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Fig. 1. Our interactive design system helps users explore key design axes for knitting to generate highly customized patterns from input shape templates; e.g.,
a seamless yoke dress with princess-cut apparent seams (a), and drop shoulder dresses with textures on the arms and skirt (b-d). The output of our system is a
knit pattern template that lets users vary the shape while preserving the design, for example, creating a child’s dress with short sleeves (d) that matches an
adult dress (b), or varying skirt texture and angle, and sleeve knitting direction (c). The system guarantees that all results and variations are machine knittable.

We present an interactive design system for knitting that allows users to
create template patterns that can be fabricated using an industrial knitting
machine. Our interactive design tool is novel in that it allows direct control of
key knitting design axes we have identified in our formative study and does
so consistently across the variations of an input parametric template geome-
try. This is achieved with two key technical advances. First, we present an
interactive meshing tool that lets users build a coarse quadrilateral mesh that
adheres to their knit design guidelines. This solution ensures consistency
across the parameter space for further customization over shape variations
and avoids helices, promoting knittability. Second, we lift and formalize
low-level machine knitting constraints to the level of this coarse quad mesh.
This enables us to not only guarantee hand- and machine-knittability, but
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also provide automatic design assistance through auto-completion and sug-
gestions. We show the capabilities through a set of fabricated examples that
illustrate the effectiveness of our approach in creating a wide variety of
objects and interactively exploring the space of design variations.
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1 INTRODUCTION
Knitting is a versatile craft with rich aesthetic and functional design
spaces. Its scope ranges from garments and toys to architectural
structures and medical implants. The ubiquity of knit textiles in
our lives is driven by programmable knitting machines. Machine
knitting has the potential to become the next 3D printing: knit
textiles are pervasive, customization of knit objects like clothing
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is valued, and machine prices have fallen within reach of maker
spaces, small shops, and hobbyists.
However, makers lack design tools that provide needed control

over familiar design axes, enable customization of existing designs,
and encourage exploration of the design space. Consider the variety
of dress shapes in Figure 1. There are several options for knitting
patterns that can construct these shapes. The knitting designer must
choose from patterns like these to achieve functional and aesthetic
effects. Based on interviews we conducted with knitting designers,
we identified seven design axes that are typically present in knitting
patterns.

Shape Variability. Specific aspects (or geometry parameters) of
a knit object’s shape and size can vary without requiring a
wholly new pattern. For example, a pattern designer might
vary the length of a skirt and sleeves and the height of the
waist to change an adult’s dress to a child’s dress (b vs d).

Composition. The basic building blocks of knit objects are sheets
and tubes, which are composed to form a shape. For example,
shoulder design in garments may be composed as smoothly
merging or abutting tubes (a vs b).

Seaming. Related to composition, seams are used to connect build-
ing blocks (e.g., the shoulders in b) but also within a building
block (e.g, the sleeve in c).

Orientation. Knitting looks different, and stretches differently, in
the horizontal and vertical directions. As the sleeve of c shows,
changing orientation can change the locations of seams. Thus,
the orientation, or alignment of stitches along the surface, is
an important design choice.

Surface Layout. Knitted objects are typically comprised of con-
ceptually meaningful regions. Layout includes the axes of
symmetry, a line of increases or decreases, and the bound-
aries of a texture region, such as textures on the dress skirts,
and the apparent seams in (a and c).

Curvature Shaping. Sheets and tubes are flat grids of stitches
until shaping stitches are added, creating non-grid formations
that add intrinsic curvature. Curvature is distributed around
the bodice in (c) and concentrated towards the front in (d).

Surface Texture. Texture is achieved by varying stitches on the
surface of a sheet or tube without varying curvature. Com-
plex surface patterning of stitch variants gives knitting its
aesthetic versatility, as shown in the dress skirts (a-d).

Customization and exploration of designs require interactive con-
trol of these seven design axes. There are two challenges to interac-
tive design. First, knitting patterns must meet several discrete local
and global constraints in order to be fabricable. Stitches must cover
the surface with a small number of yarns while avoiding helical
structures that cause cyclic dependencies in the fabrication process.
Shaping stitches must be placed to capture mesh curvature, but also
respect limitations on their type and relative alignment. Second, the
seven axes are strongly intertwined at the stitch level, so making a
decision along one axis can undo decisions made along other axes.
For example, changing the orientation of stitches in the sleeve of
the dress between (b) and (c) requires different curvature shaping
stitches, changes the composition of the sleeve from a tube to a sheet,

requiring a seam down the length of the arm, and rotates the sur-
face texture by 90 degrees. Ideally, a design tool should enforce the
constraints without overly limiting the designers’ ability to explore,
which is hampered if design decisions undo each other.

Prior work addressed several of these design axes. For example,
Yuksel et al. [2012] demonstrate that a coarse quad-dominant mesh
modeling of geometry enables the representation of important de-
sign axes of knitting, such as orientation and surface texture, and
supports iterative modifications to these axes. However, without a
design tool that can automatically generate the quad mesh from high-
level design input, this representation cannot support iteration on
axes such as composition and shape variability. Similarly, without a
strong theoretical connection between knittability constraints and the
algorithm that generates a pattern from a quad mesh, it is impossible
to guarantee knittability. As a result, a design tool cannot suggest
design solutions or warn users when they make changes that will
break their design.
To address these limitations, we introduce two theoretically-

grounded advances. First, we present a novel meshing tool that
expresses the theoretical relationship between the singularity struc-
ture of quad meshes and the knitting design axes. This lets users of
all knitting design skill levels generate coarse meshes that satisfy
their design goals and avoid helical structures that lead to undesir-
able patterns. Further, our algorithm takes as input a parametric
template geometry that can vary over a specified parameter space,
for example, a dress whose sleeves can vary from short to long or
whose skirt can be elongated, allowing a design to be customized
for a user.
Second, we introduce formal knittability criteria over the

coarse mesh to ensure knittability without over-constraining the
design space. By knittability in this work, we mean a valid ma-
chine knitting patterns in conjunction with constraints to account
for physical limits of knitting machines and yarn that improve
design robustness. Our validation and accompanying algorithms
enable not only notifications about knittability problems, but pro-
mote interactive design across multiple design axes supported by
auto-completion and automated design suggestions.
Based on these theoretical insights, we contribute a practical

knitting design framework that supports:

• Requirements for design axes drawn from real-world knitting
design experts

• Variable template patterns that correctly propagate design
decisions as parameters of the geometry are modified

• Direct manipulation by users of multiple, interdependent
design axes

• Automatic knittability checking and auto-complete assisted
design

• Generation of knitting machine instructions

2 UNDERSTANDING KNITTING DESIGN AND ITS
RELATION TO QUAD MESHES

Knitting builds on a long craft, design, and artistic history [Spencer
2001]. Knitters can refer to books (e.g., [Budd 2002]) or websites
(e.g., Ravelry [2019]) that include a wealth of knitting patterns and
design strategies. To discuss pattern design strategies, we first briefly
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review how knit objects are constructed (see [McCann et al. 2016;
Underwood 2009] for a more thorough review). We then present the
results of our study with knitting pattern designers, which drove
our technical innovations. We will also explain how knitting relates
to quad meshing to facilitate with understanding later sections.

Fig. 2. Knit object construction. (left) A segment of knit fabric showing the
basic stitch types and curvature shaping. (right). The two basic knitting
primitives: sheets and tubes. Grid cells represent stitches, and arrows denote
order of fabrication.

Constructing Knit Objects . Knit objects consist of a grid-like fabric
of interconnected stitches. A grid of stitches can be a sheet of fabric,
or the ends can be joined to form tubes, called knitting in the round
(Figure 2). Knit objects are composed by joining and cutting these
elements in various ways and orientations.

Stitches in the grid are formed sequentially by pulling a yarn loop
through a “parent” loop in the row below it. To create a stitch, the
loop it is pulled through must have been knitted already. This means
that knitting inherently constrains the order in which stitches can
be constructed. The central constraint of knitting is that the graph
of stitch dependencies must be non-cyclic. The first row of stitches
have no parent stitches, so they must be created with a special type
of stitch called a cast-on. Similarly, the final row of stitches is closed
with a stitch called a bind-off which acts to stabilize the knit object.
This is important because a non-bind-off stitch with no children can
unravel.
The grid can be locally distorted by adding and removing loops

to add curvature to the fabric. This is done along columns using
special increase and decrease stitches and along rows using “short
rows” (Figure 2). Also, by varying the direction each loop is pulled
through (knit and purl) – as well as other loop properties that
create twists, holes, and overlayed loops – it is possible to create
surface texture, such as cables, lace, and ribbing. As an example,
varying the order that loops are stacked or pulled in an increase or
decrease can create leaning increases or decreases, which appear to
tilt left or right. Aligning several leaning stitches in a line can create
the appearance of a seam in the fabric, as visible in Figure 11 (b).
Throughout the paper we will use “apparent seam” to distinguish
these seam-like stylistic choices from true seams, which occur when
separately knitted edges are sewn together as a post-process.
Knitting machines do not change the important axes of knit de-

sign, but they do add fabrication constraints not found in hand
knitting. A V-bed knitting machine contains two beds of small nee-
dles at fixed spacing. A piece of yarn is shuttled back and forth
between the beds by a carrier, and the needles are programmed to
interact with the yarn (e.g., grabbing a loop), or each other (e.g.,

passing loops) as the yarn passes. Each needle holds one or more
active loops at a time, and only these loops can be built upon. Once
a machine drops a loop, it cannot pick it back up, so all stitches
needed in the future must be held on needles. While loops can move
between needles to create gaps for increases and overlaps for de-
creases, the physical dimensions of needle size and spacing limit
how large a gap can be without snapping the yarn (overstretching
the yarn), and how many loops can overlap before dropping off the
small needles (overstacking a needle). These impose an upper bound
on the number of loops each stitch can increase or decrease, which
we conservatively cap at two, and make short-rows preferable for
shaping (for hand knitters, increases and decreases are preferred).

Designing Knitting Patterns: A Research Survey and Study. To un-
derstand how designers construct knitting patterns, we surveyed
popular keywords used with over 200,000 free knitting patterns
available on Ravelry.com and conducted a contextual inquiry [Beyer
and Holtzblatt 1999] with five knitters, focusing on the design pro-
cess, motivations behind design decisions, and the use of patterns
and other artifacts or tools. We describe the details of this study in
our supplemental material and discuss here the key results.
Our survey of patterns showed that the most popular search

keywords specified composition (129K patterns mentioned seaming;
160K mentioned seamless; almost all specified sheets (flat, 227K
patterns) or tubes (in the round, 181k patterns)). Next in frequency
came orientation (163K patterns) and shaping (32K patterns use
short rows, which could underestimate the importance of shaping
since almost all patterns use increases and decreases). The use of
such keywords suggests that the identified design axes are of interest
not only to pattern designers but also to knitters.

Regarding study results, participants tended to enter initial plan-
ning stages based on some inspiration (e.g., a picture) or an internal
image of the final object they wanted to create. They drew this out
as a sketch of the objects’ composition or directly translated it onto
a grid (a stitch-level representation) using (something like) perler
beads or graph paper. They also determined knitting orientation,
texturing, added symmetry, and created an assembly plan, as needed,
at this phase of the project. More complex objects were broken down
into different components to be designed individually.

Participants also discussed the challenges of modifying an exist-
ing pattern by re-sizing, coloring, texturing, and modifying design
elements. Of these, resizing was by far the most common since small
changes (like the specific knitter, yarn, and needles) could alter the
number of stitches needed to achieve their goal. They did not have
automated methods to do this. Instead, they used arithmetic, vi-
sual inspection, trying things on, or comparing theirs to a to-scale
pattern. Because many knitters preferred to knit in the round, a
second common change was to the composition of a pattern of sewn
sheets (such as a sweater) into a tube. Thus, a knitting design tool
could be of value not only to designers but also to the much larger
group of knitters who simply want to make things that fit. This
also demonstrates that stitch level decisions can be deferred until
fabrication time while still respecting a design intent, indicating
that the design is actually captured by a higher-level structure.
Our survey and study provide evidence that an ideal tool for

knitting pattern design should support changes in the target shape
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(especially size), composition, orientation, seaming, curvature shap-
ing, texture, and surface layout features such as symmetry. However,
simply supporting these design axes is insufficient. Knitters want
to modify them, which is currently time-consuming and difficult.
They struggle to ensure that the resulting pattern will be knittable
and to preserve one design decision when modifying others.

Quad Meshing and Knit Design. Quad meshes are meshes with
only quadrilateral faces, and the mesh vertices typically have 4
adjacent edges (or 3 if on boundary). Such vertices are called reg-
ular, while others are called irregular or singular. The surplus or
deficit of adjacent edges is the index of a singularity (a singular
vertex). A typical knit stitch, like a quad in a quad mesh, has exactly
four neighboring stitches, a compelling parallel that motivates the
most popular stitch-level representation: Stitch Meshes [Yuksel et al.
2012]. In addition to this low-level correspondence, we found two
higher level correspondences.

First, based on our study with knitters, we see that they think and
lay out knitting designs in sheets and tubes. When they combine the
sheets and tubes, these structures may come together in greater or
fewer than 4 edges, creating singularities. We found connections be-
tween several common knitting patterns and groups of singularities
with particular indices, which we compiled into a set of composition
rules that can be applied to a surface to control how the surface is
broken down into sheets and tubes.
Second, knitting has two orthogonal directions formed by rows

and columns of stitches (course and wale, respectively). In quad
meshing, locally orthogonal axes are represented by a cross field – a
pair of vector fields over a surface that are always locally orthogonal.
Several methods for converting a triangle mesh to a quad mesh
(remeshing) use cross fields to guide the orientation of quads. The
orientation of rows and columns in knitting is an important design
decision, so we employ a cross field to capture the designer’s intent.

Quad meshes have rows and columns found by following neigh-
boring quads on opposite edges. If two different quads in the same
row are also in the same column – meaning there is a cycle, the
row is a helix. While knitting in the round is technically knitting
one helix, in our representation (and also in standard knitting pat-
terns) this helix is not explicitly represented. Instead, it is broken
into individual rows, and the overall helix is constructed only at
knitting time when transitioning between these rows. This view of
knitting makes it easier for us to reason about stitch construction
dependencies; specifically that all of the stitches in a row must be
constructed before any stitches in later rows. A quad mesh helix
creates a cyclic dependency between stitches, which is not knittable.

3 RELATED WORK
Knitting design research can be segmented into three domains of
inquiry: representation, which is typically stitch, primitive or mesh-
based; pattern knittability, which includes both generation and veri-
fication of hand and machine knit patterns; and interactivity, which
includes support for the seven design axes identified in our survey
and study. In addition to these topics, we will discuss prior works
on quad meshing for knitting, an important step in our system.

Representation of Knit Patterns. Representations fall into three
categories. Stitch-based representations specify individual knitting
operations and can be written as language, charts, or annotated
meshes. Primitive-based ones address tubes and sheets directly,
while patch-based ones extend mesh representations to multiple
stitches per element.

Traditionally, knitting patterns are conveyed as stitch-based fab-
rication instructions, typically in a language called knitspeak [Hof-
mann et al. 2019] or visually in a chart (e.g., [Briar 2019; SHIMA
SEIKI 2019; STOLL 2019]). Several systems use quad-dominant
meshes rather than a chart or language to represent objects at the
stitch level [Igarashi et al. 2008; Wu et al. 2018, 2019; Yuksel et al.
2012]. In these systems, quad faces represent regular stitches, trian-
gles the ends of short rows, and pentagons increases and decreases.
Additional data is embedded to indicate orientation and to differen-
tiate stitch types, such as knits from purls. While stitches directly
correspond to the fabrication process, knittability is a primary issue
here, which we discuss in the following section.
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Igarashi et al. 2008 ☆ ★ ★
Yuksel et al. 2012 ☆ ☆ ☆ ★ ★ ☆
Wu et al. 2018 ☆ ★
Wu et al. 2019 ☆ ☆ ★ ★ ★ ★ ☆
Popescu et al. 2017 ★ ★ ☆
Narayanan et al. 2018 ☆ ☆ ★ ★ ★
Narayanan et al. 2019 ☆ ☆ ★ ★ ★ ★ ★
McCann et al. 2016 ★ ★ ☆ ☆ ★ ★
Kaspar et al. 2019 ★ ★ ☆ ☆ ★ ★ ★
SHIMA SEIKI/STOLL ☆ ☆ ☆ ☆ ☆
Our Work ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

Direct Interactive Control  Desirable Features

Table 1. Desirable features of a knitting design tool supported by literature.
Unfilled stars show partial satisfaction of the goal; either users have direct,
but incomplete control, or complete but indirect control. For example, [Yuk-
sel et al. 2012] gives direct, but incomplete control over orientation since
orientations may only align with coarse input mesh edges, and [Narayanan
et al. 2019] gives complete but indirect control over surface layout since sym-
metries and feature placement can be specified exactly by moving stitches
one by one. If properties are assumed from the input, or are both indirect
and incomplete, they are not considered controlled. An unfilled star for
mesh input indicates that pre-processing outside the system is required.

Since knitting is composed of tubes and sheets, an intuitive alter-
native is to specify a knit object as a composition of parametric sheet
and tube primitives (e.g., [Kaspar et al. 2019; McCann et al. 2016]).
This approach has the advantage of supporting parameterization of
these primitives, enabling a single pattern to act as a template for
customization. It is also possible to provide knittability guarantees
over this representation, though matching an arbitrary input target
shape is not straightforward.

If we generalize meshing to represent multiple stitches per quad,
we gain many of the benefits of primitive-based approaches, while
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still being able to match an input target shape [Yuksel et al. 2012].
However, this approach has not been extended to include pattern
generation and ensure knittability, and depends on a high-quality
patch input that aligns with the desired design.

Knittability. Knitting an object requires the generation of a valid
sequence of stitches. Because stitches are created by pulling loops
through other stitches, such an ordering is not guaranteed to exist.
Thus, stitch-based representations typically lack inherent guaran-
tees of knittability (though commercial systems warn about poten-
tial failures). When representing the dual graph of a stitch-level
mesh, dependency errors in a pattern can be found by cycle check-
ing. Popescu et al. [2017] pioneered the graph approach with a
hybrid representation, and Narayanan et al. [2018] extended it by
directly constructing a graph over an input model and identifying
a sufficient set of constraints on the graph to guarantee machine
knittability. However, these checks must be done for every iteration
to a pattern.

Using a primitive-based representation, McCann et al. [2016] de-
veloped a provably correct transfer planning algorithm that sched-
ules a pattern on a machine knitting machine. Kaspar et al. [2019]
extended this work with more primitives, more composition options,
and a more robust texturing system.
Knittability guarantees have not been demonstrated for patch-

based representations. This would require imposing constraints
that ensure knittability. If it were possible to guarantee knittability,
a patch-based representation would be preferable to stitch-based
approaches because of its generality, and to primitive-based ap-
proaches because of its flexibility in easily representing a wide
variety of input shapes.

Interactive Knit Design Tools. Stitch-level mesh-based approaches
are intuitive for representing underlying geometry, can automat-
ically generate a knittable solution for a specific geometry, and
support low-level control over specific stitches. For example, Na-
yaranan et al. [2019] support direct stitch mesh editing while ensur-
ing machine knittability. However, concepts such as composition,
orientation, and surface layout are not directly represented in a
stitch-based mesh; rather, they are expressed through the stitches
that are specified. Thus, the design tool cannot know when they
are violated. Further, all these modifications are lost if the original
object’s geometry is changed.
In contrast, primitive-based methods guarantee machine knitta-

bility and allow shape to be varied parametrically since primitives
can be parameterized [Kaspar et al. 2019; McCann et al. 2016]. Such
methods defer stitch-level decisions until instruction generation,
which allows interactive editing of composition and other design
goals, such as curvature and texture (see Table 1). However, this
approach has two key disadvantages. First, it requires expertise
to model a desired shape, making it particularly challenging for
applications involving more complex geometry. Second, while it
is possible to control composition and shape variations, editing is
indirect, requiring expertise to achieve even simple variations that
can depend on multiple parameters in a complex way—a classic
problem in parametric CAD systems [Yares 2013].
Supporting direct editing of design goals requires a representa-

tion that relates stitches to shapes. Patch-based approaches have

this potential. Prior work demonstrated the power of patches to
allow control over curvature shaping and surface texture, and to
allow movement and changing of stitch types [Yuksel et al. 2012].
However, several key limitations remain, which our work addresses.
First, Yuksel et al. [2012] use a coarse polygonal mesh as input,
which requires a high level of user expertise to generate, and limits
interactive control over composition and orientation. Our first key
contribution shows that by developing meshes that correspond to
a knitter’s conceptual breakdown of a knit object, we can enable
control over multiple important design axes. In particular, we prove
that by controlling singularities in the mesh, knitters can intuitively
and directly specify and iterate on these design axes and generate
helix-free quad meshes that are necessary for knittability.
Further, Yuksel et al. [2012] are not concerned with knittabil-

ity, generating patterns only suitable for simulation and rendering.
While rules have been developed to ensure machine knittability on
stitch-level meshes, where constraints come directly from analyzing
the fabrication process [Narayanan et al. 2018], it is not trivial to
extend this to patches. This is the second key contribution of our
work. We design a lightweight set of high-level patch constraints
that don’t over-constrain the design space but enable us to create
and formally prove the correctness of, an algorithm for translating
them into knittable patterns. This allows novel system-level con-
tributions: constraints can be directly encoded in solvers, enabling
interactive verification and completion during labeling, automatic
seam placement, and geometric optimization, while respecting ma-
chine constraints and shaping preferences.

Quad Meshing. Our method works at the patch level, which is
defined as a coarse quad mesh on the input surface. Quad meshing is
an active research area and we refer readers to [Bommes et al. 2013]
for a survey. The fundamental challenge in applying existing quad-
meshing techniques to patch-level knitting design is allowing users
to control the composition and surface patch layout. Extensive work
on quad meshing [Bommes et al. 2013] has shown that field-guided
methods best enable user control. In field-guided methods, orthog-
onal vector “cross”-fields on the surface are optimized for a given
smoothness energy and to meet user specifications (e.g., direction
strokes). A quad mesh is then created by finding a parameterization
whose gradients are optimally aligned with the field. For a review
of concepts in field design, we refer interested readers to Section
3.2 of a state-of-the-art report [Vaxman et al. 2016].
Despite great advances in this area, directional control while

avoiding helices remains challenging, particularly for coarse meshes.
Solutions to directly remove helices [Bommes et al. 2011a] would
change composition guidelines in unpredictable ways. Polyvector
fields with curl reduction [Diamanti et al. 2015; Panozzo et al. 2014]
can minimize, but fail to completely avoid, helices. Directly par-
titioning the mesh into quad layouts [Campen and Kobbelt 2014]
could avoid helices but at the expense of a manual strategy that
does not map well to how knitters make patterns.

Different quad and quad-dominant meshing techniques have been
proposed for knitting. For example, [Wu et al. 2018] use a field-
guided method to generate a stitch-level quad-dominant mesh but
cannot ensure knittability because cycles cannot be fully avoided.
[Narayanan et al. 2018] ensure knittability using a harmonic scalar
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(a)

(b) (c) (d) (e)

(f) (g)

Fig. 3. Overview of our framework. (a) Triangle meshes from a parametric template (the system deals with a single mesh at a time). (b) Input triangle mesh
with user annotations of composition, layout, and direction guidelines. (c) Generated quad mesh patches which are consistent across template variations. (d)
Quad mesh annotated for knitting the body tube in the round using short rows to curve the tube. Blue lines indicate seams. The same design applies to all
template variations (two shown here). (e) Duck knit with short rows. (f) Quad mesh annotated with different textures and orientations; the body is knit as
seamed sheets with decreases. (g) Duck knit with textures and a large head from template (f).

field meshing technique that takes as input level set constraints
of a scalar function approximating knitting rows. However, this
method works at the stitch level and does not allow for composition
or surface layout control.
In this work, we propose a new strategy to enable design con-

trol while avoiding helices in a coarse quad mesh. This is achieved
by utilizing a key insight on the relationship between common
knitting compositions and quad mesh singularities. In our system,
composition guidelines selected by users are directly translated to
singularity constraints on the mesh, which in turn can be used
to drive a cross-field design algorithm based on trivial connec-
tions [Crane et al. 2010]. We choose to use pure quad meshes rather
than quad-dominant meshes in order to exploit this singularity struc-
ture. Achieving knittability with quad-dominant meshes would re-
quire extra constraints aligning singular faces. We defer to Section 5
to introduce the details of our method.

4 SYSTEM OVERVIEW
Figure 3 illustrates our system with an example of designing a toy
duck. The system takes as input one variation from a parametric
template of a duck mesh (a); if the geometry is not already a triangle
mesh, the system will tessellate it into one. A parametric template
is defined by parameters that describe degrees of freedom q ∈ A,
whereA defines the ranges of parameter variations that map to con-
tinuous geometric deformations. For our examples, we created the
input parametric templates semi-manually by first creating cuboid
cages in Blender and then computing the coefficients for interpola-
tion [Schulz et al. 2017a]. Parametric templates can also be created
with a variety of geometric editingmethods [Gal et al. 2009; Jacobson
et al. 2011] or parametric computer-aided-design (CAD) tools. Our
system allows users to create knit templates by enabling consistent
control of design axes across the space of geometric variations.

The user starts by directly annotating knitting composition, layout,
and orientation guidelines for how to break the duck into patches by
indicating (blue dots in (b)) that the top of the head should be knit as
a sheet to create a flap, that the head should be a tube abutting the
body (yellow dots in (b)), and that the layout should be symmetric

across the body. These composition guidelines are selected from
an illustrated menu (Figure 4) and placed by clicking a position
on the input mesh. They can also draw desired stitch orientation
directly on the mesh, as well as explicitly specify layout boundaries
as feature lines (not needed for this example). Our systemmaps these
knitting directives to orientation, edge, and singularity constraints
to create a novel coarse quad re-meshing algorithm that jointly
re-meshes the entire parameter space of the input template to create
a single parametric patch layout that satisfies the guidelines for all
parameter values, (two shown, (c)). Users can choose to enable any
available symmetries for their annotations, which encourages, but
does not guarantee that the resulting quad layout generation will
be symmetric.

This patch layout becomes the canvas on which the user designs
their template. By clicking and dragging, they specify per-quad
orientations, surface textures, and curvature shaping guidelines, as
well as specifying seams. Users may also enforce exact symmetries
by placing “equal stitch count" constraints on specific patch edges,
which will be taken into account during the stitch generation step.
Our interface is backed by a patch-level knittability solver that
not only validates the user’s design but also assists in the design
process by automatically finishing partial designs with knittable
completions. In (d) the user has specified seaming-off the neck
and knitting the inner tube with short rows, as well as a simple
stockinette texture, while in (f) the user has rotated the orientation
on the body, and our solver has assisted by finding an alternative
seaming strategy that works with that orientation. At any point
during design, the user can vary the template parameters to preview
different customizations of their design. Finally, the user selects two
variations to generate machine instructions for and fabricate (e and
g).

5 INTERACTIVE SURFACE PATCH SPECIFICATION
After loading a parametric template of a triangle mesh, the user
seeks to automatically generate a coarse quad mesh that adheres to
the composition, orientation, and surface layout guidelines. Our key
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insight here is that there exists a direct relationship between the sin-
gularity structure of cross fields and knitting composition guidelines.
By identifying this correspondence, we created a quad meshing
algorithm that is both theoretically grounded and able to repre-
sent important and commonly used knit pattern design techniques.
Importantly, the method ensures the resulting mesh is helix free,
a fabrication requirement of knitting, by providing feedback on
knitting composition requirements, as well as a helix visualization
tool to help users tune the grid size parameter towards a helix-free
design.
Singularities and Composition Guidelines. The key composition

guidelines used in knitting to assemble tubes and sheets map directly
to singularities in the quad mesh. This is not surprising given their
mutual correlation with the shape topology. We identified nine
knitting-relevant composition rules (see Figure 4), each defining
a set of singularities and seams whose indices either add up to -1
or +1. Expansion rules (-1 singularity sum) compose tubes together
(E1—E4) or create a hole (E5—E6). Contraction rules (+1 singularity
sum) close tubes with a slit seam (C1) or flap (C2), or bound sheets
(C3). Contracting to a point is omitted as a +1 point singularity is
not possible on a quad mesh.

Fig. 4. Knitting composition rules shown as quad singularities on remeshed
quad meshes. The corresponding triangle mesh versions are shown on
the right-hand side. Knitting directions are in orange and seams in blue.
Expansion rules correspond to negative singularities (top two rows): joining
tubes with no change of knitting direction can be done without seams with
one -1 singularity (E1) or with a seam connecting two − 1

2 singularities
(E2); joining tubes with direction change requires closed seams, which
can be done with two − 1

2 singularities (E3) or four − 1
4 singularities (E4);

adding a hole without changing the knitting direction can be done with
two − 1

2 or four − 1
4 singularities (E5,E6). Contraction rules correspond to

positive singularities (bottom row): knitting in the round and joining at a line
seam corresponds to two + 1

2 singularities (C1); knitting in the round and
closing with a flap that is knitted as a sheet and seamed along its boundary
corresponds to four + 1

4 singularities (C2); knitting a flat patch corresponds
to four + 1

4 singularities at the boundary (C3).

This approach has several advantages.
First, composition rules describe common knitting patterns; for

example, E1 splits a glove into fingers, and E2 is common in the
armpits of sweaters. Therefore, knitters can work in terms they
already understand rather than in singularities—they select com-
position rules from a menu and then click on the mesh to specify
where they should be placed (see pilot study in Section 8).

Second, because which composition rules to use is associated
with the template’s topology, we can validate a composition and

provide feedback on whether more expansion or contraction rules
are needed: the sum of all singularity indices must be equal to
the Euler characteristic, 𝜒 :

∑
𝑣∈V 𝑖𝑛𝑑𝑒𝑥 (𝑣) = 𝜒 = 2 − 2𝑔 − 𝑏,

where V is the set of vertices, 𝑔 the genus number, and 𝑏 the num-
ber of boundary loops. Importantly, giving control over composi-
tion allows the same shape to have multiple valid compositions.

For example, in the inset figure, the arm of
the teddy bear model could be created by
adding curvature to the body tube (left),
which is more likely to fail on a machine,
or knit by doing a merge and then a flap

at the hand (right), which is a more natural design for knitters to
come up with. Our interface allows users to have such high-level
control while ensuring that the total sum of subscribed singularities
is valid.
Finally, with these composition rules, no additional seams are

necessary except on surfaces of non-zero genus (e.g., a torus would
need a seam to separate the first and last row), an additional benefit
of our approach.

Controlled Meshing for Knitting. Based on the correspondence
analyzed above, composition guidelines selected by users define sin-
gularity constraints on the mesh. Our system uses these constraints
to drive the trivial connections cross-field design algorithm [Crane
et al. 2010].
Designers can further provide knitting direction guidelines by

drawing directly on the mesh. Soft directional guidelines respect the
existing composition and are treated as constraints on the trivial
connections solver. Hard direction guidelines override the singular-
ity structure imposed by the composition; the field is completely
determined through cross-field interpolations, with these direction
guidelines as constraints [Ray et al. 2008]. Hard directional guide-
lines are typically not necessary and often ill-advised because they
may cause arbitrary singularities and create cyclic dependencies
(helices). To give designers full control of the directional field, our
method includes this option and checks for helices [Bommes et al.
2011b] providing feedback to designers.

We further let designers sketch directly on the mesh to place fea-
ture lines for surface layout control. We also allow easy specification
of smooth closed loops using the method proposed in [Campen and
Kobbelt 2014]. If feature lines are specified as seams, the mesh gets
cut along them; this affects field optimization since there can be no
smoothness constraints across seams. Otherwise, feature lines are
treated as hard integer constraints in the integer grid optimization,
which enforces placement of edges on the generated quad mesh.

Finally, these fields and constraints are used to create a mesh
using mixed-integer quadrangulation (MIQ) [Bommes et al. 2009].
The key modification that we make to the MIQ optimization relates
to templates, which we now discuss.

Parametric Template Variations. Parametric templates have been
extensively used in the fabrication community to allow shape vari-
ability and customizationwhile preservingmanufacturability [Schulz
et al. 2014; Shugrina et al. 2015]. Commercial systems also use
templates for personalization, e.g. for 3d printing (https://www.
thingiverse.com/). To generate a parametric knit template, we must
define a consistent quad-mesh across the parameter space defined
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by template parameters 𝑞 ∈ A. By consistency, we mean that the
user should define design axes only once, and they should propagate
consistently throughout the full parameter space.
We assume that the user inputs a parametric template triangle

mesh with point-wise correspondence—i.e., there is a bijective home-
omorphism between M𝑞 and M ′

𝑞 for all 𝑞, 𝑞′ ∈ A, where M𝑞 is
a mesh representing the variation defined by 𝑞. This correspon-
dence is directly specified when a parametric model is created by
geometric deformations, and there are methods for constructing
these maps for parametric CAD models [Schulz et al. 2017b]. Given
a point-wise correspondence, a naive solution could define a quad-
mesh for one shape and propagate the result. However, this may
create quads with high distortion if variations are large. Consistent
quad meshing has only recently started to be studied. Azencot et.
al. [2017] proposes a method for consistent cross fields between two
shapes with point-wise correspondence. However, this work would
not allow us to preserve composition guidelines across variations
since singularities and combinatorics of the final meshes may vary.

Our key insight of representing the composition axis as singular-
ities makes consistent template generation possible by propagating
the singularities with the point-wise correspondence and using
them to drive the cross-field optimization on each mesh M𝑞 . We
can then jointly solve for a parameterization using a variation on
MIQ. As described by [Bommes et al. 2009], MIQ takes as input
a cross field, defined by two orthogonal vector fields (u𝑇 , v𝑇 ); it
finds a parameterization onto an integer grid (𝑢, 𝑣) by minimizing
∥ℎ∇𝑢 − u𝑇 ∥ + ∥ℎ∇𝑣 − v𝑇 ∥ integrated over the surface, for some
size parameter ℎ and additional integer constraints derived from
singularities. Since singularities are preserved in our method across
template variations, we can use any value of 𝑞 to define the integer
constraints and minimize an energy summed over all variation of
the mesh 𝑞 ∈ A:

𝐸 =

∫
A

∫
𝑀

∥ℎ∇𝑢 − u𝑞
𝑇
∥ + ∥ℎ∇𝑣 − v𝑞

𝑇
∥𝑑𝐴𝑑𝑞

To solve this numerically, we discretize the inner integral as a sum
over triangles and the outer one by sampling values on A. Since
computation could grow significantly with the number of samples,
we solveMIQ in parallel across𝑛 different configurations of themesh
and add in a linear equality constraint that the (𝑢𝑞, 𝑣𝑞) coordinate
values should be equal according to the point-wise correspondence
between meshes. Because these are linear constraints, we can use
them to eliminate variables that are part of the MIQ solver. This
makes the system matrix for solving 𝑛 samples about the same size
as for one sample.

6 INTERACTIVE SURFACE PATCH ANNOTATION
Col Out

Col In

Ro
w

 O
ut

Ro
w

 In

Once a patch layout is designed, it is used as a
grid to lay out design guidelines that directly
control seaming, surface texture, and curvature
shaping, and to provide additional partial con-
trol over orientation and composition. Concep-
tually, each patch corresponds to a quadrilateral
patch of knit fabric, with each side presenting
a uniform boundary (row or column) to its neighbors, as shown in
the inset image. To modify the design, the designer uses five tools

to set design guidelines as labels on the mesh elements, which will
be used to control the final pattern generation.

The orientation tool allows row and column directions to be set by
clicking and dragging across coarse mesh faces. The seaming tool al-
lows seams to be created by clicking on a coarse mesh edge to create
a seam extended to the next singularity or mesh edge. Right clicking
allows non-singular vertices to be marked as stopping points for
seams to allow for arbitrary seamed layouts. The texture brush ap-
plies knit texture labels (such as ribbing) to coarse mesh faces. The
constraints brush can constrain the type of existence of increases,
decreases, or short rows in faces, as well as add sizing constraints
along coarse mesh edge paths (constraining two paths to have the
same stitch count). Finally, the eraser tool remove previously placed
design guidelines.
Our system assists users by validating the knittability of their

choices and automatically completing partial designs as users work.
Given a coarse patch mesh𝑀 = (F , E,H ,V), with faces F , edges
E, half-edgesH , and verticesV , the labels are:

Orientation 𝐷 (𝐻 ) : H → {Col In,Col Out, Row In, Row Out}
Seaming S(𝐸) : E → {True, False}

Curvature Shaping can_shape(𝐹 ) : F → {True, False}
shaping(𝐹 ) : F → {Row In, Row Out, Both,Distributed}
can_shortrow(𝐹 ) : F → {True, False}
shortrow_side(𝐹 ) : F → {Col In,Col Out}

Texture tex(𝐹 ) : F → Z
Time 𝑇𝐹 : F → Z

Fig. 5. Patch design and construction. (top left) Patch design seen in the
user interface. Here, short rows are positioned at the top and leaning in-
creases to the right. The gray background color indicates that the texture
is a rib. (top right) Patch knit graph generated by our system. Node color
indicates knit or purl. Leaning increases and short rows are highlighted to
illustrate their positioning. Nodes outside the quad are patch borders used
to ensure correctness and to align neighboring patches when connected.
When patches are connected to form the final pattern, they are contracted
away (bottom).
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Figure 5 shows how these labels appear in our interface. Although
not explicitly represented, the user can still make some composi-
tional changes, for example choosing between a tube and a seamed
sheet in Figure 6. Curvature shaping guidelines indicate whether
a type of curvature shaping is allowed in a patch, and, if so, they
provide guidelines for how to place them. The location of short rows
is particularly important for knittability. The surface texture param-
eter is an index into a database of knit-purl textures from [Kooler
2012]. Time is a proxy for the order of patch fabrication, and stitch
count measures the length, in stitches, of each quad side. The time
parameter is automatically set by our system.

Although these properties must be defined for each mesh element,
the user does not need to manually set all of them. Instead, any
specific decisions a user does make are treated as constraints on
the design space, and our system automatically completes a valid
design from partial specifications by inputting these constraints
plus our patch-level knittability constraints into a constraint solver,
then optimizing for minimal seaming. This is especially helpful for
finding seam patterns on complex shapes, as shown in Figures 6.

Fig. 6. Interactive seaming suggestions. (left) Initial suggestion minimizing
seams (blue lines), assuming no composition or layouts are given. (middle)
Suggestion after the user specified that the full head would be a separate
piece seamed at the neck. (right) Suggestion after the user changed knitting
direction on the body.

Patch Level Knittability. We build upon validity properties on a
stitch-level mesh, defined by [Narayanan et al. 2018]. While this
prior work defines low-level constraints by analyzing the fabrication
process, we need to guarantee fabricability using only patch level
information. To accomplish this, we designed a lightweight set of
constraints on the patch representation that guarantees machine
knittability if patches are constructed with a small set of constraints
explained in the next section.

Here we give an overview of the constraints on patch layout and
parameters. Their mathematical description and proof of sufficiency
are left to supplemental material. Patches are considered neighbors
only if the edge between them is not a seam, and the half-edge labels
on non-seam edges must be compatible pairs: (Row In, Row Out) or
(Col In, Col Out). This allows us to refer to the patch structure with
respect to its dual graph of row and column edges (ordered from
Row Out to Row In), and define row and column neighbors.
C1 - Right-Handed Patches: The row and column directions of
knitting form orthogonal axes on the surface, and our first constraint
ensures that patch orientations align to these axes. To enforce this,
we require that orientation labels follow the order Col In, Row
Out, Col Out, Row In, when circulating a patch boundary counter-
clockwise. Patches with exactly one side with each orientation in
this order we call regular, as they are almost always the desired
structure.

We additionally allow irregular quads to enable greater flexibil-
ity in orientation control post-quad meshing (see Figure 7), which
can be particularly useful when hard constraints on orientations
are used to override composition guidelines. Because faces are all
quadrilateral, one of the other orientations will be missing. In knit-
ting terms, these missing orientations are the start or end of short
rows, or where a piece of fabric is knit to or from a point. We only
allow the doubling of one orientation per face, except for the special
cases of all Col In or all Col Out, which our system breaks into four
irregular faces to use as sources and sinks.

Fig. 7. Left: All valid quad faces (C1), (C3). Orange arrows are column edges;
green are row edges. The large face is regular, the most common. The six on
the right are allowed irregular faces, which can be interpreted as regular
by adding a 0 length side of the missing direction and merging similar
sides. Sources and sinks (bottom) are partitioned into 4 regular quads (with
one zero-length side each). Right: An irregular face in use and an example
tessellation.

C2 - Time Aligned: Time value is equal between row neighbors
and strictly increases between column neighbors in the out–in di-
rection. This ensures that there is a valid order of fabrication for the
object.
C3 - Limited Row Degree: Each face has at most one Row In and
Row Out side. This is necessary to avoid creating cyclic knitting
dependencies when connecting patches, as it allows patches to be
grouped into distinct rows.
C4 - Consistent Short Rows: Row neighbors must have the same
short-row location guidelines. This is used to prevent helices from
forming within a row of patches (Figure 8). They cannot be aligned
with splits or merges (discussed in Section 7).

a

a

Fig. 8. A helix formed by inconsistent short rows.

Encoding Constraints. We implement these constraints as a system
of satisfiability modulo theories (SMT) equations included in our
supplemental material. We use SMT because we have mixed boolean
and integer constraints and because SMT solvers can validate a
design before all variables are set, and will even find a complete
and valid set of labels whenever possible, which we use as design
suggestions. In order to encode (C1) with boolean constraints, we
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express orientation as a pair of boolean variables and enforce right-
handedness per mesh corner by limiting which orientations can be
adjacent.

Enforcing (C1) at corners allows us to make an optimization that
improves both the speed of the solver and the quality of the results.
As stated above, regular faces are preferable in most cases. Irregular
faces are only actually necessary at singularities, such as the example
in Figure 7, where their doubled or omitted directions offset extra or
missing edges.We therefore limit our corner constraint to only allow
non-regular adjacency at singularities by default. If the user wants
an irregular face elsewhere, other mesh vertices can be designated
to act like singularities.

Another optimizationmade for speed and quality is seam bundling
and optimizing for minimal seaming. An easy solution to find is the
trivial solution of seaming every edge. In most designs, using the
minimal amount of seaming is desirable, but computing this across
every possible edge is intractable. To mitigate this, we leverage the
facts that 1) there is no structural use for a seam that does not parti-
tion the mesh, and 2) the set of mesh separatrices is a sufficient set of
seams to make any shape knittable with only regular faces. Rather
than consider each edge separately, we bundle paths of edges into
long seams that are assigned to a single SMT variable. By default,
we initially use the separatrices as bundles, but the user can click on
edges to add other seam bundles for solver analysis. This makes the
solver fast enough to find a minimally seamed solution by binary
search on a maximum total seam length.
This heuristic is adequate for minimizing the amount of sewing

that is necessary, but the solver may suggest seams on features that
are not aesthetically pleasing. Because the suggestions are given at
interactive rates, the user can interact with the model by disallowing
seams in some locations and enforcing them in others. A result of
such interaction is shown in the second duck image Figure 6 where
the user prescribes a seam along the neck and the system in term
suggests a flap on top of the head to minimize the total seams under
this configuration. Finally, the third image shows what happens
when the designer decides to change the knit direction on the body.
The system automatically suggests a seam. All of these suggestions
were provided at interactive rates.

7 KNIT PATTERN AND MACHINE INSTRUCTIONS
GENERATION

Once a design is finalized, a specific template instance is chosen to be
knit. Here we describe how provably knittable machine instructions
are generated for any set of template parameters, which we now
consider fixed.

Sizing Optimization. The first step to creating an object is deter-
mining the shape and size of each patch. To do this, we calculate an
integer stitch count for each side of each patch by minimizing the
squared error between the side length of each patch in the template
configuration chosen, and the length of that number of stitches as
produced by the target machine. This optimization is done in the
presence of several constraints to improve quality and guarantee
knittability.
Symmetry is enforced along mesh symmetries chosen by the

user. We also account for the user’s shaping choices here: if they

specify no short rows in a patch, then the number of rows in and out
must be equal, and similarly for columns if forbidding increases and
decreases. The ratio of width change to height and height change to
width are capped to avoid needing increases or decreases of more
than 2 stitches at a time, or overly tall short rows. The user is also
allowed size lines, paths whose total length is important to get exact
for sizing (such as the length of a sleeve or circumference of a cuff),
which are constrained to a maximum total error.

Finally, a feasible splits andmerges criterion is enforced.Whenever
more than two tubes are joined seamlessly within a row, the center
tube(s) must have an equal number of stitches on their front and
back halves so that they can be flattened evenly between the front
and back stitch beds. The exact formulation of the objective function
and constraints are given in our supplemental material.

Pattern Generation. Pattern generation involves tessellating each
patch into a composition of stitches, connecting them, and defining
an order for stitch construction allowing the pattern to be scheduled
on a knitting machine. Stitch-level representations of patches will
have one stitch wide borders, sized according to the sizing optimiza-
tion, and connected with simple 1:1 edges. These borders are used to
define how patches are merged together to construct a stitch-level
pattern, as shown in Figure 5.

A design goal of our system is to be extensible for future advance-
ments, so we want our guarantees of knittability to be agnostic to
how patches are generated. To this end, we define a minimal set
of requirement for patches which, in conjunction with our coarse
mesh properties, guarantee machine knittability:

P1 - Knittable: a patch plus its border is a valid Knit graph as
defined by [Narayanan 2018] (described below), and
P2 - Consistently Stacked: any exposed short rows (rows that
connect to only one row border) are either all stacked at the top or
bottom of a patch, according to its short row location, shortrow_side(𝐹 ),
and are exposed along the same border.

Validation. We are using knit graphs [Narayanan et al. 2018] as
our formalism of knittability. These are directed graphs with row
edges and column edges, where each node represents two stitches
in a column. Each node also has an integer time value, similar to
that of our coarse representation. Knit graphs are defined to have
several properties which, if all met, ensure machine knittability.
Unfortunately, validating several of these properties requires stitch
level information of non-neighboring patches, which we cannot
determine at the patch level. We formulate a slight variation of
the Knit Graph properties that imply the original but make the
problematic properties locally checkable. In particular, we remove
the helix-free criterion and replace it with a stricter version of time
alignment. This formulation also covers some edge cases that the
prior work did not encounter, but which we must contend with. We
leave a detailed discussion of the differences in our formulation and
a derivation of the original properties to supplemental material. Our
knit graph properties are:

K1 - Consistent Handedness: Knit graph nodes are right-handed
in the same sense as (C1). This ensures that the represented fabric
does not twist or cross over itself on the bed.
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K2 -TimeAligned:Time values are equal within a row and strictly
increase up columns.
K3 - Limited Node Degree: Each node has at most one row neigh-
bor on each side, and at most two column neighbors. The row re-
striction reflects the fact that a stitch has only two yarn ends, and
the column restriction prevents the machine from overstacking or
overstretching yarn on or between needles.
K4 - Feasible Splits andMerges: Interior tubes at splits andmerges
have an equal number of stitches on their front and back halves.
Since splits and merges only occur along patch boundaries, this is
directly enforced by sizing optimization.

Now we sketch a proof of knittability — a formal proof is found
in our supplemental material. Property (K4) is an exact constraint
on the sizing optimization ((C4) only allows full rows at splits and
merges). Properties (K1) and (K3) depend only on the edge structure
around nodes, which does not change with the contraction used to
join patches, so (P1) is sufficient to guarantee them. (K2) will be true
if the border nodes on adjacent patches have matching time values.
While this is not true by construction, (C3)-(C4) and (P2) together
allow us to re-scale time values within each patch so that they do
align on borders.
When designing our framework, we

deliberated between having graph nodes
or graph edges on the borders between
patches. The inset image illustrates why
we chose edges. If nodes are chosen, then
it would be possible to change the local
edge structure when merging, violating
(K3) (left). Using edges also allows easy specification of increases
or decreases leaning into a shared edge, a common knitting effect
creating an apparent seam (right).

Knit Graph and Instruction Generation. Our system uses a simple
patch generation algorithm. An example patch is shown it Figure 5.
We construct patch knit graphs in rows of constant time value (K2),
linearly interpolating their widths. Sizing optimization ensures that
no row is more than double the width of its neighbors, so we can
distribute increases and decreases without violating (K3). (C1) says
that the overall patch has the same orientation requirement as (K1),
so we can place all internal edges with the same orientations. We
place short rows in accordance with (P2) to account for differences
between rows in and out. Finally, we construct a simple, one node
border for each edge attached by simple edges.

8 RESULTS
We set out to design a system for creating high-level knitting tem-
plates that can be customized to enable shareability and remixing,
and that enables fast and easy iteration over the seven axes of knit
design. We demonstrate the effectiveness of our approach by a
series of examples highlighting the capabilities of our system in
quality parametric meshing, creating a wide variety of objects, and
interactively exploring the space of design variations.

Quad Meshing. Other work has taken a field-based meshing ap-
proach to knitting, but ours is the first to explicitly incorporate

singularity structure to control composition. The teddy bear exam-
ple demonstrates the benefits of this approach. It would be natural
to knit the teddy bear using tubes for each limb and one for the
body and head. Achieving this composition from only user-provided
direction strokes is very difficult because specific compositions need
specific singularity placements, and singularities are difficult to con-
trol with only directional strokes. In Figure 9, the left two images
are typical examples of a purely orientation-based meshing of the
model. The inability to precisely control field singularities leads to
helices wrapping around the body. These require long and unnatural
seams to break the dependency cycles they induce. On the right is a
structure resulting from the application of our composition rules,
and the resulting knit bear.

Fig. 9. (left two) Meshing results achieved by sketching directions on the
surface. Both have helices that must be seamed off and would be compli-
cated and non-intuitive to sew. (third) The meshed teddy that our system
generated to match the composition rules of knitting each limb in the round
and then sewing them onto the torso followed by (fourth) an image of
its physical realization as a multi-part knit. The blue lines are seaming
suggestions proposed by our algorithm.

We also validate our joint parametric MIQ by comparing it to the
naïve strategy of solving against a single mesh variation and propa-
gating via pointwise correspondence. In Figure 10, all dresses have
the same singularity structure. The dresses on the left were jointly
parameterized using our approach, while the pairs on the right were
computed on one dress and transferred to the second. Compared
to the joint parameterization, transferring the child’s pattern to the
adult dress leads to distortions in the midsection, whereas the other
direction has distortions in the bust and asymmetries in the skirt.

Fig. 10. Our consistent meshing is shown on the left and compared to the
naive approach of running the MIQ on one mesh and transferring the result-
ing quadrangulation onto another using the point-wise correspondences
(two examples shown on the right).
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Design Space Coverage. Next, we analyze our tool’s coverage of
the design space, based on the design axes that we have identified.
Surface Texture Textures are illustrated in Figure 1 and Figure 11.
As can be seen in both, texture does not need to be uniformly ap-
plied over the entire model but instead can be applied to any region
that aligns with patch borders. This provides full control over tex-
ture since surface layout features can be used to influence border
placement during meshing. Interaction of texture with other design
axes can be complex. For example, textures and shaping can co-exist
in the same patch and are automatically handled by our pattern
generation algorithm. In Figure 11(c) the diamonds at the bottom
are much wider than the diamonds at the top, due to decreases
necessary to change the radius of the skirt from bottom to waist.
Curvature Shaping Shaping plays an aesthetic as well as a func-
tional role. Figure 11 illustrates user control over how decreases
are placed for different aesthetic results. Skirt (a) is fully symmetric,
while skirts (b) and (c) have flat backs, with shaping only allowed on
the front, and skirt (d) only has shaping at the sides with a flat front
and back. Skirts (b-d) have decreases aligned and leaning toward a
patch edge, creating an apparent seam.
Surface Layout As already described, surface layout features im-
pact the placement and transitions between textures. Figure 11
shows another fundamental, though more subtle, impact on cur-
vature shaping—the user prescribed feature lines to control the
placement of apparent seams, as can be seen when comparing skirts
(b) and (c). Symmetry is another important layout feature. Once this
is specified, the system will automatically ensure symmetry in the
placement of increases and decreases, seams, and even singularities
on compositing guidelines. For example, in Figure 3 it would be hard
to place singularities symmetrically without automated support.
Seaming Key functional aspects of seaming are specified during
composition, but these interact through decisions about the surface
layout of themesh; seaming is often necessary to support orientation
changes. Our system helps the user navigate this space. As was
discussed in Figure 6, even if seaming guidelines from composition
and surface layout are not provided, a valid and minimal seam
choice will be presented to the user, who can interactively control
the placement by enforcing or disallowing seams on certain areas.
The system updates the seam suggestions at interactive rates, to
allow easy exploration while guaranteeing knittability. Figure 12
show the seaming layouts of our machine knit examples with seams.
Orientation As discussed in multiple examples, orientation affects
the ease of knitting, shaping choices, and seaming placement. Fur-
ther, local changes in orientation can lead to non-fabricable designs
if not validated globally (an important reason orientation change
isn’t supported in [Narayanan et al. 2019]). In addition to allow-
ing orientation control during meshing, our system allows users
to easily flip the orientations locally. As can be seen in Figures 3
and 13, the system will automatically suggest seams after a direction
change to ensure knittability and update shaping to conform to the
mesh—e.g., use short rows instead of increases/decreases on the
sleeves to match the circumference change from shoulder to wrist.
Composition Composition guidelines allow designers to create
large pattern variation from the same input mesh. For example, in
Figure 14, the design on the left uses a Norwegian drop shoulder
and is seamed at the arms. The design on the right is a seamless

yoke sweater, which is done with merges at the armpits followed
by evenly distributed decreases up to the neckline. A similar com-
position variation is shown on the dresses (a) and (b-d) in Figure 1.
Composition guidelines are particularly useful when knitting com-
plex shapes, as discussed in Figure 9. We further illustrate how they
can be used to structure irregular shapes like the bunny (see Fig-
ure 15). By specifying how we wish to knit the ears and tail, our
system discovers appropriate knitting directions to capture both the
compositional structure and the complex curvature.
Variable Shape. As discussed in Section 2, resizing is an impor-
tant and common aspect of knit pattern design and use. Resizing
is challenging because it requires changing both the stitch counts
of shaping operations, such as the number of short rows, increases,
and decreases, as well as re-applying any textures to the new stitch
layout. Further, resizing typically requires variations on the geome-
try itself. A dress made to fit a child is not simply a rescaled adult
dress.

Our method allows users to create a mesh that is jointly optimized
over multiple parameter values of a shape, which allows users to
specify knitting guidelines on a single template and have them
be directly applied to different shape variations. For example in
Figure 1, the adult and child dresses are variations of the same drop
shoulder pattern with identical textures but different relationships
between arm length, skirt length, and torso height. Figure 16 further
illustrates how our system allows designers to create customizable
templates for knitting, by illustrating three fabricated variations
of a hat. Both of these examples were enabled by our consistent
quad-meshing method, shown in Figure 10.

Interactive Exploration. All models took about 4-13 minutes to
design: the quad meshing step took about 1-6 minutes, the label-
ing about 1-3, and pattern generation with sizing optimization in
2-4 minutes (except the bunny, which took 15 minutes to optimize
sizing). To establish the effectiveness of our interactive editing capa-
bilities for design space iteration, we asked Narayanan to recreate
some variations of the dresses in Figure 1 using [Narayanan et al.
2019]. In our system, we were able to create an initial design in 5
minutes, and create the variants (c) and (d) in 2 minutes each, most
of which is spent in pattern generation. Variant (a) took 8 minutes
as it required composition changes. Narayanan estimated that it
would take between 15 and 40 minutes for each texture variation,
depending on how carefully textures were applied, and between 45
and 60 minutes to change shaping between short rows and increases
and decreases. Their system would not be able to handle direction
changes or re-sizing without complete re-design. This shows how
our approach and solver assisted editing enables exploration of
design alternatives on the scale of minutes rather than hours.

Pilot Study. We validated the usability of our system by conduct-
ing a pilot user study with three participants having experience
in knitting or garment design but not in geometry processing. In
the study, we first gave a tutorial on how to use our system and
then asked the participants to reproduce a textured variant the duck
design shown in Figure 3 (e), and also to create their own dress
design using the model from Figure 1. All participants were able to
determine the correct composition rules to recreate the duck within
9 minutes on average, and were also able to design a knittable dress
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Fig. 11. Meshing, labeling, and fabricated results of four skirts generated from the same input mesh, with different coarse meshing and labeling. Orange lines
on (b) and (d) highlight the apparent seams caused by concentrating shaping, and on (c) highlight the effect of shaping to narrow the texture towards the top
of the skirt. Red “X”s over a shaping label indicate that no shaping is allowed in that patch, a symmetric decal indicates distributed decreases, and an angled
decal indicates leaning decreases aligned to the edge the decal leans towards.

Fig. 12. Seaming layouts of all machine knit examples. Blue lines indicate seams in the original design, whereas yellow seams were added manually to account
for missing functionality in our scheduler implementation. The skirts, hats, and seamless dress were omitted because they do not have any seams. The angled
and child dress are ommitted because they use the same template as the drop shoulder dress (far right). The human scale sweater also uses this seaming layout.

within the half-hour provided them. As shown in Figure 17, all
three dress designs have a different composition structure. While
the users had no understanding of quad-meshing singularities they
managed to achieve the desired structure using the intuitive com-
position guidelines in our tool. These dresses further illustrate the
design freedom in textures, shaping, seaming, and surface layout.
The details of the study can be found in the supplemental materials.

Additional Implementation Details. With the user-designed cross
field as input, we use the libigl [Jacobson et al. 2019] implementation
of MIQ to generate the global parameterization; users can adjust

a parameter for quad size to obtain the desired level of coarseness.
To compute the cross-field given composition rule singularities,
we use the implementation of the trivial connections from Direc-
tional [Vaxman et al. 2020]. LibQEx [Ebke et al. 2013] is used to
extract the quad mesh. Z3 solver [de Moura and Bjørner 2008] is
used for SMT equations. We implemented 20 textures from [Kooler
2012] and applied different combinations to most of the models
we fabricated to illustrate this capability. For machine knitting, we
use the scheduler code provided by Narayanan et al. [2018; 2019]
to generate instructions for the knitting machine. Hand knitting
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Fig. 13. Close up of the sleeves from Figure 1 dresses (b) and (c). In (b),
columns are aligned down the sleeve, while in (c) they wrap around.

Fig. 14. Three sweater patterns from the same input model but meshed and
labeled differently. The left sweater has seamed sleeves and short rows on
the neck, while the one in the middle was completely knitted in the round
using increases and decreases. These two sweaters were knitted by hand,
showing how our method can be used for both machine- and hand-knitting.
The rightmost sweater has the same composition as the leftmost, machine
knit to human scale with textures added on the arms.

Fig. 15. The Stanford bunny illustrates composition guidelines. It is meshed
by placing line seams (C1) on the tips of the ears, a split from the head to
two ears (E1), and a flap on the tail (C2).

instructions were generated using custom code. All examples are
knitted either by hand or by a 7-gauge SHIMA SEIKI SWG091N2
knitting machine. Models were hand-stitched together along seam
lines after knitting, and the toy models were stuffed with batting.

9 LIMITATIONS AND FUTURE WORK
Our system invites several avenues for future work.
Our quad meshing pipeline has limitations, some of which are

long-standing problems in meshing. Global parameterization will
not be interactive if the resolution of the input mesh is fine, or if too
many constraints are added. In order for our composition rules to
prevent cycles, it is important that the singularities are connected
by mesh edges. This is not explicitly guaranteed by our meshing

Fig. 16. Customizable knit patterns for hats created with our systems.

Fig. 17. Variations of the dress created by users in the pilot study (top row
is front view, bottom row back view), illustrating the usability and design
freedom in the system. Users were able to control composition using only
prior experience on knitting or garment design but no understanding of
geometry processing, quad meshing or singularities.
algorithm and can fail, for example, if two symmetric composition
rules are only slightly offset from each other. However, in most cases,
our helix checking visualization and the tunable grid size parameter
combined can avoid the helices. For example, when a participant
of the user study created the duck design, they initially chose a
grid size that led to a helix, but the researchers were able to help
the participant tune the grid size a bit to create a helix-free design

(shown in the inset figure: left
contains a helix and the magenta
triangles indicate where the helix
could start; right is helix-free).
Our implementation of patch

generation is very simple and
does not capture the full richness
of possible surface textures such

as cables, lace, or colorwork. We also do not take into account the
physical properties of surface texture on the patches themselves.
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However, our system is designed to be built upon using our patch
formalization in order to support these capabilities, so recent work
focusing on surface textures such as [Hofmann et al. 2019], [Leaf
et al. 2018], or [Karmon et al. 2018] could be used to generate patches
within our framework.

To generate machine instructions we used the open source sched-
uler implementation from [Narayanan et al. 2019], which does not
support some of the more complex composition rules that we do
such as flaps to close tubes, even though the scheduler as described
in that paper does. Reimplementing that functionality was beyond
the scope of this work, so we worked around the limitation by in-
troducing extra seams to partition our designs into shapes that the
scheduler will accept. We manually added these seams using our ex-
isting seaming tool by simply selecting and clicking one edge along
each sheet-tube boundary (a transition between a sheet a tube is
always bounded by singular vertices, and so can be seamed without
adding), but this could be easily automated by labeling each coarse
row as tube-like or sheet-like (is it a cycle), and adding a seam be-
tween any rows that alternate from sheets to tubes. Fully automatic
machine instruction generation would require re-implementing the
missing functionality. The yellow seams in Figure 12 illustrate where
we added these seams.

Finally, it would be interesting to incorporate physical simulation
into the design loop. In addition to the internal forces explored by
works like [Kaldor et al. 2008], [Leaf et al. 2018], and [Karmon et al.
2018], the form of a knit object is strongly influenced by the physical
context it will be used in, such as stuffing or draping over a person.
For instance, our duck example was knit with short rows to achieve
the torus body, but could have been knit as a simple straight tube
and relied on stuffing for the shaping. Simulation of both internal
and external forces could help designers visualize the final result of
their design decisions before fabricating. Simulation of the machine
knitting process will also be important to address the problem of
machine tuning. The definition of machine knittability we use does
not guarantee that the program generated will not fail on a real
machine due to the interaction of machine tuning parameters (yarn
tension and stitch size) and material properties (yarn thickness,
friction, etc.) To the best of our knowledge, no existing work tackles
this aspect of automatic knitting machine programming.

10 CONCLUSION
Our systemmakes the design of machine-and hand-knittable objects
accessible to a lot more people. First, it lets users easily and quickly
explore interrelated design axes while guaranteeing knittability and
pattern production. Further, because the system takes a parametric
3D model as input, it generates template patterns customizable by
users unfamiliar with intricacies of knitting. As a result, machine
knitting, like 3D models, can become customizable, modifiable, and
universally accessible.
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