
Attentional Mixtures of Soft Prompt Tuning
for Parameter-efficient Multi-task Knowledge Sharing

Akari Asai♡ Mohammadreza Salehi♡ Matthew E. Peters♢ Hannaneh Hajishirzi♡♢

♡ University of Washington ♢ Allen Institute for AI
{akari, mrsalehi, hannaneh}@cs.washington.edu

matthewp@allenai.org

Abstract

This work introduces ATTEMPT
(ATTEntional Mixture of Prompt Tuning),
a new modular, multi-task, and parameter-
efficient language model (LM) tuning approach
that combines knowledge transferred across
different tasks via a mixture of soft prompts
while keeping original LM unchanged. AT-
TEMPT interpolates a set of prompts trained on
large-scale source tasks and a newly initialized
target task prompt using instance-wise atten-
tion computed by a light-weight sub-network
trained on multiple target tasks. ATTEMPT is
parameter-efficient (e.g., updates 1,600 times
fewer parameters than fine-tuning) and enables
multi-task learning and flexible extensions;
importantly, it is also more interpretable
because it demonstrates which source tasks
affect the final model decision on target tasks.
Experimental results across 17 diverse datasets
show that ATTEMPT improves prompt tuning
by up to a 22% absolute performance gain and
outperforms or matches fully fine-tuned or
other parameter-efficient tuning approaches
that use over ten times more parameters.1

1 Introduction

Fine-tuning of large-scale language models (LMs)
to get specialized models for specific tasks is
known to be the best practice for optimizing task
performance (Devlin et al., 2019; Aribandi et al.,
2022) but is achieved at the significant cost of
training and serving specialized models for many
tasks. This motivates recent research on parameter-
efficient tuning (Houlsby et al., 2019; Li and Liang,
2021; Ben Zaken et al., 2022), which focuses on
tuning specialized models by updating a small num-
ber of their parameters. Yet, those specialized mod-
els fail to benefit from knowledge transfer across
many tasks and leverage rich cross-task data (Liu
et al., 2019). We posit that multi-task knowledge

1Our code will be available at https://github.com/
AkariAsai/ATTEMPT.

Frozen LM 🧊

Embedding Layer 🧊

✕

x

y

Attention Module 🔥

(source prompts)

P1
 🧊
P2
 🧊
P3
 🧊

(Output)

(Input)

a1 a2 a3 atarget

(Input-prompt
Attentions)

🔥
Ptarget

(new task prompt)

Pinstance

Figure 1: ATTEMPT combines multiple soft prompts
trained on large-scale dataset (source prompts) to gener-
ate instance-wise target prompts. At training for a target
task, the large language model (LM) and the source
prompts are kept frozen.

transfer across tasks and parameter-efficient trans-
fer can benefit from an integrated approach.

In this work, we introduce a new parameter-
efficient, multi-task tuning method called AT-
TEMPT (ATTEntional Mixture of Prompt Tuning,
previewed in Figure 1). ATTEMPT efficiently
combines knowledge from multiple tasks via soft
prompts, keeping the original LMs intact. It first
trains transferable soft prompts (Lester et al., 2021),
called source prompts, on large-scale source tasks,
which are likely to contain knowledge that can
be beneficial to other tasks. Then, for a target
task, ATTEMPT initializes a new task prompt and
learns an attention-weighted combination of source
prompts and the new task-specific prompt. The
attention module is light-weight sub-network that
is shared across different tasks and trained in a
multi-task manner.

ATTEMPT offers three key advantages over pre-
vious multi-task fine-tuning or parameter-efficient
tuning: first, it is highly parameter-efficient and
achieves competitive performance despite updat-
ing about 0.6% of the parameters updated for full
fine-tuning per task. Second, it enables modular
multi-task learning, where one can reuse and com-

https://github.com/AkariAsai/ATTEMPT
https://github.com/AkariAsai/ATTEMPT

bine knowledge from multiple different tasks and
flexibly add a new task without destroying prior
task knowledge. At inference, a single LM with
multiple pre-loaded soft prompts specialized for
each task can perform many different tasks without
parameter reloading. Lastly, it improves inter-
pretability on underlying task similarities in multi-
task learning by generating attention distributions
from input to prompts for each instance.

We conduct experiments on 17 datasets across
diverse tasks, domains and output formats. AT-
TEMPT significantly outperforms previous prompt
tuning-based approaches (up to 22%) and matches
or exceeds state-of-the-art parameter-efficient trans-
fer approaches or fully fine-tuned models that train
orders of magnitude more parameters, especially
on smaller datasets. We show that training a single
model on multiple tasks often suffers from nega-
tive interference or under-fitting to less-represented
tasks, especially when the tasks are distant and the
number of trainable parameters is limited. How-
ever, ATTEMPT enables efficient knowledge trans-
fer and achieves competitive performance for both
dominant and less-represented tasks. Our analysis
further shows that learned attention weights, multi-
task learning and knowledge transfer from multi-
ple tasks largely contribute to the performance im-
provements. ATTEMPT is particularly parameter-
efficient and competitive when the backbone frozen
LM is larger, where other parameter-efficient trans-
fer approaches shows rapid increases of the train-
able parameters. The attention distributions show
the underlying similarities among tasks.

2 Background

Fine-tuning. The most common practice in learn-
ing a new target task Ttarget is to fine-tune all pa-
rameters of a pre-trained LM on the target task
training data {(x,y)}(e.g., Devlin et al. 2019). For-
mally, given pre-trained LM parameters θ, fine-
tuning results in a specialized model for the task
θtask by gradient updates so that given x, the model
gives higher probabilities for the ground truth out-
put y: max

θtask
pθtask(y | x). Fine-tuning can also

distort pre-trained features (Kumar et al., 2022;
Levine et al., 2022) and is prone to overfitting to
small training data (Jiang et al., 2020).

Parameter-efficient tuning. To overcome the in-
efficiencies of fine-tuning, parameter-efficient tun-
ing updates a small number of parameters for the

target task ϕtask: max
ϕtask

pθ,ϕtask
(y | x), where the

number of ϕtask is much smaller than the num-
ber of θtask. Recent work also found that it can
preserve the rich pre-trained knowledge since it
freezes most of θ and avoids the aforementioned
forgetting issue (He et al., 2021; Lester et al., 2021).
Several approaches introduce additional modules
to LMs or directly update a small number of LM
parameters; Adapter (Houlsby et al., 2019) and its
variants (Mahabadi et al., 2021; Rücklé et al., 2021)
insert trainable layers to the LMs for each task, and
BitFit (Ben Zaken et al., 2022) updates LM biases.
In contrast, prefix-tuning (Li and Liang, 2021) and
prompt tuning (Lester et al., 2021) freeze the orig-
inal LMs and update only trainable soft prompts
prepended to input. Given the rapidly increasing
size of pre-trained LMs (Chowdhery et al., 2022;
Brown et al., 2020), efficient fine-tuning to a new
target task is desirable, but it often incurs a perfor-
mance cost compared to the fine-tuning methods
or shows sensitivity toward initialization (Li and
Liang, 2021; Lester et al., 2021).

Multi-task transfer learning. Transfer learn-
ing methods attempt to learn a new target task
given a collection of source tasks by updating
the parameters of an LM, which has been proven
effective in NLP (Khashabi et al., 2020; Raffel
et al., 2020) since the knowledge learned from
one task can be useful to another task. Common
approaches include multi-task learning on many
different tasks (Liu et al., 2019; Aribandi et al.,
2022) or transferring a model fine-tuned on a single
source task to another target task (Vu et al., 2020;
Talmor and Berant, 2019). This often results in neg-
ative interference between competing tasks (Zhang
et al., 2020; Aghajanyan et al., 2021) and requires
massive computational resources to train a joint
model on large cross-task data or to search for the
best transfer source tasks (Albalak et al., 2022).
Moreover, it is difficult to add a new task to multi-
task models since updating them on a new task can
result in catastrophic forgetting (Kirkpatrick et al.,
2017); therefore, models must be retrained on a set
of multiple tasks (Biesialska et al., 2020).

3 Method

Problem setup and motivation. Given a collec-
tion of source tasks T1, . . . Tt, our goal is to learn a
new task Ttarget by efficiently transferring knowl-
edge from the source tasks by updating parameters

Frozen LM 🧊🔥

Source Prompt Training (Section 3.1)

X1 y1

y2

y3

Target Prompt Training (Section 3.2)

Frozen LM 🧊🔥
X2

Frozen LM 🧊🔥
X1 🔥 1

X

P1
 🧊
P2
 🧊
P3
 🧊

Ptarget
 X

Frozen LM 🧊

Attention Module 🔥

✕

a1

y

Pinstance

P1

P2

P3

Instance-wise
summary of
prompts a2

a3

atarget

Figure 2: Overview of ATTEMPT. The parts framed in red are updated during training while other parts are instact.

given the target task labeled data {(x,y)}. Impor-
tantly, we do not know a priori which tasks provide
useful inductive bias in the new target task (Ponti
et al., 2022): seemingly different tasks can benefit
from each other (e.g., paraphrasing v.s. boolean
question answering). We posit that (1) task-specific
knowledge can be stored in a small number of pa-
rameters ϕtask instead of requiring updating of all
LM parameters θ to θtask (parameter-efficiency),
and (2) multiple task knowledge can be reused, flex-
ibly added and combined to solve a new task, i.e.,
a (modular multi-tasking).

Overview. Our method, called ATTEMPT
(ATTEntional Mixture of Prompt Tuning), is
shown in Figure 2 and Algorithm Box 1. It
leverages highly parameter-efficient prompt tun-
ing (Lester et al., 2021) to encode knowledge from
source tasks into a small number of parameters
(source prompts). ATTEMPT first pre-trains a
set of source prompts P1, . . . ,Pt for source tasks
T1, . . . , Tt (Section 3.1; left side of Figure 2).
For a target task, it first initializes a target-task-
specific prompt Ptarget and an attention module G.
Given an instance (x,y), it computes attentions
between embedded input X and the prompts (Sec-
tion 3.2.1). Subsequently, ATTEMPT produces
instance-wise prompt Pinstance by interpolating the
source prompts and the target-task prompt given
the computed attentions (Section 3.2.2). Pinstance

is then prepended to the input to form the final input
to a frozen LM θ. During training, ATTEMPT only
updates the weights of Ptarget and G by maximiz-
ing the probability of generating y given Pinstance

and x as in the original prompt tuning.

Training ATTEMPT on multiple target tasks.
Unlike other parameter-efficient tuning approaches,
prompt or prefix tuning can train task-specific pa-

rameters θtask for different tasks in the same mini-
batch (Li and Liang, 2021; Lester et al., 2021).
Leveraging this advantage, we can train a shared at-
tention module G and multiple target task prompts
simultaneously on a collection of different tasks,
which allows ATTEMPT to further transfer knowl-
edge across different target tasks and improve pa-
rameter and inference efficiency (Section 3.3).

3.1 Source Prompt Training

We first obtain a soft prompt, a small trainable
embedding in front of the input embeddings fol-
lowing Lester et al. (2021), which is described in
detail below. We run prompt tuning on several high-
resource datasets, such as Multi-NLI (Williams
et al., 2018) or SQuAD (Rajpurkar et al., 2016) and
use the resulting soft prompts as source prompts to
be transferred to many different target tasks. Un-
like prior work, such as Vu et al. (2022), that uses
other tasks’ prompts to initialize prompts for new
tasks, we keep the source prompts intact and trans-
fer them in a non-destructive manner.

Formally, given t source tasks, we train prompts
on each task and acquire t source prompts,
[P1, . . . ,Pt], where Pj corresponds to the j-th
source task. The training details of source prompts
are as follows: Let input X = [x1, . . . ,xl], where
l is the length of the input sequence, xi ∈ Rd

corresponds to the i-th token embedding of the in-
put sequence x, and d is the LM dimension. A
soft prompt is represented as P = [p1, . . . ,pm] ∈
Rm×d, where m corresponds to the length of the
prompt embeddings (e.g., m = 100), and is often
specific to each task. Input embeddings prepended
by the prompt [P;X] are fed into the frozen LM θ.
During training, only prompt embeddings will be
updated by maximizing the likelihood of generat-

Source Prompt Training
For jth source tasks in t source tasks, train a source prompt Pj by maximizing p(y | [Pj ,X]
individually (Section 3.1) [Eq. 2]

Target Prompt Training
Initialization: initialize a new prompt Ptarget and attention module G
For each instance (x,y), after passing x to the embedding layer to get input embeddings X,
Step 1: Compute instance-wise prompt Pinstance for X (Section 3.2)

1. calculate attentions between X and a set of prompts [P1, . . . ,Pt,Ptarget] using G [Eq. 3]

2. interpolate P1, . . .Pt and Ptarget using attention scores [Eq. 4]

Step 2: Prepend Pinstance to X and feed the final input to frozen LM θ
Step 3: Maximize p(y | [Pinstance ,X]) and backpropagate to Ptarget and G via Pinstance [Eq. 2]

Table 1: Training process of ATTEMPT.

ing the target sequence y, as follows:

max
P

pθ(y | [P;X]). (1)

3.2 Target Prompt Training
For a new target task Ttarget , we first initialize
a target-task-specific prompt Ptarget and atten-
tion module G. For each instance in the target
task (y | x), ATTEMPT produces instance-wise
soft prompt Pinstance by interpolating the source
prompts and newly initialized target-task-specific
prompt (Section 3.2.2) given attention scores gen-
erated by G (Section 3.2.1).

Pinstance = Ptarget + G(X, [P1, . . . ,Pt,Ptarget]).

Similar to the original prompt tuning in Eq. 1,
we then concatenate the produced instance-wise
prompt to the input and train ATTEMPT by maxi-
mizing the likelihood, as follows:

max
Ptarget ,G

pθ(y | [Pinstance;X]). (2)

During training, this new task prompt Ptarget as
well as the attention module G are updated via
Pinstance, while source prompts (Section 3.1) and
the original LM are untouched.

3.2.1 Input-prompt Attentions
ATTEMPT controls the influence of the set of
source prompts on the final instance-wise prompt
by calculating input-prompt attentions. Since the
input embeddings X ∈ Rl×d and a soft prompt
Pj ∈ Rm×d have different sequence lengths, we

Non Linear

Down projection

Up projection

Layer Norm
P1��

P2��
P3��

Pt��

X

Hup

Frozen
source prompts

Task-specific
prompt

a2

Input-prompt attentions

a1 a2 atarget

Prompts

Figure 3: The overview of our attention module for
calculating input-prompt attentions.

first perform the max-pool operation for each di-
mension on X and each source prompt embedding
and obtain X̂ ∈ Rd and P̂j ∈ Rd.

We then feed X̂ to a sub-network (shown on the
left side of Figure 3) to project it into the prompt
spaces. For efficiency, ATTEMPT first feeds in-
put embeddings X̂ to a sub- network consisting of
down and up projection, as follows:

Hdown = W⊤
down(X̂)

Hup = W⊤
up(NonLinear(Hdown)),

where Wdown ∈ Rd×r(r < d) and Wup ∈ Rr×d

are projection parameters to be updated during
training. We use SiLU (Elfwing et al., 2017) for the
non-linear layer. We apply Layer Norm (Ba et al.,
2016) on Hup, observing that without layer norm,
Hup often grows quickly and gradients explode.

Finally, we compute the attentions by calculat-
ing the product between P̂j and Hup, and apply

softmax over the prompts, as follows:

aj =
eP̂jHup∑t+1
k=1 e

P̂kHup
. (3)

We introduce a softmax temperature (Radford
et al., 2021), and scale the logits in Eq. 3 by
1/d× exp(K) to avoid making the attention mod-
ule over-confident on specific source tasks, where
K is a temperature hyperparameter.

3.2.2 Prompt Interpolation
The final soft prompt for the instance X is calcu-
lated as the weighted sum of the prompts given the
attention generated by Eq. 3:

Pinstance(X) = Ptarget +

t+1∑
j=1

ajPj . (4)

The second term on the right differs for different
instances in the same task, while the Ptarget term is
task-specific. The attentions act as gating to control
the influences from different prompts and let us
flexibly compose knowledge from multiple tasks.
As seen in Eq. 4, it gives a 1 + at+1 weight to the
target-task-specific prompt Ptarget(= Pt+1). This
enables ATTEMPT to ignore the source prompts
if the knowledge from none of the sources tasks
is useful to solve the instance X, while always
keeping the influence of Ptarget so that it will be
properly updated during training.

3.3 Mixed-task Mini-batch Training

As discussed above, ATTEMPT can jointly train
the attention module and multiple target task
prompts. For mixed-task mini-batch multi-task
training, we first concatenate the training datasets,
while keeping each task ID information. During
training, we retrieve the target-task prompt corre-
sponding to the instance given the task ID, calculate
attentions over the set of the prompts and produce
instance-wise prompt as described in Section 3.2.
The loss for each target task prompt only backprop-
agates when the prompt is used, while the weights
of the attention module is updated at each iteration.
By sharing the attention module, different target
tasks are loosely connected and together contribute
to an improved and task-agnostic attention module,
particularly effective when the target task training
data is small. Moreover, sharing the attention layer
weights enables us to reduce the number of pa-
rameters to be updated per task and improves the

efficiency of inference time since ATTEMPT loads
the shared attention weights and prompts one time
for all target tasks and perform different tasks.

We also explore several approaches to improve
the training with good inductive bias so that G
learns a good prompt composition for efficient
knowledge transfer.

Learning attention prior. We pre-train the at-
tention module on source tasks and then use the
learned projection layers and the layer norm to ini-
tialize the attention module on the target task(s).
This learned prior can be also directly used for
tasks that lack training data.

Two-speed learning rate. Ponti et al. (2022)
shows that setting different learning rates for the
composition module and the task-specific model
parameters helps to provide useful inductive bias to
encourage the model to learn the best skill compo-
sition. We also introduce this two-speed learning
rate approach for ATTEMPT.

4 Experiments

We run experiments on 17 datasets across diverse
tasks, domains and output formats.

4.1 Source and Target Tasks

We use 6 large-scale datasets as source tasks, and
evaluate on 17 diverse target tasks across entail-
ment, paraphrase detection, sentiment analysis,
question answering, commonsense reasoning, sci-
entific reasoning. There is no overlap between
source and target tasks. The details of the datasets
used in this work are in Appendix Section B.3.

Source tasks. We use the following datasets with
more than 100k annotations in total from GLUE,
SuperGLUE and MRQA for source prompts:
MNLI (Williams et al., 2018), QNLI (Demszky
et al., 2018), QQP (Wang et al., 2018), SST-
2 (Socher et al., 2013), SQuAD (Rajpurkar et al.,
2016), and ReCoRD (Zhang et al., 2018).

GLUE and SuperGLUE. We use the follow-
ing GLUE (Wang et al., 2019b) and Super-
GLUE (Wang et al., 2019a) tasks as target datasets
to test the model’s natural language understanding
abilities: BoolQ (Clark et al., 2019), CB(De Marn-
effe et al., 2019), COPA (Roemmele et al., 2011),
MultiRC (Khashabi et al., 2018), RTE (Giampic-
colo et al., 2007), WiC (Pilehvar and Camacho-
Collados, 2019), WSC (Levesque et al., 2012),

CoLA (Warstadt et al., 2019), STS-B (Cer et al.,
2017) and WNLI (Wang et al., 2019b).

Question answering. We use the MRQA 2019
shared task (Fisch et al., 2019) data and exper-
iments on four large-scale QA datasets: Natu-
ral Questions (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), NewsQA (Trischler
et al., 2017) and SearchQA (Dunn et al., 2017).
Although those datasets often have long input, we
cut off it at the maximum token length of 512.

Others. In addition to the datasets from GLUE,
SuperGLUE and MRQA, we test our models on
four different datasets, whose tasks are related to
the source tasks but the domains differ. Sci-
Tail (Khot et al., 2018) is an entailment dataset
in the scientific domain. Yelp-2 polarity (Zhang
et al., 2015) is a sentiment analysis dataset that uses
Yelp data. WinoGrande (Sakaguchi et al., 2020)
is a commonsense reasoning dataset in a multiple
choice format. PAWS-Wiki (Zhang et al., 2019) is
a paraphrase detection dataset that uses Wikipedia.

4.2 Baselines

Single-task baselines. Single-task baselines train
specialized models or parameters for each target
task. We compare our model with: fine-tuned (FT)
models; prompt tuning (PT; Lester et al. 2021),
where source prompt embeddings are initialized
by randomly sampled top vocabularies; and SPoT-
generic (SPoT-g) and SPoT-targeted (SPoT-t; Vu
et al. 2022). SPoT-generic first pre-trains source
prompts on eight GLUE tasks and then uses the
source prompts to initialize target task prompts,
while SPoT-targeted uses prompt similarities to
find top-k similar tasks and then initializes target
task prompts using the weighted average of the
top k prompts. We also compare our models with
several widely used parameter-efficient tuning ap-
proaches. Adapter (Houlsby et al., 2019) inserts
adapter layers in the transformer block. BitFit, on
the other hand, freezes the weights and updates
only the bias terms of the LMs.

Multi-task baselines. Multi-task baselines share
all or part of the task-specific parameters across
multiple target tasks to enhance knowledge sharing
across different tasks. FT-MT, Adapter-MT and
SPoT-{g,t}-MT train a single model on a set of
target tasks. Ours-MT, on the other hand, still
keeps separate target task-specific embeddings but
jointly trains the attention module on the same set

of training data. Due to significant differences in
input context length and data size, we divided 16
tasks except for MultiRC into four categories and
conduct multi-task training on four different tasks.
Section B.6 in Appendix contains more details.

4.3 Experiment Settings
Unless specified, we use T5-base as our base LMs.2

Following Mahabadi et al. (2021), if a dataset does
not have public test split with annotations, we use
development set as our test set or split the devel-
opment set into our development and test sets. We
train all of the baselines for 20 epochs on small
datasets with less than 10k examples, 10 epochs
on medium size data with more than 10k examples,
and 5 epochs on MRQA datasets. We limit the max-
imum training data number of Yelp-2 to be 100k
samples. We run inferences on the test data using
the model with the best development performance.
We set prompt tuning learning rate to be 0.3 while
the learning rate for the attention module is tuned
on the development sets. We use K = 1 to control
the soft max temperature in Section 3.2. We set
the maximum token length to be 512 for MRQA
datasets, 348 for MultiRC and 256 for all of other
datasets. The prompt length m is set to be 100.

5 Results

ATTEMPT outperforms prompt tuning by a large
margin (up to 22%) on most of datasets and often
matches or outperforms other parameter-efficient
or fully fine-tuning approaches that train orders
of magnitude more parameters. Table 2 shows the
results for the GLUE and SuperGLUE datasets, and
Table 3 presents the results of the other datasets.

ATTEMPT significantly improves prompt tun-
ing and SPoT. Experimental results on Table 2
clearly show that on most of the datasets, it sig-
nificantly outperforms prompt tuning, SPoT-t and
SPoT-g. As pointed out by prior work (Mahabadi
et al., 2021; Lester et al., 2021; Li and Liang, 2021),
prompt tuning is sensitive to hyperparameters or
initialization, and it has significantly lower perfor-
mance on several datasets such as BoolQ (61.71%)

2Although the original prompt tuning paper uses T5 v1.1
LM-adapt as the backbone LMs, despite our extensive hy-
perparameter searches across five different learning rates and
five different batch sizes, we could not reproduce the original
results. We found that T5-LM adapt v1.1 was especially sen-
sitive and hard to tune when we use it as a backbone LM for
parameter-efficient approaches. Therefore, in this work we
used T5 as backbone models. Prior work in this line also uses
T5 as backbone models (Mahabadi et al., 2021).

of train data params /
task

WNLI
(634)

STS-B
(7k)

MRPC
(3.7k)

RTE
(2.5k)

MultiRC
(5.1k)

BoolQ
(9.4k)

WiC
(6k)

WSC
(554)

CB
(250) Avg.

Single-task training

FT 220M 50.00 89.68 90.20 71.94 72.77 81.10 70.22 59.61 85.71 74.58
Adapter 1.8M 50.00 90.73 85.29 71.94 75.87 82.45 67.08 67.30 85.71 75.17
BitFit 280k 50.00 90.88 86.76 67.63 74.51 79.57 69.59 59.61 78.57 73.01
PT 77k 50.00 89.48 68.14 54.68 58.73 61.71 48.90 51.92 67.86 61.28
SPoT-g 77k 58.33 90.69 87.52 71.94 73.97 77.24 67.00 50.00 46.42 69.23
SPoT-t 77k 52.78 90.00 79.72 69.78 74.21 71.68 48.90 53.84 71.43 68.03

ATTEMPT-ST 232k 55.56 89.67 85.74 73.38 74.39 77.06 66.77 53.84 78.57 74.06

Multi-task training

FT-MT 55M 27.78 89.25 86.10 75.53 72.77 79.32 69.59 63.46 71.42 70.58
Adapter-MT 450k 50.00 84.00 85.28 70.5 75.87 81.89 65.20 28.84 78.57 68.90
SPoT-g MT 19k 50.00 49.81 66.28 46.04 73.97 61.59 50.78 32.69 46.42 53.06

ATTEMPT-MT 134k 50.00 90.33 85.17 76.97 74.39 78.29 66.46 69.23 82.14 74.78

Table 2: Results on GLUE and SuperGLUE. “FT,” “PT,” “SPoT-g,” and “SPoT-t” denote fine-tuning, prompt tuning
(randomly initialized prompts), SPoT-general, and SPoT-target, respectively. ATTEMPT-{ST, MT} is our method.

of train data params /
task

NQ
(100k)

HP
(72k)

SQA
(117k)

News
(74k) Avg. WG

(40k)
Yelp

(100k)
SciTail
(27k)

PAWS
(49k) Avg.

Single-task training

FT 220M 75.12 77.46 81.14 65.23 74.73 61.87 96.65 95.78 94.13 87.11
Adapter 1.8M 74.20 77.56 81.39 65.64 74.69 59.21 96.85 94.47 94.25 86.20
BitFit 280k 70.66 75.47 77.68 64.09 71.98 57.22 94.66 94.71 92.03 84.66
PT 77k 67.94 72.85 75.68 61.08 69.38 49.57 95.12 87.88 55.77 72.09
SPoT-t 77k 68.18 74.76 75.27 58.22 69.11 50.43 95.41 91.20 91.13 82.04

ATTEMPT-ST 232k 70.39 75.17 77.29 62.78 71.41 57.61 96.66 93.10 92.06 84.86

Multi-task training

FT-MT 55M 74.10 76.99 78.71 61.84 72.91 60.22 97.06 92.02 93.01 85.58
Adapter-MT 450k 74.59 78.79 80.64 66.16 75.04 57.93 96.82 96.62 93.82 86.30
SPoT-t MT 19k 68.51 72.21 73.39 61.58 68.93 51.67 95.64 91.41 91.60 82.58

ATTEMPT-MT 134k 71.82 75.42 77.50 63.46 72.05 58.56 96.21 94.63 92.79 85.55

Table 3: Results on MRQA 2019 QA datasets, WinoGrande (WG), Yelp, Scitail and PAWS. “NQ”, “HP,” “SQA,”
and “News” denote Natural Questions, HotpotQA, SearchQA, News QA, respectively.

or WiC (48.90%) than other parameter-efficient
transfer approaches. Even on PAWS with 49k train-
ing data, it shows a low accuracy (55%), though
all other baselines achieve a higher than 90% ac-
curacy due to the simplicity of the task. As shown
by the results of SPoT-t or SPoT-g, initializing a
target task prompt with a source prompt trained
on other data often alleviates this issue, which
is consistent with the finding of Vu et al. (2022).
However, there remains a large performance gap
between other parameter-efficient approaches and
those prior prompt tuning-based approaches. Also
the improvements given by better initialization is
limited when the training data is large, as shown in
Table 3. ATTEMPT shows significant performance
improvements over those approaches on smaller
datasets (e.g., CB, RTE), as well as large datasets

such as MRQA 2019 QA dataset and SciTail.

ATTEMPT-MT improves performance partic-
ularly on smaller datasets. Despite using less
per-task trainable parameters, ATTEMPT-MT out-
performs ATTEMPT-ST across many of the target
datasets. The gains are larger on smaller datasets
(e.g., 3.57% and 9.39 % accuracy improvements
on CB and WSC). We hypothesize that sharing at-
tention module is particularly helpful on smaller
datasets, since learning good input-prompt atten-
tions from limited training sample is hard.

ATTEMPT matches methods that update more
parameters. On GLUE and SuperGLUE (Ta-
ble 2), ATTEMPT-MT yields average of 74.78,
outperforming BitFit using two times more per-
task trainable parameters and performing on par

with Adapter and fine-tuning approaches, which
train and store 14 times and 1,600 times more pa-
rameters than ATTEMPT, respectively. As shown
in Table 3, ATTEMPT-MT achieves 72.05 average
F1, which again outperforms BitFit using twice
as many parameters and yield 85.55% average ac-
curacy on WinoGrande, Yelp, SciTail and PAWS,
significantly outperforming BitFiT (84.66%) and
matching Adapter (86.20%). In addition to better
trade-off between task performance and parameter-
efficiency, ATTEMPT provides unique properties.
ATTEMPT-MT keeps the original LMs completely
untouched and loads multiple target prompts and
the shared attention module simultaneously, al-
lowing it to perform many different tasks with-
out model reloading at inference time. Moreover,
ATTEMPT also shows marginal increases in the
number of trainable parameters when the backbone
LM size increases, while other methods show dras-
tic increase of trainable parameters. We provide
detailed discussion on this in Section 6.2.

Multi-task learning in ATTEMPT v.s. other fine-
tuning models. Although multi-task pre-training
has shown its effectiveness, fine-tuning a single
model or parameters on a combination of many
different tasks often degrades performance (Agha-
janyan et al., 2021), especially with parameter-
efficient transfer approaches, where we have lim-
ited parameters to be shared (Karimi Mahabadi
et al., 2021; Ivison and Peters, 2022). SPoT-t MT
and FT-MT show performance drops from their
single-task variants across different datasets. Even
among the MRQA 2019 shared tasks where all four
target tasks are more related than SuperGLUE or
GLUE, the performance drop still occurs; SPoT-t
MT shows a larger performance decline on Hot-
potQA and SearchQA (2.55 and 1.88 F1 drop, re-
spectively), and FT-MT shows a 3.39 F1 decline
on NewsQA. This indicates that even among simi-
lar tasks, negative interference remains. Although
Adapter-MT shows better performance than its
single-task version on MRQA 2019, it also shows
declining performance on other datasets.

Table 2 shows larger performance deterioration
occur on smaller datasets, probably because those
datasets are less represented during multi-task train-
ing. SPoT-g MT, especially, suffers from negative
interference between different tasks (e.g., SPoT-g
WiC: 67.0% → SPoT-g MT: 50.78% on WiC), indi-
cating that sharing a single prompt for multiple di-
verse tasks is challenging. In contrast, ATTEMPT-

BoolQ NewsQA WG

ATTEMPT-ST 77.06 61.84 57.61
no target 50.89 55.26 47.89
no attention 73.57 52.55 56.03
single prompt 76.25 60.92 55.56
no prior transfer 77.03 60.95 57.22

ATTEMPT-MT 78.29 61.58 58.57
no prior transfer 78.29 61.44 56.98

Table 4: Results of ablation studies. “WG” denotes
WinoGrande. For NewsQA ablation, we used randomly
sampled 10k data for training for quick ablation.

MT keeps the target prompts separate while sharing
the attention module to efficiently run multi-tasking
and shows performance improvements over our
ATTEMPT-ST as discussed above.

6 Analyses

We conduct additional experiments and analyses
to shed light on the following topics: 1) the fac-
tors that contribute to the performance improve-
ments of ATTEMPT (Section 6.1), 2) the degree
of benefit by increasing the size of the backbone
LM (Section 6.2), and the process by which the
knowledge combination though attentions occurs
(Section 6.3).

6.1 Ablation Studies

We compare different variants of ATTEMPT to see
the effect of each of the design choices. We ablate
ATTEMPT with (a) no target, which neither initial-
izes nor adds target task prompts in Eq. 4, to assess
the feasibility of adapting to a new task by only
interpolating pre-trained source prompts; (b) no at-
tention, which removes the learned attention layers
and gives the constant score aj = 1/t to all source
prompts in Eq. 3; (c) single prompt, which uses
only a single source prompt in Eq. 4 to assess the ef-
fect of transferring knowledge from multiple tasks;
and (d) no prior transfer, which does not transfer
attention generator weights from source tasks. The
ablations are mainly conducted on the top of the
single-task model (ATTEMPT-ST), and we conduct
ablation (d) on ATTEMPT-MT, as well. We sample
three tasks—BoolQ, NewsQA and WinoGrande—
for the ablation studies.

Table 4 reveals that all components contribute to
performance improvements. Regarding the funda-
mental modeling choice, adding a trainable target-
task-specific prompt (no target) is crucial to achieve
good performance on all of the datasets, especially

small base large XL
0

1

2

3

4

5

6

of

 p
ar

am
et

er
s

1e6

PT
Ours (ST)
Ours (MT)
BitFit
Adapter

(a) Parameters

small base large XL
30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

PT
Ours (ST)
Adapter
FT

(b) BoolQ

small base large XL
30

40

50

60

70

80

90

100

F1
 (%

)

PT
Ours (ST)
Adapter
FT

(c) MultiRC

small base large XL
20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

PT
Ours (ST)
Adapter
FT

(d) WiC

Figure 4: Scalability Experiments. (a) shows the number of the parameters with different backbone LMs. (b), (c)
and (d) shows the performance of fine-tuning, prompt tuning, Adapter and ATTEMPTusing T5-{small, base, large,
3B (XL)} on BoolQ, MultiRC and WiC, respectively. Ours in figures denotes ATTEMPT.

on BoolQ and WinoGrande. This demonstrates
that unless the source tasks are highly related to
a target task, learning a new target task without
task-specific prompt is challenging. No attention
(constant attention) causes large performance drop,
especially on BoolQ and NewsQA, indicating that
it is important to have learned attentions rather
than simply averaging the multiple source prompts.
Single prompt ablation is similar to SPoT-t except
that instead of using source prompts for initial-
ization, we keep the source prompt frozen while
updating the target task prompt and the attention
layers. Although this variant outperforms SPoT-
t and demonstrates the effectiveness of keeping
prior source prompts frozen, there is notable per-
formance decline relative to ATTEMPT-ST, sug-
gesting that combining multiple source prompts is
effective. Pre-training G on the combinations of
source tasks shows improvements on the NewsQA
single-task and the WinoGrande multi-task.

6.2 Parameter Efficiency and Power of Scale

Analysis on parameter-efficiency of ATTEMPT.
For each task, we will introduce a new trainable soft
prompt embeddings m× d, where m is the length
of the prompts and d is the LM’s dimension. An at-
tention module consists of two projection matrices
and a layer norm, resulting in d× r+ r×d+2d =
2rd+ 2d parameters. As this can be shared across
N target tasks, the additional parameters per task
will be: d×m+ 2rd+2d

N = d(m+ 2(r + 1)/N).
Figure 4a shows the number of the parameters

to be updated per task when we use different back-
bone LMs. With Adapter or fine-tuning, the num-
ber of the parameters quickly increases, but AT-
TEMPT updates only the soft prompts and do not
modify the LM higher layers, resulting in moderate
parameter increases compared to other approaches

when we use larger backbone LMs. Moreover, even
if we use T5-large as the backbone model, the num-
ber of the parameters to be trained and stored is still
smaller than the ones of adapter or BitFit using a
smaller LM (i.e., T5-base). Given that recent LMs
are growing larger and larger, the ability to induce
the rich knowledge learned from pre-training using
small number of parameters is important, and we
argue that prompt tuning-based approaches, which
keep the original LMs intact and is independent
from the number of the LM layers, can be particu-
larly effective.

Scaling backbone LMs. We also empirically an-
alyze the effect of increasing the backbone LM
sizes. We evaluate Adapter, ATTEMPT-ST, prompt
tuning and fully fine-tuned model performance on
three SuperGLUE datasets: BoolQ, MultiRC and
WiC. Lester et al. (2021) show that prompt tuning
is particularly effective when the backbone LM is
larger while it struggles when used with a smaller
LM, as also found in our experiments. During this
experiment, we use only a single GPU with 24 GB
GPU memory, as in our main experiments, to sim-
ulate a common resource environment. We found
that under this computational constraint, we could
not fine-tune the T5-3B model due to the out of
memory error, even with a batch size of 1. Adapter,
prompt tuning and ATTEMPT can be trained on a
single GPU even with the T5-3B model.

Figure 4b, Figure 4c and Figure 4d show the per-
formance on BoolQ, MultiRC, and WiC using dif-
ferent backbone LMs (T5-small, T5-base, T5-large,
and T5-XL). As we can see, ATTEMPT largely
benefits from backbone LM size increase. AT-
TEMPT outperforms prompt tuning across differ-
ent tasks and backbone LMs, and matches or out-
performs fully fine-tuned models with T5-large.
Furthermore, our model also perform on par with

RT
E

M
R

PC

ST
SB

W
N

LI

W
iC

W
SC

M
iu

lti
R

C

C
B

 W
G

PA
W

S

Sc
iT

ai
l

Ye
lp

Target Task

MNLI

SST-2

QNLI

QQP

SQuAD

 ReCoRD

target

So
ur

ce
 T

as
k

0.2

0.4

0.6

0.8

Figure 5: Attention visualizations of ATTEMPT-ST.

Adapter with T5-3B, while updating and storing
much smaller numbers of parameters (Figure 4a).

6.3 Analysis on Attention

Figure 5 shows the attention weight matrix between
source and target tasks, produced by ATTEMPT-ST.
Attention patterns differ for different tasks. Gen-
erally, G gives higher attentions to related source
tasks. For instance, G gives significantly higher
attentions to SST-2 for Yelp, or QQP for PAWS-
Wiki, which are the same tasks but are different in
domains. QQP is often highly attended by some
tasks that are seemingly different from paraphras-
ing (e.g., MultiRC, WNLI), which may indicate
underlying task similarities between those tasks.
On WinoGrande or SciTail, G gives large atten-
tions to the target task embeddings (“target”); this
maybe because those two tasks have significantly
different task format or input domain distributions,
and G ignores source prompts more often.

7 Additional Related Work

Parameter-efficient transfer learning. In addi-
tion to the approaches discussed in the previous
sections (Houlsby et al., 2019; Ben Zaken et al.,
2022; Li and Liang, 2021; Lester et al., 2021; Vu
et al., 2022), many parameter-efficient transfer ap-
proaches have been introduced recently. Adapter-
Fusion (Pfeiffer et al., 2021) attempts to com-
pose multiple different adapters by learning task-
specific compositions on each task after training
adapters individually. Qin and Eisner (2021) also
introduce data-dependent mixture of soft prompt
modeling, where they ensemble predictions given
different prompts. ATTEMPT directly produces
instance-wise prompts by interpolating multiple
prompts, removing the necessity of running multi-
ple forward passes for a single input. IDPG (Wu
et al., 2022) and Instance-Dependent Prompt Tun-

ing (Levine et al., 2022) learn to generate instance-
wise prompts given encoded input. Particularly
Instance-Dependent Prompt Tuning tries to achieve
parameter-efficient multi-task learning and trains
the generator component in a multi-task manner.
Our main focus is transferring knowledge from
multiple tasks in a non-destructive manner rather
than learning to generate them from scratch, and
also much more parameter-efficient. Concurrent to
our work, Liu et al. (2022) introduce (IA)3 that mul-
tiplies intermediate activation by learned vectors
for parameter-efficient few-shot learning. Hyper-
Former (Karimi Mahabadi et al., 2021) and Hyper-
Decoder (Ivison and Peters, 2022) train a shared
hyper network to generate adapters for parameter-
efficient multi-task learning.

Modular approaches and sparse networks.
There is a large literature on composing multiple
separate networks to handle different sub-tasks (Ja-
cobs et al., 1991b,a; Andreas et al., 2016; McCann
et al., 2018). As the LM size expands, several
recent works try to sparsely activate or employ
light-weight modules for efficient multi-task learn-
ing (Gupta et al., 2022; Ponti et al., 2022; Fedus
et al., 2021). In particular, we share the same intu-
ition as the concurrent work (Ponti et al., 2022),
which combines several skills encapsulated in
parameter-efficient modules; however, our main fo-
cus is on how to transfer and share knowledge from
resource-rich tasks in a super parameter-efficient
way, while they focus on improving few-shot gen-
eralization ability. Moreover, our approaches keep
LMs intact and update less parameters.

8 Conclusion

In this work, we introduce ATTEMPT, a new
modular, multi-task and parameter-efficient tun-
ing approach for efficient knowledge transfer. AT-
TEMPT produces instance-wise soft prompts by
interpolating multiple reusable soft prompts trained
on source tasks and a new task-specific prompt,
while keeping the original LM frozen. Our experi-
ments show that ATTEMPT largely improves previ-
ous prompt tuning-based approaches, and matches
or outperforms prior parameter-efficient transfer ap-
proaches or fully fine-tuned models despite using
much smaller number of parameters to be updated.
Our analysis shows that transferring knowledge
from multiple tasks and sharing attention modules
largely contribute to performance improvement.

Acknowledgement

This research was supported by NSF IIS-2044660,
ONR N00014-18-1-2826, the Allen Distinguished
Investigator Award, the Sloan Fellowship, and the
Nakajima Foundation Fellowship. We thank UW
NLP and Allen NLP group members for their in-
sightful discussion and Sandy Kaplan, Sewon Min,
Ofir Press, and Yizhong Wang for their helpful
feedback on this paper.

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,

Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799–5811, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Alon Albalak, Yi-Lin Tuan, Pegah Jandaghi, Con-
nor Pryor, Luke Yoffe, Deepak Ramachandran,
Lise Getoor, Jay Pujara, and William Yang Wang.
2022. FETA: A benchmark for few-sample task
transfer in open-domain dialogue. arXiv preprint
arXiv:2205.06262.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition, pages 39–48.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni,
Jai Gupta, Kai Hui, Sebastian Ruder, and Donald
Metzler. 2022. Ext5: Towards extreme multi-task
scaling for transfer learning. In International Confer-
ence on Learning Representations.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussà. 2020. Continual lifelong learn-
ing in natural language processing: A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523–6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into nat-
ural language inference datasets. arXiv preprint
arXiv:1809.02922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
SearchQA: A new q&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://arxiv.org/abs/2205.06262
https://arxiv.org/abs/2205.06262
https://doi.org/10.1109/CVPR.2016.12
https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=Vzh1BFUCiIX
https://arxiv.org/abs/1607.06450
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/1809.02922
https://arxiv.org/abs/1809.02922
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/1704.05179
https://arxiv.org/abs/1704.05179

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2017.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
arXiv preprint arXiv:1702.03118.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of the 2nd Workshop
on Machine Reading for Question Answering, pages
1–13, Hong Kong, China. Association for Computa-
tional Linguistics.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9, Prague. Association for
Computational Linguistics.

Shashank Gupta, Subhabrata Mukherjee, Krishan Sub-
udhi, Eduardo Gonzalez, Damien Jose, Ahmed H
Awadallah, and Jianfeng Gao. 2022. Sparsely acti-
vated mixture-of-experts are robust multi-task learn-
ers. arXiv preprint arXiv:2204.07689.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-based
tuning for pretrained language model adaptation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2208–
2222, Online. Association for Computational Lin-
guistics.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (GELUs). arXiv preprint
arXiv:1606.08415.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Hamish Ivison and Matthew E Peters. 2022. Hyper-
decoders: Instance-specific decoders for multi-task
NLP. arXiv preprint arXiv:2203.08304.

Robert A Jacobs, Michael I Jordan, and Andrew G Barto.
1991a. Task decomposition through competition in
a modular connectionist architecture: The what and
where vision tasks. Cognitive science, 15(2):219–
250.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991b. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2177–2190, Online. Association
for Computational Linguistics.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576, Online. Association
for Computational Linguistics.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online. Association
for Computational Linguistics.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 32(1).

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew
Jones, Tengyu Ma, and Percy Liang. 2022. Fine-
tuning can distort pretrained features and underper-
form out-of-distribution. In International Conference
on Learning Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,

https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://aclanthology.org/W07-1401
https://aclanthology.org/W07-1401
https://arxiv.org/abs/2204.07689
https://arxiv.org/abs/2204.07689
https://arxiv.org/abs/2204.07689
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2203.08304
https://arxiv.org/abs/2203.08304
https://arxiv.org/abs/2203.08304
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://ojs.aaai.org/index.php/AAAI/article/view/12022
https://ojs.aaai.org/index.php/AAAI/article/view/12022
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh

Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and
Reasoning, KR’12, page 552–561. AAAI Press.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes,
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher
Lieber, Barak Lenz, Shai Shalev-Shwartz, et al. 2022.
Standing on the shoulders of giant frozen language
models. arXiv preprint arXiv:2204.10019.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. arXiv
preprint arXiv:2205.05638.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for
natural language understanding. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496, Florence,
Italy. Association for Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
{bert}: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Edoardo M Ponti, Alessandro Sordoni, and Siva Reddy.
2022. Combining modular skills in multitask learn-
ing. arXiv preprint arXiv:2202.13914.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://arxiv.org/abs/2204.10019
https://arxiv.org/abs/2204.10019
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2205.05638
https://arxiv.org/abs/2205.05638
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://openreview.net/forum?id=bqGK5PyI6-N
https://openreview.net/forum?id=bqGK5PyI6-N
https://arxiv.org/abs/1806.08730
https://arxiv.org/abs/1806.08730
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://arxiv.org/abs/2202.13914
https://arxiv.org/abs/2202.13914
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90–95.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. WinoGrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732–8740.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Alon Talmor and Jonathan Berant. 2019. MultiQA: An
empirical investigation of generalization and trans-
fer in reading comprehension. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4911–4921, Florence, Italy.
Association for Computational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. NewsQA: A machine comprehen-
sion dataset. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 191–200,
Vancouver, Canada. Association for Computational
Linguistics.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039–5059, Dublin, Ireland. Association
for Computational Linguistics.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7882–7926, Online. Association for
Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,

and Samuel Bowman. 2019a. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou,
Yuxiao Dong, VG Vydiswaran, and Hao Ma. 2022.
IDPG: An instance-dependent prompt generation
method. arXiv preprint arXiv:2204.04497.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint arXiv:1810.12885.

Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu.
2020. A survey on negative transfer. arXiv preprint
arXiv:2009.00909.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/2022.acl-long.346
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://arxiv.org/abs/2204.04497?context=cs.LG
https://arxiv.org/abs/2204.04497?context=cs.LG
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/2009.00909
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/N19-1131

Appendix

A More Method Details

A.1 Pre-training G on source tasks.
To pre-train G, we run the same training process as
in the target task training on the source tasks. In par-
ticular, we initialize another task-specific prompt
for each source task, and trains both those task-
specific prompts as well as the shared attention
weights of G on the combinations of the source
tasks as in Section 3.2.

B Experimental Details

B.1 Details of the Attention Module
Pretraining

As the six source tasks have significantly different
length of input context (e.g., the input context of
MNLI, SST-2, QQP or QNLI is on average less
than 200 tokens while SQuAD or ReCoRD have
the context longer than 512 tokens), we split the
source tasks into the two groups: (1) MNLI, SST-2,
QQP and QNLI; (2) SQuAD and ReCoRD. We use
the resulting pretrained weights from group (2) for
MRQA 2019, while for other experiments, we use
the weights from (1).

B.2 Implementation Details
We use PyTorch3 (Paszke et al., 2019) and hug-
gingface transformers4 library to implement
our models. For Adapter, BitFit, prompt tuning
and BitFit baselines, we use the implementations
by Mahabadi et al. (2021).5 We use huggingface
datasets6 library to use the data for the exper-
iments except for MRQA 2019 shared task. For
MRQA 2019 shared task, we download the origi-
nal training and development data from the official
repository.7

B.3 Source Prompt Training Details
We fine-tune the source prompts on six large-scale
datasets for 5 epochs. We use the checkpoints with
the best development score as our source prompts.
Each source prompt is initialized by randomly sam-
pled tokens as in Lester et al. (2021). We found that

3https://pytorch.org/
4https://github.com/huggingface/

transformers
5https://github.com/rabeehk/compacter
6https://github.com/huggingface/

datasets
7https://github.com/mrqa/

MRQA-Shared-Task-2019

although this random vocabulary based initializa-
tion is often unstable even in large-scale datasets,
on the six source tasks, this approach gives reason-
able performance, even with T5-small.

B.4 Hyperparameters for ATTEMPT
General hyperparameters. We optimize the ob-
jective function using Adam (Kingma and Ba,
2015) with learning rate 0.3 for prompt tuning fol-
lowing Lester et al. (2021). All of the experiments
are conducted with a single GPU with 24 GB mem-
ory. Per GPU batch size is 32, and for MRQA,
we set the per GPU batchsize to be 16 and set the
gradient accumulation step to 2 due to the out of
memory error. We set the number of the prompt to
be 100 throughout our experiments. We set weight
decay to be 1× 10−5. For the projection layers, we
use r = 100.

Learning rates for attention modules. For the
attention module G, we found that the best learn-
ing rate varies across datasets and tune it on the
development sets. In particular, we use the learning
rate of 0.1 for SuperGLUE, and Yelp, WinoGrande,
SciTail and PAWS multi-task experiments, and 0.3
for the other experiments.

Target-task prompt initialization. To initialize
the target task specific prompt, Ptarget, we use the
Multi NLI source prompt for classification task and
the SQuAD source prompt for question answer-
ing, instead of initializing the target-task-specific
prompt with randomly sampled vocabularies for
training stability.

B.5 Hyperparameters for Baselines
For all of the baselines, we set the warmup steps
to be 500, use Adam for optimization with a linear
learning rate scheduler.

Prompt Tuning. As in ATTEMPT, we use the
prompt length of m = 100 and use the learning
rate of 0.3 for prompt tuning and set weight decay
to be 1× 10−5.

SPoT-g and SPoT-t. We use the same hyperpa-
rameters as in prompt tuning. To select the source
task for SPoT-t, we run prompt tuning on all of the
source and target tasks for 5 epochs for medium
and large-scale datasets and 20 epochs for smaller
scale datasets and then compute the cosine simi-
larity between a target prompt and the set of the
source prompts. Regarding the SPoT-g training, we
train a single source prompt on the combination of

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/rabeehk/compacter
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets
https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/mrqa/MRQA-Shared-Task-2019

Dataset Name Category Task Domain Metric

1. MNLI GLUE natural language inference (NLI) various accuracy
2. SST-2 GLUE sentiment analysis Movie Reviews accuracy
3. QQP GLUE paraphrase detection social QA questions (Quora) accuracy & F1
4. QNLI GLUE QA NLI Wikipedia accuracy
5. SQuAD MRQA 2019 extractive QA Wikipedia F1 & EM
6. ReCoRD SuperGLUE cloze-style QA news (CNN, Daily Mail) F1 & EM

Table 5: The details of the 6 source tasks.

Dataset Name Category Task Domain Metric

1. WNLI GLUE coreference / NLI fiction books accuracy
2. STS-B GLUE sentence similarity misc. Pearson&Spearman corr.
3. MRPC GLUE paraphrase detection news accuracy & F1
4. RTE GLUE NLI News, Wikipedia accuracy
5. MultiRC SuperGLUE QA various F1 & EM
6. BoolQ SuperGLUE boolean QA Wikipedia accuracy
7. WiC SuperGLUE word sense disambiguation lexical databases accuracy
8. WSC SuperGLUE coreference / commonsense fiction books accuracy
9. CB SuperGLUE NLI various accuracy
10. NQ MRQA 2019 extractive QA Wikipedia F1 & EM
11. HotpotQA MRQA 2019 extractive QA Wikipedia F1 & EM
12. SearchQA MRQA 2019 extractive QA Search snippets F1 & EM
13. NewsQA MRQA 2019 extractive QA News article F1 & EM
14. WinoGrande Others coreference / commonsense WikiHow accuracy
15. Yelp Others sentiment analysis Yelp reviews accuracy
16. SciTail Others NLI science exams accuracy
17. PAWS-Wiki Others paraphrase detection Wikipedia accuracy

Table 6: The details of the 17 target tasks. “NQ” denotes Natural Questions and lexical databases for WiC include
WordNet, VerbNet, Wiktionary. For the datasets where two metrics are originally used, we use the underlined metric
as our primary metric.

Adapter Fine-tuning
datasets Bool MRC WiC Bool MRC WiC

T5-small 100 100 100 100 100 100
T5-base 64 64 100 32 32 100
T5-large 32 20 32 32 32 32
T5-3B 4 4 8 – – –

Table 7: The number of the batch sizes for fine-tuned
models and adapter for the scalability experiments.

the GLUE source tasks following Vu et al. (2022).
We found that SPoT-g baseline is not strong on
MRQA or Others (i.e., Yelp, Scitail, WinoGrande
and PAWS-Wiki), and for those datasets, we use
SPoT-t as a primary baseline.

Adapter. We use the default hyperparameters by
Mahabadi et al. (2021) for the Adapter baseline.
We use GELU (Hendrycks and Gimpel, 2016) for
non-linear layers, set the reduction factor to be 32
and the learning rate to be 3× 10−4.

BitFit. We use the learning rate of 3× 10−4.

Fine-tuning. We use the learning rate of ×10−4.
Other hyperparameters are the same as the hugging-

face transformers T5 models.

B.6 Multi-task Training Details

As discussed in Section 4.1, the 17 datasets have
significantly different length of input context, and
training on the combinations of all of the datasets
can make training inefficient. In this work, we
conduct multi-tasking of 4 datasets (GLUE, Super-
GLUE, MRQA 2019, and others), while keeping
SuperGLUE MultiRC training separated, as Mul-
tiRC has significantly longer context than other
SuperGLUE datasets. We set the maximum length
of the input to be 256, 256, 512, 256 for GLUE,
SuperGLUE, MRQA 2019, and others task set, re-
spectively. We set the maximum length of input to
be 348 for MultiRC.

B.7 Task and Dataset Details

We show the list of the datasets, tasks and domains
for source tasks in Table 5 and for target tasks in
Table 6, respectively. In summary, both source
and target datasets cover diverse tasks, domains
and output formats (i.e., span extraction, multiple-
choice, classification).

C Details for the Scaling Experiments

C.1 Experimental Details
We provide the experimental details for the LM
scaling experiments in Section 6.2. For AT-
TEMPT and prompt tuning, we use the same single
GPU with 24 GB GPU memory as the main experi-
ments. For Adapter and fine-tuning, we use a single
GPU with 48 GB GPU memory but restrict GPU
memory usage at 24 GB for a fair comparison.

Maximum token length and the number of the
training epochs. For the scalability experiments,
we set the maximum token length to 216 across all
datasets.

Per-device batch size for ATTEMPT and
prompt tuning. For T5 small and base, we set
per-GPU batch size to be 100 and 32, while for
T5-large and T5-XL (3B), we use the batch size of
16 and 2, respectively.

Per-device batch size for Adapter. For Adapter
experiments, we flexibly adjust the per-device
batch size for each dataset to avoid out of the mem-
ory issues. The number of the per-device batch size
is shown in Table 7.

Per-device batch size for fine-tuning. Similarly
in Adapter, we adjust the per-device batch size
for the fine-tuned models. The number of the per-
device batch size is shown in Table 7. For fine-
tuned models, we found that we cannot avoid the
out of memory issue even with the batch size of
1, so we report the results with T5 small, base and
large.

C.2 Performance Instability of Fine-tuning
with T5-large

We found that fine-tuning with T5-large is occa-
sionally unstable and fails to learn a target task,
and is sensitive to the batch size or learning rate.
For instance, using different batch size results in
65% BoolQ accuracy. For those cases, we explored
several learning rates and batch sizes and report the
best performance. Several prior work report the in-
stability of fine-tuning large-scale LMs (Mosbach
et al., 2021; Dodge et al., 2020).

