead acid
batteries to drive the motors and solenoids, and the batteries
that came with the power tools. Since the robot has a cutting
surface and a drill, we determined that we needed a hardware
remote kill switch for safety. This was placed between the
batteries and the control electronics. The resulting hardware
can be seen in Figure 9.

We used an HTC Vive lighthouse based tracker on top of
the robot centered over the jigsaw blade as the positioning
system (See Figure 9. We used the PyOpenVR library [27]
on a windows PC to interface with the tracker and obtain
the state information, which we then pass through a Kalman
Filter before sending it to the controller. When the tracker is
stationary, we observed the noise to be normally distributed
with standard deviations 0.1 mm, 0.1 mm and 0.01 rad for
x, y and θ. However, we also observed that over time the
tracking estimates drift by a maximum of 10 mm after some
motion. We speculate the cause of this drift to be accumu-
lation of integration errors in the in-built inertial sensors in
the tracker. Further, reflective surfaces in the environment
affect the tracking performance of the lighthouse system
which leads to higher noise in some areas of the robot’s
working space. We wirelessly networked the pi to the PC
and used ZeroMQ as the main message passing system.
The pi therefore only needed to execute commands sent via
ZeroMQ. We used the same model predictive controller as
described in [8].

Fig. 9. Hardware for the Drill and Jigsaw Robot from the side (A) and
front (B)

VI. ROBOT CHARACTERIZATION

To characterize the robot we first measured the minimum
turning radius of the jigsaw when cutting plywood. We found
the minimum turning radius was 15mm. Next we needed to
characterize the movement accuracy. We drove the system
without the controller active and found a drift of 12.5mm
per meter off of straight lines at a speed of 40mm/s and a
mean radial error of 18.3mm for a circle of radius 200mm.

With the MPC controller active we found that we reduced
the error to 2 mm per meter off of straight lines and the
mean radial error to 1.4 mm. The maximum speed we could
achieve with the blade out is 125 mm/s and 25 mm/s when
the blade is cutting. Inserting or removing the blade takes
23 s and drilling an insertion hole takes 15 s. Due to a
limit on the force that the drill linear drive can exert only
a small hole 6.35 mm in diameter can be placed by the
robot. To determine the minimum drilling radius needed, we
had to measure the position repeatability of the robot. So
we repeatedly moved the robot to the same drill point and
found we varied by 4.7mm in drill position. Given that as
the variation of the center, and the blade having a length of
7 mm we need a hole drilled that is 25.4mm to ensure that
the robot can insert safely.

VII. FABRICATION RESULTS AND DISCUSSION

To verify that the algorithm worked and was compatible
with our hardware we planned to cut a square with a circle
nested inside seen in Figure 1A. The Square had an external
side length of 200mm and the circle was 150mm in diameter.
First the robot drilled pilot holes and moved to a safe posi-
tion. Next a human worker drilled out the holes to a diameter
of 25.4mm. Finally the cut trajectories were executed open
loop. We needed to execute open-loop because the tracker
could not provide meaningful information because of the
vibrations from the jigsaw. The end result can be found
in Figure 1C. While the sides are not square and ideal for
even a crude human carpenter, this is mostly due to errors in
the tracking and the lack of control. The part demonstrates
that the algorithm can make a viable plan that can be
autonomously executed. Future improvements in tracking,
and hardware will allow for higher quality results.

VIII. CONCLUSIONS

We have developed a new algorithm for path planning
bladed tools and using multiple insertion points made by
a drill. This algorithm extends the pre-existing literature to
account for the interactions between bladed tools and drills
to enable cutting nested shapes. To validate the algorithm we
tested against a series of shapes and built a robot capable of
automatically marking holes for drilling, inserting a jig saw,
and driving the jigsaw to execute trajectories. This system
enables scalable CNC manufacturing of complex shapes.
This will enable scalable and deployable fabrication and help
bring robotics out of the factory and into the workshop and
jobsite.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation, grant numbers CCF-2017927, EEC-2035717, and
1644558 and by the NSF China (61772318).

REFERENCES

[1] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot:
An autonomous multi-robot coordinated furniture assembly system,”
in 2013 IEEE International conference on robotics and automation.
IEEE, 2013, pp. 855–862.

[2] M. Dogar, A. Spielberg, S. Baker, and D. Rus, “Multi-robot grasp
planning for sequential assembly operations,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 193–200.

[3] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor
teams,” Autonomous Robots, vol. 33, no. 3, pp. 323–336, 2012.

[4] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen, and
D. Rus, “Towards coordinated precision assembly with robot teams,”
in Experimental Robotics. Springer, 2016, pp. 655–669.

[5] G. Reinhart and S. Zaidan, “A generic framework for workpiece-based
programming of cooperating industrial robots,” in 2009 International
Conference on Mechatronics and Automation. IEEE, 2009, pp. 37–42.

[6] A. Rivers, I. E. Moyer, and F. Durand, “Position-correcting tools for
2d digital fabrication,” ACM Transactions on Graphics (TOG), vol. 31,
no. 4, p. 88, 2012.

[7] J. I. Lipton, A. Schulz, A. Spielberg, L. Trueba, W. Matusik, and
D. Rus, “Robot assisted carpentry for mass customization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3540–3547.

[8] J. I. Lipton, Z. Manchester, and D. Rus, “Planning cuts for mobile
robots with bladed tools,” in Robotics and Automation (ICRA), 2017
IEEE International Conference on. IEEE, 2017, pp. 572–579.

[9] A. Thoma, A. Adel, M. Helmreich, T. Wehrle, F. Gramazio, and
M. Kohler, “Robotic fabrication of bespoke timber frame modules,” in
Robotic Fabrication in Architecture, Art and Design. Springer, 2018,
pp. 447–458.

[10] A. Amini, J. I. Lipton, and D. Rus, “Uncertainty aware texture
classification and mapping using soft tactile sensors.”

[11] V. Helm, S. Ercan, F. Gramazio, and M. Kohler, “Mobile robotic fabri-
cation on construction sites: Dimrob,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 4335–
4341.

[12] Y. Altintas, Manufacturing automation: metal cutting mechanics,
machine tool vibrations, and CNC design. Cambridge university
press, 2012.

[13] R. Holmberg and O. Khatib, “Development and control of a holo-
nomic mobile robot for mobile manipulation tasks,” The International
Journal of Robotics Research, vol. 19, no. 11, pp. 1066–1074, 2000.

[14] B. Hamner, S. Koterba, J. Shi, R. Simmons, and S. Singh, “An
autonomous mobile manipulator for assembly tasks,” Autonomous
Robots, vol. 28, no. 1, pp. 131–149, 2010.

[15] ——, “Mobile robotic dynamic tracking for assembly tasks,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2009, pp. 2489–2495.

[16] T. J. Ko and H. S. Kim, “Mechanistic cutting force model in band
sawing,” International Journal of Machine Tools and Manufacture,
vol. 39, no. 8, pp. 1185–1197, 1999.

[17] B. Lehmann, “The cutting behavior of bandsaws,” Ph.D. dissertation,
University of British Columbia, 1993.

[18] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[19] S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning
for non-holonomic dynamical systems,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp. 5041–5047.

[20] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Ieee access, vol. 2, pp. 56–77, 2014.

[21] C.-b. Moon and W. Chung, “Kinodynamic planner dual-tree rrt (dt-
rrt) for two-wheeled mobile robots using the rapidly exploring random
tree,” IEEE Transactions on industrial electronics, vol. 62, no. 2, pp.
1080–1090, 2014.

[22] G. Reinelt, “Tsplib—a traveling salesman problem library,” ORSA
journal on computing, vol. 3, no. 4, pp. 376–384, 1991.

[23] D. G. Macharet, A. A. Neto, V. F. da Camara Neto, and M. F. Campos,
“Nonholonomic path planning optimization for dubins’ vehicles,” in
2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 4208–4213.

[24] D. G. Macharet and M. F. Campos, “A survey on routing problems
and robotic systems,” Robotica, vol. 36, no. 12, pp. 1781–1803, 2018.

[25] S. G. Manyam and S. Rathinam, “On tightly bounding the dubins
traveling salesman’s optimum,” Journal of Dynamic Systems, Mea-
surement, and Control, vol. 140, no. 7, p. 071013, 2018.

[26] M. P. Do Carmo, Differential geometry of curves and surfaces: revised
and updated second edition. Courier Dover Publications, 2016.

[27] C. Bruns, ““pyopenvr,” 2017.

