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Abstract

Database management systems (DBMS) typically provide an appli-
cation programming interface for users to issue queries using query
languages such as SQL. Many such languages were originally designed
for business data processing applications. While these applications are
still relevant, two other classes of applications have become important
users of data management systems: (a) web applications that issue
queries programmatically to the DBMS, and (b) data analytics involv-
ing complex queries that allow data scientists to better understand their
datasets. Unfortunately, existing query languages provided by database
management systems are often far from ideal for these application do-
mains.

In this tutorial, we describe a set of technologies that assist users in
specifying database queries for different application domains. The goal
of such systems is to bridge the gap between current query interfaces
provided by database management systems and the needs of different
usage scenarios that are not well served by existing query languages.
We discuss the different interaction modes that such systems provide
and the algorithms used to infer user queries. In particular, we focus
on a new class of systems built using program synthesis techniques,
and furthermore discuss opportunities in combining synthesis and other
methods used in prior systems to infer user queries.
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1
Introduction

From financial transactions to online shopping, we interact with
database management systems (DBMSs) on a daily basis. Since the
initial development of relational database systems, various query lan-
guages such as SQL have been developed for users to interact with the
DBMS. Many of these languages proved very effective for what was
originally their primary application: business data processing (e.g., gen-
erating transaction reports at a financial institution). Unfortunately,
many important applications of DBMSs that have emerged in recent
decades have proven to be a less than ideal fit for the interaction models
supported by traditional DBMSs.

One particularly important extension to the business data process-
ing application space corresponds to applications with complex business
logic, such as social network websites, online shopping applications,
etc. Unfortunately, traditional query interfaces often make develop-
ing such applications difficult. First, the general-purpose languages in
which these applications are usually written (e.g., Java or Python) are
quite different from the query languages supported by the DBMS. This
forces developers to learn a new language—and often a new program-
ming paradigm altogether. For example, an application developer who
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3

is used to thinking about computation over objects stored in the pro-
gram heap will need to recast her computation in terms of structured
relations stored on disks when interacting with a DBMS. Moreover, in
addition to being concerned about efficient memory layout for retriev-
ing in-memory objects, she will also need to understand the costs associ-
ated with bringing objects into memory from the disk. This “impedance
mismatch” [Copeland and Maier, 1984] problem has plagued applica-
tion developers for decades. Today, this mismatch is often addressed by
application frameworks known as Object Relational Mapping (ORM)
Frameworks that eliminate the need to think in terms of two distinct
programming models. Unfortunately, the use of ORMs often imposes
significant performance costs [Subramanian].

There are many reasons for the performance cost of ORMs, but
one that is especially significant is that they encourage a programming
style where computation that could have been implemented with a sin-
gle query and a single round trip to the database is instead implemented
with several simpler queries connected together with imperative code
that manipulates their results. This is problematic because in addi-
tion to increasing the number of round trips and the amount of data
that needs to be transferred between the application and the DBMS,
doing so also increases the cost of the computation, since the DBMS
is in much better position to optimize queries compared to a general-
purpose code compiler trying to optimize a block of imperative code
that happens to implement a relational operation.

As an example, while a relational join between relations R and S
can be implemented using a nested loop, with each loop processing
tuples from the two respective relations fetched from the DBMS, it is
much more efficient to implement the join as a single SQL query, as
the DBMS can choose the best way to implement the join during query
optimization.

In this tutorial we focus on a new approach based on verified lift-
ing [Cheung et al., 2015] to reduce the performance cost of these ap-
plication frameworks, allowing programmers to enjoy the benefits of
the reduced impedance mismatch. The first step in this technique is to
identify places in the application code where the programmer is using
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imperative code to implement functionality that could be implemented
as part of a query. The second and most important step is to use pro-
gram synthesis technology to derive a query that is provably equivalent
to the imperative code. Once that is done, the third step involves gen-
erating a new version of the code that uses the query in place of the
original code.

The technology behind this work was originally published ear-
lier [Cheung et al., 2013]. In this paper, we expand on the content
of that original paper in order to make the technology more accessi-
ble to researchers without a strong background in program synthesis
or verification, as well as to researchers who may not be as familiar
with database concepts. In Section 2, we provide a quick primer on
query execution and query processing, focusing on key concepts that
will help the reader understand the reasons for the performance prob-
lems introduced by ORMs. Section 3 provides a comprehensive primer
on program synthesis technology, focusing in particular on the tech-
niques that are leveraged by QBS, and putting them in context of
other synthesis technologies. Section 4 describes the details of the QBS
approach, and finally Section 5 describes the state of the art in terms of
applications of synthesis to interact with DBMS systems and promising
directions for future work.



2
Query Processing

This section provides a high-level introduction to the different ways
applications can interact with the DBMS. The section also provides
some background on how the DBMS processes queries; this background
will help the reader understand why issuing queries in different ways
can have significant performance impacts for an application.

2.1 Relational DBMS and Query Languages

Since the development of relational database systems in the 1970s,
SQL (Structure Query Language) has become the most popular query
language for interacting with DBMS. SQL is based on the relational
model, which models data as relation instances. A relation instance
is similar to a spreadsheet table with rows and columns, except that
columns are well-typed. Each column is a named and typed field, and
the set of fields for each relation is known as the schema of that relation.
An instance of a relation is a set of records (also called tuples), where all
records share the same schema. SQL is an implementation of relational
algebra [Codd, 1970, Date, 2000], except that it models relations as bags
(i.e., multisets) rather than sets, as in the original relational algebra
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6 Query Processing

formulation. The language includes a subset of relational operators such
as projections, selections, joins, and aggregations, but not others such
as transitive closure. In addition to these operators, inLogical Plan ge
practice most DBMSs allow users to execute arbitrary code by defining
user defined functions (UDFs). To use UDFs, developers first implement
the UDF using a domain-specific language such as PL/SQL (which is an
implementation of the SQL/PSM standard [International Organization
for Standardization, 2011]) and compile it using a custom compiler
provided by the DBMS. The compiled binary is then linked to the
DBMS kernel and the function is then available to the query executor,
to be described in Section 2.4.

2.2 DBMS as a library

Since the initial development, relational DBMSs have been designed to
be stand-alone systems rather than application libraries to be linked
with the application during compilation. Early DBMS implementations
did not support complex applications and only provided a command-
line interface for end-users to interact with the system by typing queries
on the console, with the DBMS returning results and displaying them
to the user on the screen. As business data processing applications
became popular, DBMS implementations started to provide language
level abstractions (such as JDBC [JDBC 4.2 Expert Group, 2014] and
ODBC [International Organization for Standardization, 2008]) for ap-
plications to interact with DBMSs programmatically by issuing SQL
queries. Such abstractions are often implemented as connector libraries
provided by the DBMS, and are linked by developers to their applica-
tion binaries at compile time. These libraries allow application devel-
opers to embed query statements within their application source code
as if they were using the command-line interface, and are furthermore
completely separated from the DBMS implementation itself in order
to support functionality such as issuing queries remotely via network.
In these situations, the embedded query statements are sent to the
connector libraries as the application executes, which in turn are for-
warded to the DBMS for execution. The results are then sent back to
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the libraries, and the libraries would return them to the application
after serializing the results into data structures such as lists or arrays
of primitive types.

On the one hand, connector libraries greatly ease DBMS develop-
ment as they cleanly abstract away the application; the DBMS can pro-
cess queries as if they were issued by end-users through the command-
line interface. Unfortunately, this comes at a cost for the application
developer. First, as applications are usually written using a general-
purpose language, developers need to learn a new language in order to
express their persistent data needs. Worse yet, embedding query state-
ments as raw strings in the application makes debugging difficult; the
raw strings are not parsed or type-checked by the application compiler,
so errors in the queries only become apparent at execution time. Not
only that, embedding raw query strings in application code is often the
source of various security vulnerabilities such as SQL injection.

2.3 The ORM approach

In recent years, new frameworks and libraries have been developed
to provide better integration between the application and the DBMS.
Such frameworks can be separated into two categories. The first cate-
gory includes query language integrated libraries [Microsoft, b, Squeryl,
jOOQ] that provide stylized library calls for relational operations.
While developers still need to understand query concepts (such as se-
lections and joins), they no longer need to have knowledge about query
language syntax, and using such libraries does not incur the same secu-
rity issues as embedding raw strings in program code. In another cate-
gory are object-relational mapping (ORM) frameworks [JBoss, Cooper
et al., 2007, Microsoft, a, Django]. These frameworks go one step be-
yond language integrated libraries by giving developers the ability to
interact with the DBMS using the language of the application logic.
With ORMs, developers label certain classes as persistent—usually
through annotations or configuration files—and the framework auto-
matically manages all persistently stored objects for the application:
when the application needs to retrieve objects that are stored in the
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DBMS, it simply passes the requested object identifiers to the ORM
framework, and the framework either returns cached objects or trans-
lates the request into SQL queries executed by the DBMS. Writes to
persistent objects are handled similarly; the user never has to write
queries, because the framework generates all queries automatically. 1

Unfortunately, applications written using ORM frameworks are of-
ten not efficient for several reasons. First, they lack high-level informa-
tion about the application, and as such they often issue unnecessary
queries that slow down the application [Cheung et al., 2014]. Most
importantly from the point of view of this work, applications written
with ORMs often take what could have been a single query and break
it down into simpler queries whose results are then processed in appli-
cation code. At first, it may seem that the only effect of this would be
that some computation that used to take place in the database server
now takes place in the application, but as the following section will
explain, the DBMS contains a sophisticated optimization engine that
can dramatically improve the performance of a query. By moving some
of the query logic to the application, the benefits of this optimization
capability are lost.

2.4 Query Execution

The goal of query execution is to compile the SQL query into an exe-
cutable, called the physical execution plan, that retrieves the requested
data from the base relations. Figure 2.1 illustrates the steps used by a
typical DBMS to process an incoming query; in this section we review
each of the steps in detail.

Logical Plan Generation. Upon receiving the SQL query, the parser
first converts it into a logical query plan after performing a number of
validation steps (e.g., syntax and type checks, verifying that the re-
ferred tables exist, etc). The logical plan serves as an intermediate rep-
resentation of the SQL query and is typically represented as a tree with
the output operator at the root and table scan operators (which retrieve

1Similar capabilities have been explored in distributed object research, for in-
stance CORBA [Object Management Group, 2012].
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Figure 2.1: Query processing in a relational DBMS

all tuples from a given relation) at the leaves. Intermediate nodes in the
tree represent either relational algebra operators or UDF invocations,
and all edges represent dataflow relationships. Query evaluation starts
at the bottom, with each edge in the graph representing the interme-
diate query results that are forwarded from one operator to the next.

Plan Optimization. The generated logical plan is then passed to
the query optimizer. The goal of query optimization is to choose an
implementation for each operator in the logical plan. This is done by
performing a number of rewrites that include constant propagation
and evaluation of redundant Boolean formulas. In addition, the query
might also be rewritten using a number of relational algebraic proper-
ties. For example, inlining view definitions [Pirahesh et al., 1992] (views
are pre-defined result sets of queries that are similar to let-bindings) or
combining predicates from two adjacent selection operators as a con-
junction. In addition, the plan generator also performs a number of
heuristics-based optimizations. Two examples are “pushing down” se-
lection operators into table scan operators—as doing so will decrease
the number of tuples that need to be fetched from disks—and flat-
tening nested queries to enable further optimization on the flattened
expressions [Pirahesh et al., 1992, Seshadri et al., 1996].
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Figure 2.2: Query plans for the query that returns students who received ‘A’ in
the database class: its logical query plan (left), logical plan after selection pushdown
(middle), and two potential physical execution plans with chosen implementations
for each query operator (right). Here 𝜋 represents relational projection, ◁▷ represents
a relational join while 𝜎 represents a relational selection.

As an illustration, consider three relations—student, grade and
course—that store information about students, course grades and
course descriptions respectively. The query:

SELECT s.name , s.year

FROM student s, grade g, course c

WHERE s.id = g.sid AND c.id = g.cid AND

g.grade = `A' AND c.name = `DB'

retrieves student information for those who received ‘A’ in the database
class. Figure 2.2 shows the logical query plan generated from this query
along with potential physical query plans generated by the query opti-
mizer.

Cost Estimation. The query optimizer relies on cost estimates of
a plan’s cost in order to select the most efficient query plan. In most
query optimizers, the cost is usually computed as a function of each
of the following quantities, some of which depend on the query being
issued, and some are DBMS implementation-specific:

• The number of disk reads. Since accessing the disk can take mul-
tiple orders of magnitude more time when compared to accessing
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main memory, reducing the number of disk reads (by pushing
down selection operators, for instance) can greatly reduce the
plan cost.

• The size of intermediate results. The intermediate results that are
passed between each operator in the logical plan (represented by
the edges in the graph) need to be stored in memory during query
evaluation. As such, reducing the sizes of such intermediates can
improve the execution time of the query.

• The data structure used. The way that the persistent data is
stored on disk can greatly affect the query execution cost. For
instance, storing data using row-major format is ideal for queries
that project all fields from a relation (e.g., SELECT * FROM table).
Meanwhile, storing data in a column-major format [Stonebraker
et al., 2005] makes evaluating aggregates efficient (e.g., summing
all values of a particular field) as the executor can avoid random
disk seeks during query evaluation. The existence of auxiliary
data structures, such as indices, can also affect the query evalu-
ation cost as well.

As an example, Figure 2.2(right) shows two possible physical execu-
tion plans for the query shown in Figure 2.2(left). Choosing which plan
to execute depends on the factors discussed above along with those
listed in the next section.

Implications for ORMs. Query optimization is by no means a
solved problem [Lohman, 2014]; for many queries, for example, writing
the same query in slightly different ways can have a significant impact
in the performance of a query. Nevertheless, thanks to verified lifting,
the performance difference between a query implemented as Java or
Python code and one executed inside the DBMS can be dramatic. For
queries involving joins, the database is often able to use 𝒪(n log n) or
even constant time algorithms, significantly outperforming a naive join
implemented with nested loops in the application code. For this rea-
son, identifying those places where the application code is implementing
queries and transforming that code to issue queries to the database di-
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rectly can have dramatic performance improvements, as our evaluation
section will corroborate.



3
Program Synthesis

Program synthesis is an emerging technology that could help address
some of the challenges with existing query languages and interfaces
that we outlined in the previous section. In this section we describe
the basic concepts in program synthesis. We first discuss the synthesis
problem, then outline two different approaches to solving the problem.
The first approach is deductive, where an implementation is derived
from a specification through the iterative application of deductive rules.
The second approach is inductive, where the goal is to generalize from a
given set of examples; counterexample-guided inductive synthesis can
be used in cases where the examples are not provided a priori, but
must be derived by the system from a higher level specification. Both
techniques are used in several query inference systems, to be discussed
in Section 5.

3.1 The Problem

There are a number of different approaches to formalizing the synthesis
problem, but in general, the goal is to derive a program p drawn from
some space of possible programs P that satisfies a set of semantic con-

13
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straints. In the syntax guided synthesis formalism [Alur et al., 2013],
for example, the space of functions is a grammar describing a language
L defined on top of an underlying logical theory T , so that all the
formulas in L are legal formulas in that theory. In this formalism, the
specification is a formula 𝜑 in the theory T that involves the unknown
function pun. The goal is to find p such that

∀i ∈ I . 𝜑(p, i)

is valid, where 𝜑(p, i) is the formula obtained by substituting the con-
crete p for the unknown pun and i for the free variables. Note that the
size of the set I from which values for the free variables are drawn from
can be infinite in general.

One class of problems that this formalism of syntax guided synthesis
is a poor fit involves reactive programs which run in an infinite loop
receiving inputs from the environment and produce outputs in response
in addition to maintaining some internal state. For these programs, the
most natural specifications usually describe properties of the infinite
sequence of inputs and outputs to the program, and are most naturally
expressed in some temporal logic. For the purposes of this tutorial,
however, we will be focusing on the standard syntax guided synthesis
formulation, since this is a good fit for learning database queries.

Obviously, one possible approach to solve the problem is to simply
exhaustively iterate through each possible program p, and check against
𝜑 (e.g., using a theorem prover). Such approach is only applicable to
cases where p is highly constrained. Otherwise, the large number of
possible candidates for p makes the approach infeasible.

3.2 Deductive Synthesis

Deductive theorem proving is one of the earliest techniques [Manna
and Waldinger, 1992] used to combat the exhaustive search problem
in synthesis. The process works by deriving a constructive proof that
the program specification is satisfiable. In deductive systems, the syn-
thesizer designer comes with a set of predefined (r , e) pairs, where r is
derivation (as part of a deductive proof), and e is an expression in L
that represents the result of applying r to 𝜑. The combination of (r , e)
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pairs forms a tableau and it records the deductive steps that were taken
to synthesize p from 𝜑. Starting from the original specification 𝜑, the
system chooses one of the rules r from the set to transform 𝜑 into a
logically equivalent specification 𝜑′. Each time when a rule is applied
the corresponding e is recorded as part of the synthesized program in
the tableau. The process continues until 𝜑′ reduces to True, which
means that the synthesizer has found p. If 𝜑′ reduces to False instead,
then the synthesizer might choose to backtrack and apply another rule.
And if all applications have been explored, then the system will declare
that no such p exists within the language L. There have been a num-
ber of synthesizers built using this deductive approach, for instance for
synthesizing various types of algorithms [Traugott, 1989, Manna and
Waldinger, 1981] and implementation of systems from specifications
[Qian, 1993, Burstein et al., 2000, Bickford et al., 2001].

3.3 Inductive Synthesis

Deductive synthesis techniques are best for domains where the user
has a clear idea of the program that she would like to be synthesized,
a clean theory is available to write the specification, and there is a
relatively small number of rules that are applicable during each iter-
ation of the synthesis procedure to reduce 𝜑 to True. The technique
is less applicable when specifications are only partial or insufficiently
declarative (e.g., the user only provides sample program inputs and
their corresponding outputs), or there are a large number of rules that
are applicable to reduce the original specification.

In inductive synthesis, the idea is to leverage efficient search mech-
anisms to find a program that satisfies a specification for a small given
set of inputs. If the synthesis problem is not already an inductive syn-
thesis problem, it can be reduced to a series of inductive synthesis
problems through the use of counterexample guided inductive synthe-
sis (CEGIS) [Solar-Lezama et al., 2006, Alur et al., 2013]. The idea
of CEGIS is to find candidate programs that work for an increasing
subset of inputs from I during each step.
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In applying CEGIS, the first step is for the synthesizer chooses
a candidate program p1 from P, and consults an oracle to test its
correctness—the oracle could be anything from a random tester to a
full fledged verifier. If p1 satisfies the functional specification provided
by the user, then we have found the solution. Otherwise, the oracle
will return a counter-example input c1 that falsifies p1. This input c1 is
added to the original list of examples that the candidate program needs
to satisfy. The next iteration starts with the synthesizer coming up with
another candidate program p2 that satisfies all counter-examples found
thus far (namely c1). p2 is again sent to the oracle, which returns with
another counter-example c2. The process repeats until the oracle fails to
find further counter-examples, meaning that the synthesized program
satisfies the functional specification provided by the user. CEGIS is
closely related to similar concepts in model checking [Clarke et al.,
2000]. In the worst case, CEGIS will reduce to checking all possible
program inputs in the case where no such program from P exists that
satisfies the functional specification.

To cut down the time to synthesize and verify candidate programs,
in practice most systems bound the space of programs that will be
searched by the synthesizer and subsequently checked by the oracle.
For instance, the system might limit the synthesized programs to be
loop-free [Jha et al., 2010, Gulwani et al., 2011] and bound the length of
the synthesized program [Phothilimthana et al., 2014, Perelman et al.,
2014]. Other types of constraints include limiting the size of integral
types (and hence reducing the amount of time needed for verification),
or simply by putting a time-out for the synthesis process to complete.

There are currently three major approaches to conduct the search
required by inductive synthesizer: constraint-based, stochastic and ex-
plicit. We explain each of them below.

Constraint-based. These systems encode the space of possible func-
tions as a parameterized function p[c] that behaves differently depend-
ing on the values of the control parameters. The functional specification
is then translated into a set of constraints on c. Inductive synthesis is
framed as finding a control parameter that satisfies all the constraints.
During inductive synthesis, each counter-example found is encoded as
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further constraints to the system. The search process completes when
the oracle cannot find further counter-examples (i.e., we have found
the solution), or when the search fails to find a candidate p that sat-
isfies all the given constraints (i.e., no such p exists). This technique
has been used in synthesizing block ciphers [Solar-Lezama et al., 2006],
homework graders [Singh et al., 2013], and program deobfuscation [Jha
et al., 2010].

Stochastic search. Rather than constraints, another means to per-
form the search for candidate programs by using stochastic search.
Such systems aim to find candidate programs using different stochastic
search algorithms, such as random or Monte Carlo sampling. Such tech-
niques rely on a cost function to guide the sampling (and thus search)
procedure, and the found counter-examples are used to refine the space
where sampling takes place. Compared to constraint-based algorithms,
stochastic search technique might not be complete (i.e., it might miss
a candidate program even though one exists within the search space).
However, the sampling procedure can be easily parallelized across mul-
tiple machines. This technique has been used in bit-manipulation pro-
grams [Schkufza et al., 2013] and floating-point programs [Schkufza
et al., 2014].

Explicit enumeration with symbolic representation. Explicit
search is another technique for searching for candidate programs. How-
ever, given the large space of possible programs, it is infeasible to repre-
sent all candidates explicitly and prune them until a solution is found.
In practice, such systems represent the candidate programs symboli-
cally. For instance, the space of all possible programs can be repre-
sented succinctly using a directed acyclic graph [Gulwani et al., 2012].
By removing edges from different nodes in the graph, the synthesizer
effectively eliminates candidate programs from the search space. This
approach is particularly effective when the correctness criteria can be
factored such that different parts of the program can be synthesized
independently. For instance, to learn a text-editing program (e.g., cap-
italizing or abbreviating letters) that processes (first name, last name)
pairs, the synthesizer can first synthesize a program fragment that pro-
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cesses first names, and then learn another fragment for the last name,
before combining them together to form the final output. As such, the
two synthesis steps can proceed independently, and the synthesizer can
immediately eliminates programs that fail in processing first names
correctly regardless of the program fragment for processing last names.

As another example, Transit [Udupa et al., 2013] enumerates can-
didate programs of increasing size during each step in the synthe-
sis process. The system uses the counter-examples that are found to
prune away equivalent candidate programs, where two candidate pro-
grams are deemed as semantically equivalent if they behave the same
on the set of counter-examples. Larger candidate programs are built
from smaller candidate programs, so pruning has an exponential bene-
fit since eliminating a single small program also eliminates all the larger
programs that would have been constructed from it. Once a candidate
is found that satisfies the specification, it is returned, possibly to be
checked as part of CEGIS.

In the following sections we discuss how inductive synthesis has
been applied in assisting users formulating database queries. In par-
ticular, we focus on different techniques that are used to reduce the
number of iterations required for synthesis using CEGIS. These kinds
of explicit search techniques are particularly effective when the search
space has a lot of symmetries—i.e., large number of classes of equiva-
lent programs—because equivalent programs are pruned away early in
the search process.



4
Using Verified Lifting to Rewrite Code into SQL

Verified lifting [Cheung et al., 2015, Kamil et al., 2016] is a technique
that takes as input a block of potentially optimized code written in an
imperative general-purpose language, and infers a summary of it ex-
pressed in a high-level predicate language that is provably equivalent to
the semantics of the original program. The lifted summaries expressed
using the predicate language are found automatically using inductive
program synthesis. Once found, such summaries can be translated to
different high-performance DSLs, and subsequently retargeted to exe-
cute on different architectures as needed.

In this section we discuss Qbs, a system that uses verified lifting
to automatically transforms fragments of application logic into SQL
queries. Qbs differs from traditional compiler optimizations as it relies
on synthesis technology to generate invariants and postconditions for a
code fragment. The postconditions and invariants are expressed using
a new theory of ordered relations that allows us to reason precisely
about both the contents and order of the records produced complex
code fragments that compute joins and aggregates. The theory is close
in expressiveness to SQL, so the synthesized postconditions can be
readily translated to SQL queries.

19
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In this section we discuss the enabling technologies behind Qbs
along with our initial prototype implementation. Using 75 code frag-
ments automatically extracted from over 120k lines of open-source code
written using the Java Hibernate ORM, our prototype can convert a
variety of imperative constructs into relational specifications and sig-
nificantly improve application performance asymptotically by orders of
magnitude.1

4.1 Interacting with the DBMS

Qbs (Query By Synthesis) is a new code analysis algorithm designed
to make database-backed applications more efficient. Specifically, Qbs
identifies places where application logic can be converted into SQL
queries issued by the application, and automatically transforms the
code to do this. By doing so, Qbs move functionalities that are im-
plemented in the server component that is hosted on the application
server to the query component to be executed in the DBMS. This re-
duces the amount of data sent from the database to the application,
and it also allows the database query optimizer to choose more effi-
cient implementations of some operations—for instance, using indices
to evaluate predicates or selecting efficient join algorithms.

One specific target of Qbs is programs that interact with the
database through ORM libraries such as Hibernate for Java. Our opti-
mizations are particularly important for such programs because ORM
layers often lead programmers to write code that iterates over collec-
tions of database records, performing operations like filters and joins
that could be better done inside of the database. Such ORM layers
are becoming increasingly popular; for example, as of August, 2015, on
the job board dice.com 13% of the 17,000 Java developer jobs are for
programmers with Hibernate experience.

We are not the first researchers to address this problem; Wieder-
mann et al. [Wiedermann and Cook, 2007, Wiedermann et al., 2008]
identified this as the query extraction problem. However, our work is

1Materials in this chapter are based on work published as Cheung, Solar-Lezama,
and Madden, “Optimizing Database-Backed Applications with Query Synthesis,” in
proceedings of PLDI 13 [Cheung et al., 2013].
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able to analyze a significantly larger class of source programs and gen-
erate a more expressive set of SQL queries than this prior work. Specif-
ically, to the best of our knowledge, our work is the first that is able to
identify joins and aggregates in general purpose application logic and
convert them to SQL queries. Our analysis ensures that the generated
queries are precise in that both the contents and the order of records
in the generated queries are the same as those produced by the original
code.

At a more foundational level, this work is the first to demonstrate
the use of constraint-based synthesis technology to attack a challenging
compiler optimization problem. Our approach builds on the observa-
tion by Iu et al. [Iu et al., 2010] that if we can express the postcondition
for an imperative code block in relational algebra, then we can trans-
late that code block into SQL. Our approach uses constraint-based
synthesis to automatically derive loop invariants and postconditions,
and then uses an SMT solver to check the resulting verification condi-
tions. In order to make synthesis and verification tractable, we define
a new theory of ordered relations (TOR) that is close in expressiveness
to SQL, while being expressive enough to concisely describe the loop
invariants necessary to verify the codes of interest. The postconditions
expressed in TOR can be readily translated to SQL, allowing them to
be optimized by the database query planner and leading in some cases
to orders of magnitude performance improvements.

At a high level, Qbs makes the following contributions:

• We demonstrate a new approach to compiler optimization based
on constraint-based synthesis of loop invariants and apply it to
the problem of transforming low-level loop nests into high-level
SQL queries.

• We define a theory of ordered relations that allows us to concisely
represent loop invariants and postconditions for code fragments
that implement SQL queries, and to efficiently translate those
postconditions into SQL.

• We define a program analysis algorithm that identifies candidate
code blocks that can potentially be transformed by Qbs.
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List<User> getRoleUser () {
List<User> listUsers = new ArrayList<User>();
List<User> users = this.userDao.getUsers();
List<Role> roles = this.roleDao.getRoles();
for (User u : users) {
for (Roles r : roles) {
if (u.roleId().equals(r.roleId())) {
User userok = u;
listUsers.add(userok);

}
}

}
return listUsers;

}

Figure 4.1: Sample code that implements join operation in application code,
abridged from actual source for clarity

• We demonstrate our full implementation of Qbs and the can-
didate identification analysis for Java programs by automati-
cally identifying and transforming 75 code fragments in two large
open source projects. These transformations result in order-of-
magnitude performance improvements. Although those projects
use ORM libraries to retrieve persistent data, our analysis is not
specific to ORM libraries and is applicable to programs with em-
bedded SQL queries.

4.2 QBS Overview

This section gives an overview of our compilation infrastructure and
the Qbs algorithm to translate imperative code fragments to SQL. We
use as a running example a block of code extracted from an open source
project management application [Wilos Orchestration Software] writ-
ten using the Hibernate framework. The original code was distributed
across several methods which our system automatically collapsed into
a single continuous block of code as shown in Figure 4.1. The code re-
trieves the list of users from the database and produces a list containing
a subset of users with matching roles.
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List listUsers := [ ];
int i, j = 0;
List users := Query(SELECT * FROM users);
List roles = Query(SELECT * FROM roles);
while (i < users.size()) {
while (j < roles.size()) {
if (users[i].roleId = roles[j].roleId)
listUsers := append(listUsers, users[i]);

++j;
}
++i;

}

Figure 4.2: Sample code expressed in kernel language

Postcondition
listUsers = 𝜋ℓ(◁▷𝜙 (users, roles))
where
𝜙(eusers , eroles) := eusers .roleId = eroles .roleId
ℓ contains all the fields from the User class

Translated code
List<User> getRoleUser () {
List<User> listUsers = db.executeQuery(

"SELECT u
FROM users u, roles r
WHERE u.roleId == r.roleId
ORDER BY u.roleId, r.roleId");

return listUsers;
}

Figure 4.3: Postcondition as inferred from Figure 4.1 and code after query trans-
formation
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The example implements the desired functionality but performs
poorly. Semantically, the code performs a relational join and projec-
tion. Unfortunately, due to the lack of global program information, the
ORM library can only fetch all the users and roles from the database
and perform the join in application code, without utilizing indices or
efficient join algorithms the database system has access to. Qbs fixes
this problem by compiling the sample code to that shown at the bot-
tom of Figure 4.3. The nested loop is converted to an SQL query that
implements the same functionality in the database where it can be ex-
ecuted more efficiently, and the results from the query are assigned to
listUsers as in the original code. Note that the query imposes an order
on the retrieved records; this is because in general, nested loops can
constraint the ordering of the output records in ways that need to be
captured by the query.

One way to convert the code fragment into SQL is to imple-
ment a syntax-driven compiler that identifies specific imperative con-
structs (e.g., certain loop idioms) and converts them into SQL based
on pre-designed rules. Unfortunately, capturing all such constructs is
extremely difficult and does not scale well to handle different variety
of input programs. Instead, Qbs solves the problem in three steps.
First, it synthesizes a postcondition for a given code fragment, then it
computes the necessary verification conditions to establish the validity
of the synthesized postcondition, and it finally converts the validated
postcondition into SQL. A postcondition is a Boolean predicate on the
program state that is true after a piece of code is executed, and verifica-
tion conditions are Boolean predicates that guarantees the correctness
of a piece of code with respect to a given postcondition.

As an example, given a program statement s: x = y;, if we want to
show that the postcondition x = 10 holds after s is executed, then one
way to do so is to check whether the predicate y = 10 is true before
executing the statement. In other words, if it is true that y = 10 before
executing s, then we can prove that the postcondition holds, assuming
we know the semantics of s. In this case y = 10 is the verification
condition with respect to the postcondition x = 10. Note that there
can be many postconditions for the same piece of code (e.g., True is
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an obvious but uninteresting one), and the corresponding verification
conditions are different.

While a typical problem in program verification is to find the log-
ically strongest postcondition2 for a piece of code, in Qbs our goal is
to find a postcondition of the form v = Q(), where Q is a SQL query
to be executed by the database, along with the verification conditions
that establish the validity of the postcondition. Limiting the form of
the postcondition greatly simplifies the search, and doing so also guar-
antees that the synthesized postcondition can be converted into SQL.
Compared to syntax-driven approaches, solving the code conversion
problem in this way allows us to handle a wide variety of code idioms.
We are unaware of any prior work that uses both program synthesis
and program verification to solve this problem, and we discuss the steps
involved in the sections below.

4.2.1 Qbs Architecture

We now discuss the architecture of Qbs and describe the steps in in-
ferring SQL queries from imperative code. The architecture of Qbs is
shown in Figure 4.4.

Identify code fragments to transform. Given a database applica-
tion written in Java, Qbs first finds the persistent data methods in the
application, which are those that fetch persistent data via ORM library
calls. It also locates all entry points to the application such as servlet
handlers. From each persistent data method that is reachable from the
entry points, the system inlines a neighborhood of calls, i.e., a few of
the parent methods that called the persistent data method and a few
of the methods called by them. If there is ambiguity as to the target
of a call, all potential targets are considered up to a budget. A series
of analyses is then performed on each inlined method body to iden-
tify a continuous code fragment that can be potentially transformed
to SQL; ruling out, for example, code fragments with side effects. For
each candidate code fragment, our system automatically detects the

2 p is the strongest postcondition if there does not exist another postcondition
p′ such that p′ → p.
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Figure 4.4: Qbs architecture

program variable that will contain the results from the inferred query
(in the case of the running example it is listUsers) — we refer this as
the “result variable.”

In order to apply the Qbs algorithm to perform the desired con-
version, our system must be able to cope with the complexities of real-
world Java code such as aliasing and method calls, which obscure op-
portunities for transformations. For example, it would not be possible
to transform the code fragment in Figure 4.1 without knowing that
getUsers and getRoles execute specific queries on the database and re-
turn non-aliased lists of results, so the first step of the system is to
identify promising code fragments and translate them into a simpler
kernel language shown in Figure 4.5.

The kernel language operates on three types of values: scalars, im-
mutable records, and immutable lists. Lists represent the collections
of records and are used to model the results that are returned from
database retrieval operations. Lists store either scalar values or records
constructed with scalars, and nested lists are assumed to be appropri-
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c ∈ constant ::= True | False | number literal | string literal
e ∈ expression ::= c | [ ] | var | e.f | {fi = ei} | e1 op e2 | ¬ e

| Query(...) | size(e) | geter (es)
| append(er , es) | unique(e)

c ∈ command ::= skip | var := e | if(e) then c1 else c2
| while(e) do c | c1 ; c2 | assert e

op ∈ binary op ::= ∧ | ∨ | > | =

Figure 4.5: Abstract syntax of the kernel language

ately flattened. The language currently does not model the three-valued
logic of null values in SQL, and does not model updates to the database.
The semantics of the constructs in the kernel language are mostly stan-
dard, with a few new ones introduced for record retrievals. Query(...)
retrieves records from the database and the results are returned as
a list. The records of a list can be randomly accessed using get, and
records can be appended to a list using append. Finally, unique takes
in a list and creates a new list with all duplicate records removed. Fig-
ure 4.2 shows the example translated to the kernel language. At the
end of the code identification process, Qbs would have selected a set
of code fragments that are candidates to be converted into SQL, and
furthermore compile each of them into the kernel language as discussed.

Compute verification conditions. As the next step, the system
computes the verification conditions of the code fragment expressed in
the kernel language. The verification conditions are written using the
predicate language derived from the theory of ordered relations to be
discussed in Section 4.3. The procedure used to compute verification
conditions is a fairly standard one [Dijkstra, 1975, Gries, 1987]; the only
twist is that the verification condition must be computed in terms of an
unknown postcondition and loop invariants. The process of computing
verification conditions is discussed in more detail in Section 4.4.1.

Synthesize loop invariants and postconditions. The definitions
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of the postcondition and invariants need to be filled in and validated
before translation can proceed. Qbs does this using a synthesis-based
approach that is similar to prior work [Srivastava and Gulwani, 2009],
where a synthesizer is used to come up with a postcondition and invari-
ants that satisfy the computed verification conditions. The synthesizer
uses a symbolic representation of the space of candidate postconditions
and invariants, and efficiently identifies candidates within the space
that are correct according to a bounded verification procedure. It then
uses a theorem prover (Z3 [Microsoft], specifically) to check if those
candidates can be proven correct. The space of candidate invariants
and postconditions is described by a template generated automatically
by the compiler. To prevent the synthesizer from generating trivial
postconditions (such as True), the template limits the synthesizer to
only generate postconditions that can be translated to SQL as defined
by our theory of ordered relations, such as that shown at the top of
Figure 4.3.

As mentioned earlier, we observe that it is not necessary to deter-
mine the strongest invariants or postconditions: we are only interested
in finding postconditions that allow us transform the input code frag-
ment into SQL. In the case of the running example, we are only in-
terested in finding a postcondition of the form listUsers = Query(...),
where Query(...) is an expression translatable to SQL. Similarly, we only
need to discover loop invariants that are strong enough to prove the
postcondition of interest. From the example shown in Figure 4.1, our
system infers the postcondition shown at the top of Figure 4.3, where
𝜋, 𝜎, and ◁▷ are ordered versions of relational projection, selection, and
join, respectively to be defined in Section 4.3. The process of automatic
template generation from the input code fragment and synthesis of the
postcondition from the template are discussed in Section 4.4.

Unfortunately, determining loop invariants is undecidable for arbi-
trary programs [Blass and Gurevich, 2001], so there will be programs
for which the necessary invariants fall outside the space defined by the
templates. However, our system is significantly more expressive than
the state of the art as demonstrated by our experiments in Section 4.7.

Convert to SQL. After the theorem prover verifies that the com-
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puted invariants and postcondition are correct, the input code fragment
is translated to SQL, as shown in the bottom of Figure 4.3. The pred-
icate language defines syntax-driven rules to translate any expressions
in the language into valid SQL. The details of validation is discussed
in Section 4.5 while the rules for SQL conversion are introduced in
Section 4.3.2. The converted SQL queries are patched back into the
original code fragments and compiled as Java code.

4.3 Theory of Finite Ordered Relations

As discussed in Section 4.2, Qbs synthesizes a postcondition and the
corresponding verification conditions for a given code fragment before
converting it into SQL. To do so, we need a language to express these
predicates, and axioms that allow us to reason about terms in this
language. For this purpose, Qbs uses a theory of finite ordered rela-
tions. The theory is defined to satisfy four main requirements: precision,
expressiveness, conciseness, and ease of translation to SQL. For preci-
sion, we want to be able to reason about both the contents and order of
records retrieved from the database. This is important because in the
presence of joins, the order of the result list will not be arbitrary even
when the original list was arbitrary, and we do not know what assump-
tions the rest of the program makes on the order of records. The theory
must also be expressive enough not just to express queries but also to
express invariants, which must often refer to partially constructed lists.
For instance, the loop invariants for the sample code fragment in Fig-
ure 4.1 must express the fact that listUsers is computed from the first
i and j records of users and roles respectively. Conciseness, e.g., the
number of relational operators involved, is important because the com-
plexity of synthesis grows with the size of the synthesized expressions,
so if we can express invariants succinctly, we will be able to synthe-
size them more efficiently. Finally, the inferred postconditions must be
translatable to standard SQL.

There are many ways to model relational operations, but we are not
aware of any that fulfills all of the criteria above. For example, relational
algebra is not expressive enough to describe sufficiently precise loop
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c ∈ constant ::= True | False | number literal | string literal
e ∈ expression ::= c | [ ] | program var | {fi = ei} | e1 op e2 | ¬ e

| Query(...) | size(e) | getes (er ) | topes (er )
| 𝜋[fi1 ,...,fiN ](e) | 𝜎𝜙𝜎 (e) | ◁▷𝜙◁▷ (e1, e2)
| sum(e) | max(e) | min(e)
| append(er , es) | sort[fi1 ,...,fiN ](e) | unique(e)

op ∈ binary op ::= ∧ | ∨ | > | =
𝜙𝜎 ∈ select func ::= p𝜎1 ∧ ... ∧ p𝜎N

p𝜎 ∈ select pred ::= e.fi op c | e.fi op e.fj | contains(e, er )
𝜙◁▷ ∈ join func ::= p◁▷1 ∧ ... ∧ p◁▷N

p◁▷ ∈ join pred ::= e1.fi op e2.fj

Figure 4.6: Abstract syntax for the predicate language based on the theory of
ordered relations

invariants. Defined in terms of sets, relational algebra cannot naturally
express concepts such as “the first i elements of the list.” First order
logic (FOL), on the other hand, is very expressive, but it would be hard
to translate arbitrary FOL expressions into SQL.

4.3.1 Basics

Our theory of finite ordered relations is essentially relational algebra
defined in terms of lists instead of sets. The theory operates on three
types of values: scalars, records, and ordered relations of finite length.
Records are collections of named fields, and an ordered relation is a
finite list of records. Each record in the relation is labeled with an
integer index that can be used to fetch the record. Figure 4.6 presents
the abstract syntax of the theory and shows how to combine operators
to form expressions.
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size

r = [ ]
size(r) = 0

r = h : t
size(r) = 1 + size(t)

get

i = 0 r = h : t
geti(r) = h

i > 0 r = h : t
geti(r) = geti−1(t)

append

r = [ ]
append(r , t) = [t]

r = h : t
append(r , t ′) = h : append(t, t ′)

top

r = [ ]
topr (i) = [ ]

i = 0
topr (i) = [ ]

i > 0 r = h : t
topr (i) = h : topt(i − 1)

join (◁▷)

r1 = [ ]
◁▷𝜙 (r1, r2) = [ ]

r2 = [ ]
◁▷𝜙 (r1, r2) = [ ]

r1 = h : t
◁▷𝜙 (r1, r2) = cat(◁▷′

𝜙 (h, r2), ◁▷𝜙 (t, r2))

r2 = h : t 𝜙(e, h) = True
◁▷′

𝜙 (e, r2) = (e, h) : ◁▷′
𝜙 (e, t)

r2 = h : t 𝜙(e, h) = False
◁▷′

𝜙 (e, r2) = ◁▷′
𝜙 (e, t)

projection (𝜋)

r = [ ]
𝜋ℓ(r) = [ ]

r = h : t fi ∈ ℓ h.fi = ei
𝜋ℓ(r) = {fi = ei} : 𝜋ℓ(t)

Figure 4.7: Axioms that define the theory of ordered relations
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selection (𝜎)

r = [ ]
𝜎𝜙(r) = [ ]

r = h : t 𝜙(h) = True
𝜎𝜙(r) = h : 𝜎𝜙(t)

r = h : t 𝜙(h) = False
𝜎𝜙(r) = 𝜎𝜙(t)

sum

r = [ ]
sum(r) = 0

r = h : t
sum(r) = h + sum(t)

max

r = [ ]
max(r) = −∞

r = h : t h > max(t)
max(r) = h

r = h : t h ≤ max(t)
max(r) = max(t)

min

r = [ ]
min(r) = ∞

r = h : t h < min(t)
min(r) = h

r = h : t h ≥ min(t)
min(r) = min(t)

contains

r = [ ]
contains(e, r) = False

e = h r = h : t
contains(e, r) = True

e ̸= h r = h : t
contains(e, r) = contains(e, t)

Figure 4.7 continued
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The semantics of the operators in the theory are defined recursively
by a set of axioms; a sample of which is shown in Figure 4.7. get and top
take in an ordered relation er and return the record stored at index es
or all the records from index 0 up to index es respectively. The defini-
tions for 𝜋, 𝜎 and ◁▷ are modeled after relational projection, selection,
and join respectively, but they also define an order for the records in
the output relation relative to those in the input relations. The pro-
jection operator 𝜋 creates new copies of each record, except that for
each record only those fields listed in [fi1 , ... , fiN ] are retained. Like pro-
jection in relational algebra, the same field can be replicated multiple
times. The 𝜎 operator uses a selection function 𝜙𝜎 to filter records from
the input relation. 𝜙𝜎 is defined as a conjunction of predicates, where
each predicate can compare the value of a record field and a constant,
the values of two record fields, or check if the record is contained in
another relation er using contains. Records are added to the resulting
relation if the function returns True. The ◁▷ operator iterates over each
record from the first relation and pairs it with each record from the
second relation. The two records are passed to the join function 𝜙◁▷.
Join functions are similar to selection functions, except that predicates
in join functions compare the values of the fields from the input or-
dered relations. The axioms that define the aggregate operators max,
min, and sum assume that the input relation contains only one numeric
field, namely the field to aggregate upon.

The definitions of unique and sort are standard; in the case of sort,
[fi1 , ... , fiN ] contains the list of fields to sort the relation by. Qbs does not
actually reason about these two operations in terms of their definitions;
instead it treats them as uninterpreted functions with a few algebraic
properties, such as

◁▷𝜙 (sortℓ1(r1), sortℓ2(r2)) = sortcat(ℓ1,ℓ2)(◁▷𝜙 (r1, r2)).

(where cat concatenates two lists together) Because of this, there are
some formulas involving sort and unique that we cannot prove, but we
have not found this to be significant in practice (see Section 4.7 for
details).
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4.3.2 Translating to SQL

The expressions defined in the predicate grammar can be converted into
semantically equivalent SQL queries. In this section we prove that any
expression that does not use append or unique can be compiled into an
equivalent SQL query. We prove this in three steps; first, we define base
and sorted expressions, which are formulated based on SQL expressions
without and with ORDER BY clauses respectively. Next, we define
translatable expressions and show that any expression that does not
use append or unique can be converted into a translatable expression.
Then we show how to produce SQL from translatable expressions.
Definition 4.1 (Translatable Expressions). Any transExp as defined
below can be translated into SQL:

b ∈ baseExp ::= Query(...) | tope(s) | ◁▷True (b1, b2) | agg(t)
s ∈ sortedExp ::= 𝜋ℓ𝜋 (sortℓs (𝜎𝜙(b)))
t ∈ transExp ::= s | tope(s)

where the term agg in the grammar denotes any of the aggregation
operators (min, max, sum, size).

Theorem 1 (Completeness of Translation Rules). All expressions
in the predicate grammar in Figure 4.6, except for those that contain
append or unique, can be converted into translatable expressions.

The theorem is proved by defining a function Trans that maps any
expression to a translatable expression and showing that the mapping
is semantics preserving. The definition of Trans relies on a number of
TOR expression equivalences:

Theorem 2 (Operator Equivalence). The following equivalences
hold, both in terms of the contents of the relations and also the or-
dering of the records in the relations:

• 𝜎𝜙(𝜋ℓ(r)) = 𝜋ℓ(𝜎𝜙(r))

• 𝜎𝜙2(𝜎𝜙1(r)) = 𝜎𝜙′(r), where 𝜙′ = 𝜙2 ∧ 𝜙1

• 𝜋ℓ2(𝜋ℓ1(r)) = 𝜋ℓ′(r), where ℓ′ is the concatenation of all the fields
in ℓ1 and ℓ2.
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• tope(𝜋ℓ(r)) = 𝜋ℓ(tope(r))

• tope2(tope1(r)) = topmax(e1,e2)(r)

• ◁▷𝜙 (r1, r2) = 𝜎𝜙′(◁▷True (r1, r2)), i.e., joins can be converted into
cross products with selections with proper renaming of fields.

• ◁▷𝜙 (sortℓ1(r1), sortℓ2(r2)) = sortℓ1:ℓ2(◁▷𝜙 (r1, r2))

• ◁▷𝜙 (𝜋ℓ1(r1), 𝜋ℓ2(r2)) = 𝜋ℓ′(◁▷𝜙 (r1, r2)), where ℓ′ is the concatena-
tion of all the fields in ℓ1 and ℓ2.

Except for the equivalences involving sort, the other ones can be
proven easily from the axiomatic definitions.

Given the theorem above, the definition of Trans is shown in Fig-
ure 4.8. Semantic equivalence between the original and the trans-
lated expression is proved using the expression equivalences listed in
Thm. 2. Using those equivalences, for example, we can show that for
s ∈ sortedExp and b ∈ baseExp:

Trans(𝜎𝜙′
𝜎
(s)) = Trans(𝜎𝜙′(𝜋ℓ𝜋 (sortℓs (𝜎𝜙(b))))) [sortedExp def.]

= 𝜋ℓ𝜋 (sortℓs (𝜎𝜙𝜎∧𝜙′
𝜎
(b))) [Trans def.]

= 𝜋ℓ𝜋 (𝜎𝜙′
𝜎
(sortℓs (𝜎𝜙𝜎 (b)))) [expression equiv.]

= 𝜎𝜙′
𝜎
(𝜋ℓ𝜋 (sortℓs (𝜎𝜙𝜎 (b)))) [expression equiv.]

= 𝜎𝜙′
𝜎
(s) [sortedExp def.]

Thus the semantics of the original TOR expression is preserved.

Translatable expressions to SQL. Following the syntax-directed
rules in Figure 4.9, any translatable expression can be converted into
an equivalent SQL expression. Most rules in Figure 4.9 are direct trans-
lations from the operators in the theory into their SQL equivalents.

One important aspect of the translation is the way that ordering
of records is preserved. Ordering is problematic because although the
operators in the theory define the order of the output in terms of the
order of their inputs, SQL queries are not guaranteed to preserve the
order of records from nested sub-queries; e.g., the ordering imposed
by an ORDER BY clause in a nested query is not guaranteed to be
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Query(...)

Trans(Query(...))) = 𝜋ℓ(sort[ ](𝜎True(Query(...))))

where ℓ projects all the fields from the input relation.

𝜋ℓ2(t)

Trans(𝜋ℓ2(s)) = 𝜋ℓ′(sortℓs (𝜎𝜙(b)))
Trans(𝜋ℓ2(tope(s))) = tope(𝜋ℓ′(sortℓs (𝜎𝜙(b))))

where ℓ′ is the composition of ℓ𝜋 and ℓ2.

𝜎𝜙2(t)

Trans(𝜎𝜙2(s)) = 𝜋ℓ𝜋 (sortℓs (𝜎𝜙∧𝜙2(b)))

Trans(𝜎𝜙2(tope(s)))
= tope(𝜋ℓ𝜋 (sortℓs (𝜎𝜙∧𝜙2(b))))

◁▷𝜙◁▷ (t1, t2))

Trans(◁▷𝜙◁▷ (s1, s2))
= 𝜋ℓ′

𝜋
(sortℓ′

s (𝜎𝜙′
𝜎
(◁▷True (b1, b2))))

where 𝜙′
𝜎 = 𝜙𝜎1 ∧ 𝜙𝜎2 ∧ 𝜙◁▷ with field names properly renamed,

ℓ′
s = cat(ℓs1 , ℓs2), and ℓ′

𝜋 = cat(ℓ𝜋1 , ℓ𝜋2).

Trans(◁▷𝜙 (tope(s1), tope(s2)))
= 𝜋ℓ(sort[ ](𝜎𝜙(◁▷True (tope(s1), tope(s2)))))

where ℓ contains all the fields from s1 and s2.

Figure 4.8: Definition of Trans
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tope2(t)

Trans(tope2(s)) = tope2(s)
Trans(tope2(tope1(s))) = tope′(s)

where e′ is the minimum value of e1 and e2.

agg(t)

Trans(agg(s)) = 𝜋ℓ(sort[ ](𝜎True(agg(s))))
Trans(agg(tope(s))) = 𝜋ℓ(sort[ ](𝜎True(agg(s))))

where ℓ contains all the fields from s.

sortℓs2
(t)

Trans(sortℓs2
(s)) = 𝜋ℓ𝜋 (sortℓ′

s (𝜎𝜙(b)))
Trans(sortℓs2

(tope(s))) = tope(𝜋ℓ𝜋 (sortℓ′
s (𝜎𝜙(b))))

where ℓ′
s = cat(ℓs , ℓs2).

Let s = 𝜋ℓ𝜋 (sortℓs (𝜎𝜙(b))). Trans is defined on expressions whose subex-
pressions (if any) are in translatable form, so we have to consider cases
where the sub-expressions are either s or tope(s). Each case is defined
above.

Figure 4.8 continued
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JQuery(string)K = ( string )
Jtope(s)K = SELECT * FROM JsK LIMIT JeK

J◁▷True (t1, t2)K = SELECT * FROM Jt1K, Jt2K
Jagg(t)K = SELECT agg(field) FROM JtK

J𝜋ℓ1(sortℓ2(𝜎𝜙𝜎 (t)))K = SELECT Jℓ1K FROM JtK WHERE J𝜙𝜎K
ORDER BY Jℓ2K, Order(t)

Junique(t)K = SELECT DISTINCT * FROM JtK
ORDER BY Order(t)

J𝜙𝜎(e)K = JeK.f1 op JeK AND ... AND JeK.fN op JeK
Jcontains(e, t)K = JeK IN JtK

J[fi1 , ... , fiN ]K = fi1 , ... , fiN

Figure 4.9: Syntactic rules to convert translatable expressions to SQL

respected by an outer query that does not impose any ordering on the
records.

To solve this problem, the translation rules introduce a function
Order—defined in Figure 4.10—which scans a translatable expression t
and returns a list of fields that are used to order the subexpressions in
t. The list is then used to impose an ordering on the outer SQL query
with an ORDER BY clause. One detail of the algorithm not shown
in the figure is that some projections in the inner queries need to be
modified so they do not eliminate fields that will be needed by the
outer ORDER BY clause, and that we assume Query(...) is ordered by
the order in which the records are stored in the database (unless the
query expression already includes an ORDER BY clause).

Append and Unique. The append operation is not included in
translatable expressions because there is no simple means to com-
bine two relations in SQL that preserves the ordering of records in
the resulting relation.3 We can still translate unique, however, using

3One way to preserve record ordering in list append is to use case expressions
in SQL, although some database systems such as SQL Server limit the number of
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Order(Query(...)) = [record order in DB] Order(agg(e)) = [ ]
Order(topi(e)) = Order(e) Order(unique(e)) = Order(e)

Order(𝜋ℓ(e)) = Order(e) Order(𝜎𝜙(e)) = Order(e)

Order(◁▷𝜙 (e1, e2)) = cat(Order(e1), Order(e2))
Order(sortℓ(e)) = cat(ℓ, Order(e))

Figure 4.10: Definition of Order

the SELECT DISTINCT construct at the outermost level, as Figure 4.9
shows. Using unique in nested expressions, however, can change the se-
mantics of the results in ways that are difficult to reason about (e.g.,
unique(tope(r)) is not equivalent to tope(unique(r))). Thus, the only
expressions with unique that we translate to SQL are those that use
it at the outermost level. In our experiments, we found that omitting
those two operators did not significantly limit the expressiveness of the
theory.

With the theory in mind, we now turn to the process of computing
verification conditions of the input code fragments.

nested case expressions.
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i op

⎧⎨⎩ i | size(users) | size(roles) | size(listUsers) |
sum(𝜋ℓ(users) | sum(𝜋ℓ(roles) | max(𝜋ℓ(users) |

[other relational expressions that return a scalar value]

⎫⎬⎭ ∧

listUsers =

⎧⎪⎪⎨⎪⎪⎩
listUsers | 𝜎𝜙(users) |

𝜋ℓ(◁▷𝜙 (tope1(users), tope2(roles))) |
𝜋ℓ(◁▷𝜙3 (𝜎𝜙1(tope1(users), 𝜎𝜙2(tope2(roles))))) |

[other relational expressions that return an ordered list]

⎫⎪⎪⎬⎪⎪⎭
Figure 4.11: Space of possible invariants for the outer loop of the running example.

4.4 Synthesis of Invariants and Postconditions

Given an input code fragment in the kernel language, the next step
in Qbs is to come up with an expression for the result variable of the
form resultVar = e, where e is a translatable expression as defined in
Section 4.3.2.

4.4.1 Computing Verification Conditions

In order to infer the postcondition, we compute verification conditions
for the input code fragment using standard techniques from axiomatic
semantics [Hoare, 1969]. As in traditional Hoare style verification, com-
puting the verification condition of the while statements involves a
loop invariant. Unlike traditional computation of verification condi-
tions, however, both the postcondition and the loop invariants are un-
known when the conditions are generated. This does not pose problems
for Qbs as we simply treat invariants (and the postcondition) as un-
known predicates over the program variables that are currently in scope
when the loop is entered.

As an example, Table 4.1 shows the verification conditions that
are generated for the running example. In this case, the verification
conditions are split into two parts, with invariants defined for both
loops.

The first two assertions describe the behavior of the outer loop
on line 5, with the first one asserting that the outer loop invariant
must be true on entry of the loop (after applying the rule for the
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Verification conditions for the outer loop
(oInv = outerLoopInvariant, iInv = innerLoopInvariant, pcon = postCondition)

initialization oInv(0, users, roles, [ ])

loop exit i ≥ size(users) ∧ oInv(i , users, roles, listUsers)
→ pcon(listUsers, users, roles)

perservation (same as inner loop initialization)
Verification conditions for the inner loop

initialization i < size(users) ∧ oInv(i , users, roles, listUsers)
→ iInv(i , 0, users, roles, listUsers)

loop exit j ≥ size(roles) ∧ iInv(i , j , users, roles, listUsers)
→ oInv(i + 1, users, roles, listUsers)

preservation j < size(roles) ∧ iInv(i , j , users, roles, listUsers)
→ (geti(users).id = getj(roles).id ∧

iInv(i , j + 1, users, roles, append(listUsers, geti(users)))) ∨
(geti(users).id ̸= getj(roles).id ∧
iInv(i , j + 1, users, roles, listUsers))

Table 4.1: Verification conditions for the running example
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assignments prior to loop entry), and the second one asserting that
the postcondition for the loop is true when the loop terminates. The
third assertion states that the inner loop invariant is true when it is first
entered, given that the outer loop condition and loop invariant are true.
The preservation assertion is the inductive argument that the inner loop
invariant is preserved after executing one iteration of the loop body.
The list listUsers is either appended with a record from geti(users),
or remains unchanged, depending on whether the condition for the if
statement, geti(users).id = getj(roles).id , is true or not. Finally, the
loop exit assertion states that the outer loop invariant is valid when
the inner loop terminates.

4.4.2 Constraint based synthesis

The goal of the synthesis step is to derive postcondition and loop in-
variants that satisfy the verification conditions generated in the previ-
ous step. We synthesize these predicates using the Sketch constraint-
based synthesis system [Solar-Lezama et al., 2006]. In general, Sketch
takes as input a program with “holes” and uses a counterexample
guided synthesis algorithm (Cegis) to efficiently search the space of
all possible completions to the holes for one that is correct according
to a bounded model checking procedure. For Qbs, the program is a
simple procedure that asserts that the verification conditions hold for
all possible values of the free variables within a certain bound. For each
of the unknown predicates, the synthesizer is given a sketch (i.e., a tem-
plate) that defines a space of possible predicates which the synthesizer
will search. The sketches are automatically generated by Qbs from the
kernel language representation.

4.4.3 Inferring the Space of Possible Invariants

Recall that each invariant is parameterized by the current program
variables that are in scope. Our system assumes that each loop invariant
is a conjunction of predicates, with each predicate having the form
lv = e, where lv is a program variable that is modified within the loop,
and e is an expression in TOR.
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The space of expressions e is restricted to expressions of the same
static type as lv involving the variables that are in scope. The system
limits the size of expressions that the synthesizer can consider, and
incrementally increases this limit if the synthesizer fails to find any
candidate solutions (to be explained in Section 4.4.5).

Figure 4.11 shows a stylized representation of the set of predicates
that our system considers for the outer loop in the running example.
The figure shows the potential expressions for the program variable i
and listUsers. One advantage of using the theory of ordered relations
is that invariants can be relatively concise. This has a big impact for
synthesis, because the space of expressions grows exponentially with
respect to the size of the candidate expressions.

4.4.4 Creating Templates for Postconditions

The mechanism used to generate possible expressions for the result vari-
able is similar to that for invariants, but we have stronger restrictions,
since we know the postcondition must be of the form resultVar = e in
order to be translatable to SQL, and the form is further restricted by
the set of translatable expressions discussed in Section 4.3.2.

For the running example, Qbs considers the following possible set
of postconditions:

listUsers =

⎧⎪⎪⎨⎪⎪⎩
users | 𝜎𝜙(users) | tope(users) |

𝜋ℓ(◁▷𝜙 (tope1(users), tope2(roles))) |
𝜋ℓ(◁▷𝜙3 (𝜎𝜙1(tope1(users), 𝜎𝜙2(tope2(roles))))) |

[other relational expressions that return an ordered list]

⎫⎪⎪⎬⎪⎪⎭
4.4.5 Optimizations

The basic algorithm presented above for generating invariant and post-
condition templates is sufficient but not efficient for synthesis. In this
section we describe two optimizations that improve the synthesis effi-
ciency.

Incremental solving. As an optimization, the generation of tem-
plates for invariants and postconditions is done in an iterative manner:
Qbs initially scans the input code fragment for specific patterns and
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creates simple templates using the production rules from the predicate
grammar, such as considering expressions with only one relational oper-
ator, and functions that contains one Boolean clause. If the synthesizer
is able to generate a candidate that can be used to prove the validity of
the verification conditions, then our job is done. Otherwise, the system
repeats the template generation process, but increases the complexity
of the template that is generated by considering expressions consisting
of more relational operators, and more complicated Boolean functions.
Our evaluation using real-world examples shows that most code ex-
amples require only a few (< 3) iterations before finding a candidate
solution. Additionally, the incremental solving process can be run in
parallel.

Breaking symmetries. Symmetries have been shown to be one of
sources of inefficiency in constraint solvers [Torlak and Jackson, 2007,
Déharbe et al., 2011]. Unfortunately, the template generation algorithm
presented above can generate highly symmetrical expressions. For in-
stance, it can generate the following potential candidates for the post-
condition:

𝜎𝜙2(𝜎𝜙1(users))
𝜎𝜙1(𝜎𝜙2(users))

Notice that the two expressions are semantically equivalent to the
expression 𝜎𝜙1∧𝜙2(users). These are the kind of symmetries that are
known to affect solution time dramatically. The template generation al-
gorithm leverages known algebraic relationships between expressions to
reduce the search space of possible expressions. For example, our alge-
braic relationships tell us that it is unnecessary to consider expressions
with nested 𝜎 like the ones above. Also, when generating templates
for postconditions, we only need to consider translatable expressions
as defined in Section 4.3.2 as potential candidates. Our experiments
have shown that applying these symmetric breaking optimizations can
reduce the amount of solving time by half.

Even with these optimizations, the spaces of invariants considered
are still astronomically large; on the order of 2300 possible combinations
of invariants and postconditions for some problems. Thanks to these
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Type Expression inferred
outer loop i ≤ size(users) ∧ listUsers = 𝜋ℓ(◁▷𝜙 (topi(users), roles))
invariant

inner loop i < size(users) ∧ j ≤ size(roles) ∧
invariant listUsers = append(𝜋ℓ(◁▷𝜙 (topi(users), roles)),

𝜋ℓ(◁▷𝜙 (geti(users), topj(roles)))

postcondition listUsers = 𝜋ℓ(◁▷𝜙 (users, roles))

where 𝜙(eusers , eroles) := eusers .roleId = eroles .roleId ,
ℓ contains all the fields from the User class

Figure 4.12: Inferred expressions for the running example

optimizations, however, the spaces can be searched very efficiently by
the constraint based synthesis procedure.

4.5 Formal Validation and Source Transformation

After the synthesizer comes up with candidate invariants and postcon-
ditions, they need to be validated using a theorem prover, since the
synthesizer used in our prototype is only able to perform bounded rea-
soning as discussed earlier. We have implemented the theory of ordered
relations in the Z3 [Microsoft] prover for this purpose. Since the theory
of lists is not decidable as it uses universal quantifiers, the theory of
ordered relations is not decidable as well. However, for practical pur-
poses we have not found that to be limiting in our experiments. In fact,
given the appropriate invariants and postconditions, the prover is able
to validate them within seconds by making use of the axioms that are
provided.

If the prover can establish the validity of the invariants and post-
condition candidates, the postcondition is then converted into SQL
according to the rules discussed in Section 4.3.2. For instance, for the
running example our algorithm found the invariants and postcondition
as shown in Figure 4.12, and the input code is transformed into the
results in Figure 4.3.
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If the prover is unable to establish validity of the candidates (de-
tected via a timeout), Qbs asks the synthesizer to generate other candi-
date invariants and postconditions after increasing the space of possible
solutions as described in Section 4.4.5. One reason that the prover may
not be able to establish validity is because the maximum size of the
relations set for the synthesizer was not large enough. For instance, if
the code returns the first 100 elements from the relation but the syn-
thesizer only considers relations up to size 10, then it will incorrectly
generate candidates that claim that the code was performing a full se-
lection of the entire relation. In such cases our algorithm will repeat
the synthesis process after increasing the maximum relation size. If the
verification is successful, the inferred queries are merged back into the
code fragment. Otherwise Qbs will invoke the synthesizer to generate
another candidate. The process continues until a verified one is found
or a time out happens.

4.5.1 Object Aliases

Implementations of ORM libraries typically create new objects from
the records that are fetched, and our current implementation will only
transform the input source into SQL if all the objects involved in the
code fragment are freshly fetched from the database, as in the running
example. In some cases this may not be true, as in the code fragment
in Figure 4.13.

Here, the final contents of results1 and results2 can be aliases to
those in objs1. In that case, rewriting results1 and results2 into two
SQL queries with freshly created objects will not preserve the alias
relationships in the original code. Our current implementation will not
transform the code fragment in that case, and we leave sharing record
results among multiple queries as future work.

4.6 Preprocessing of Input Programs

In order to handle real-world Java programs, Qbs performs a number of
initial passes to identify the code fragments to be transformed to kernel
language representation before query inference. The code identification
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List objs1 = fetchRecordsFromDB();

List results1 = new ArrayList();

for (Object o : objs1) {

if (f(o))

results1.add(o);

}

List results2 = new ArrayList();

for (Object o : objs1) {

if (g(o))

results2.add(o);

}

Figure 4.13: Code fragment with alias in results

process makes use of several standard analysis techniques, and in this
section we describe them in detail.

4.6.1 Generating initial code fragments

As discussed in Section 4.2, code identification first involves locating
application entry point methods and data persistent methods. From
each data persistent method, our system currently inlines a neighbor-
hood of 5 callers and callees. Qbs only inline callees that are defined
in the application, and provide models for native Java API calls. For
callers Qbs only inline those that can be potentially invoked from an
entry point method. The inlined method bodies are passed to the next
step of the process. Inlining improves the precision of the points-to in-
formation for our analysis. While there are other algorithms that can
be used to obtain such information [Xie and Aiken, 2005, Whaley and
Rinard, 1999], we chose inlining for ease of implementation and is suf-
ficient in processing the code fragments used in the experiments.
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4.6.2 Identifying code fragments for query inference

Given a candidate inlined method for query inference, Qbs next identi-
fies the code fragment to transform to the kernel language representa-
tion. While Qbs can simply use the entire body of the inlined method
for this purpose, we would like to limit the amount of code to be an-
alyzed, since including code that does not manipulate persistent data
will increase the difficulty in synthesizing invariants and postconditions
with no actual benefit. Qbs accomplishes this goal using a series of
analyses. First, Qbs runs a flow-sensitive pointer analysis [Sagiv et al.,
1999] on the body of the inlined method. The results of this analysis is a
set of points-to graphs that map each reference variable to one or more
abstract memory locations at each program point. Using the points-to
information, Qbs performs two further analyses on the inlined method.

Location tainting. Qbs runs a dataflow analysis that conservatively
marks values that are derived from persistent data retrieved via ORM
library calls. This analysis is similar to taint analysis [Tripp et al., 2009],
and the obtained information allows the system to remove regions of
code that do not manipulate persistent data and thus can be ignored
for our purpose. For instance, all reference variables and list contents
in Figure 4.1 will be tainted as they are derived from persistent data.
The results from this analysis are used to identify the boundaries of
the code fragment to be analyzed and converted.

Type analysis. As Java uses dynamic dispatch to resolve targets
of method calls, we implemented class analysis to determine potential
classes for each object in a given code fragment. If there are multiple
implementations of the same method depending on the target’s runtime
type, then Qbs will inline all implementations into the code fragment,
with each one guarded by a runtime type lookup. For instance, if ob-
ject o can be of type Bar or a subtype Baz, and that method foo is
implemented by both classes, then inlining o.foo() will result in:
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if (o instanceof Baz) {

// implementation of Baz.foo()

} else if (o instanceof Bar) {

// implementation of Bar.foo()

} else throw new RuntimeException(); // should not reach here

This process is applied recursively to all inlined methods.

Def-use analysis. For each identified code fragment, Qbs runs a
definition-use analysis to determine the relationship among program
variables. The results are used after ensure that none of the variables
that are defined in the code fragment to be replaced is used in the
rest of the inlined method after replacement. And the checking is done
before replacing the code fragment with a verified SQL query.

Value escapement. After that, Qbs performs another dataflow anal-
ysis to check if any abstract memory locations are reachable from ref-
erences that are outside of the inlined method body. This analysis is
needed because if an abstract memory location m is accessible from
the external environment (e.g., via a global variable) after program
point p, then converting m might break the semantics of the original
code, as there can be external references to m that rely on the contents
of m before the conversion. This analysis is similar to classical escape
analysis [Whaley and Rinard, 1999]. Specifically, we define an abstract
memory location m as having escaped at program point p if any of the
following is true:

• It is returned from the entry point method.

• It is assigned to a global variable that persists after the entry
point method returns (in the web application context, these can
be variables that maintain session state, for instance).

• It is assigned to a Runnable object, meaning that it can be accessed
by other threads.

• It is passed in as a parameter into the entry point method.

• It can be transitively reached from an escaped location.
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With that in mind, we define the beginning of the code fragment to
pass to the Qbs algorithm as the program point p in the inlined method
where tainted data is first retrieved from the database, and the end as
the program point p’ where tainted data first escapes, where p’ appears
after p in terms of control flow. For instance, in Figure 4.1 the return

statement marks the end of the code fragment, with the result variable
being the value returned.

4.6.3 Compilation to kernel language

Each code fragment that is identified by the previous analysis is com-
piled to our kernel language. Since the kernel language is based on value
semantics and does not model heap updates for lists, during the com-
pilation process Qbs translates list references to the abstract memory
locations that they point to, using the results from earlier analysis. In
general, there are cases where the preprocessing step fails to identify a
code fragment from an inlined method (e.g., persistent data values es-
cape to multiple result variables under different branches, code involves
operations not supported by the kernel language, etc.), and Qbs will
simply skip such cases. However, the number of such cases is relatively
small as our experiments show.

4.7 Experiments

In this section we report our experimental results. The goal of the ex-
periments is twofold: first, to quantify the ability of our algorithm to
convert Java code into real-world applications and measure the per-
formance of the converted code fragments, and second to explore the
limitations of the current implementation.

We have implemented a prototype of Qbs. The source code analysis
and computation of verification conditions are implemented using the
Polyglot compiler framework [Nystrom et al., 2003]. We use Sketch as
the synthesizer for invariants and postconditions, and Z3 for validating
the invariants and postconditions.
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Application # persistent data code fragments translated failed
Wilos 33 29 4

itracker 16 12 4
Total 49 41 7

Table 4.2: Real-world code fragments experiment

4.7.1 Real-World Evaluation

In the first set of experiments, we evaluated Qbs using real-world exam-
ples from two large-scale open-source applications, Wilos and itracker,
written in Java. Wilos (rev. 1196) [Wilos Orchestration Software] is
a project management application with 62k LOC, and itracker (ver.
3.0.1) [itracker Issue Management System] is a software issue manage-
ment system with 61k LOC. Both applications have multiple contrib-
utors with different coding styles, and use the Hibernate ORM library
for data persistence operations. We passed in the entire source code of
these applications to Qbs to identify code fragments. The preprocessor
initially found 120 unique code fragments that invoke ORM operations.
Of those, it failed to convert 21 of them into the kernel language rep-
resentation, as they use data structures that are not supported by our
prototype (such as Java arrays), or access persistent objects that can
escape from multiple control flow points and hence cannot be converted.

Meanwhile, upon manual inspection, we found that those 120 code
fragments correspond to 49 distinct code fragments inlined in different
contexts. For instance, if A and C both call method B, our system au-
tomatically inlines B into the bodies of A and C, and those become two
different code fragments. But if all persistent data manipulation hap-
pens in B, then we only count one of the two as part of the 49 distinct
code fragments. Qbs successfully translated 33 out of the 49 distinct
code fragments (and those 33 distinct code fragments correspond to 75
original code fragments). The results are summarized in Table 4.2, and
the details can be found in Table 4.3.

This experiment shows that Qbs can infer relational specifications
from a large fraction of candidate fragments and convert them into SQL
equivalents. For the candidate fragments that are reported as translat-
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wilos code fragments

# Java Class Name Line Oper. Status Time (s)
17 ActivityService 401 A † –
18 ActivityService 328 A † –
19 AffectedtoDao 13 B X 72
20 ConcreteActivityDao 139 C * –
21 ConcreteActivityService 133 D † –
22 ConcreteRoleAffectationService 55 E X 310
23 ConcreteRoleDescriptorService 181 F X 290

24 ConcreteWorkBreakdown- 55 G † –ElementService

25 ConcreteWorkProduct- 236 F X 284DescriptorService
26 GuidanceService 140 A † –
27 GuidanceService 154 A † –
28 IterationService 103 A † –
29 LoginService 103 H X 125
30 LoginService 83 H X 164
31 ParticipantBean 1079 B X 31
32 ParticipantBean 681 H X 121
33 ParticipantService 146 E X 281
34 ParticipantService 119 E X 301
35 ParticipantService 266 F X 260
36 PhaseService 98 A † –
37 ProcessBean 248 H X 82
38 ProcessManagerBean 243 B X 50
39 ProjectService 266 K * –
40 ProjectService 297 A X 19
41 ProjectService 338 G † –
42 ProjectService 394 A X 21
43 ProjectService 410 A X 39
44 ProjectService 248 H X 150
45 RoleDao 15 I * –
46 RoleService 15 E X 150
47 WilosUserBean 717 B X 23
48 WorkProductsExpTableBean 990 B X 52
49 WorkProductsExpTableBean 974 J X 50
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itracker code fragments

# Java Class Name Line Operation Status Time (s)
1 EditProjectFormActionUtil 219 F X 289
2 IssueServiceImpl 1437 D X 30
3 IssueServiceImpl 1456 L * –
4 IssueServiceImpl 1567 C * –
5 IssueServiceImpl 1583 M X 130
6 IssueServiceImpl 1592 M X 133
7 IssueServiceImpl 1601 M X 128
8 IssueServiceImpl 1422 D X 34
9 ListProjectsAction 77 N * –
10 MoveIssueFormAction 144 K * –
11 NotificationServiceImpl 568 O X 57
12 NotificationServiceImpl 848 A X 132
13 NotificationServiceImpl 941 H X 160
14 NotificationServiceImpl 244 O X 72
15 UserServiceImpl 155 M X 146
16 UserServiceImpl 412 A X 142

where:
A: selection of records
B: return literal based on result size
C: retrieve the max / min record by first sorting and then returning the
last element
D: projection / selection of records and return results as a set
E: nested-loop join followed by projection
F: join using contains
G: type-based record selection
H: check for record existence in list
I: record selection and only return the one of the records if multiple ones
fulfill the selection criteria
J: record selection followed by count
K: sort records using a custom comparator
L: projection of records and return results as an array
M: return result set size
N: record selection and in-place removal of records
O: retrieve the max / min record

X indicates those that are translated by. Qbs
* indicates those that Qbs failed to find invariants for.
† indicates those that are rejected by Qbs due to TOR / pre-processing
limitations.

Table 4.3: Details of the 49 distinct code fragments. The times reported correspond
to the time required to synthesize the invariants and postconditions. The time taken
for the other initial analysis and SQL translation steps are negligible.
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able by Qbs, our prototype was able to synthesize postconditions and
invariants, and also validate them using the prover. Furthermore, the
maximum time that Qbs takes to process any one code fragment is
under 5 minutes (with an average of 2.1 minutes). In the following, we
broadly describe the common types of relational operations that our
Qbs prototype inferred from the fragments, along with some limita-
tions of the current implementation.

Projections and Selections. A number of identified fragments per-
form relational projections and selections in imperative code. Typical
projections include selecting specific fields from the list of records that
are fetched from the database, and selections include filtering a subset
of objects using field values from each object (e.g., user ID equals to
some numerical constant), and a few use criteria that involve program
variables that are passed into the method.

One special case is worth mentioning. In some cases only a sin-
gle field is projected out and loaded into a set data structure, such as
a set of integer values. One way to translate such cases is to gener-
ate SQL that fetches the field from all the records (including dupli-
cates) into a list, and eliminate the duplicates and return the set to
the user code. Our prototype, however, improves upon that scheme
by detecting the type of the result variable and inferring a postcon-
dition involving the unique operator, which is then translated to a
SELECT DISTINCT query that avoids fetching duplicate records from
the database.

Joins. Another set of code fragments involve join operations. we sum-
marize the join operations in the application code into two categories.
The first involves obtaining two lists of objects from two base queries
and looping through each pair of objects in a nested for or while loop.
The pairs are filtered and (typically) one of the objects from each pair
is retained. The running example in Figure 4.1 represents such a case.
For these cases, Qbs translates the code fragment into a relational join
of the two base queries with the appropriate join predicate, projection
list, and sort operations that preserve the ordering of records in the
results.
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Another type of join also involves obtaining two lists of objects
from two base queries. Instead of a nested loop join, however, the code
iterates through each object e from the first list, and searches if e (or
one of e’s fields) is contained in the second. If true, then e (or some of its
fields) is appended to the resulting list. For these cases Qbs converts the
search operation into a contains expression in the predicate language,
after which the expression is translated into a correlated subquery in
the form of SELECT * FROM r1, r2 WHERE r1 IN r2, with r1 and r2
being the base queries.

Qbs handles both join idioms mentioned above. However, the loop
invariants and postconditions involved in such cases tend to be more
complex as compared to selections and projections, as illustrated by
the running example in Figure 4.12. Thus, they require more iterations
of synthesis and formal validation before finding a valid solution, with
up to 5 minutes in the longest case. Here, the majority of the time is
spent in synthesis and bounded verification. We are not aware of any
prior techniques that can be used to infer join queries from imperative
code, and we believe that more optimizations can be devised to speed
up the synthesis process for such cases.

Aggregations. Aggregations are used in fragments in a number of
ways. The most straightforward ones are those that return the length of
the list that is returned from an ORM query, which are translated into
COUNT queries. More sophisticated uses of aggregates include iterating
through all records in a list to find the max or min values, or searching
if a record exists in a list. Aggregates such as maximum and minimum
are interesting as they introduce loop-carried dependencies [Allen and
Kennedy, 1984], where the running value of the aggregate is updated
conditionally based on the value of the current record as compared to
previous ones. By using the top operator from the theory of ordered
relations, Qbs is able to generate a loop invariant of the form v =
agg(topi(r)), where agg represents an aggregate operation, and then
translate the postcondition into the appropriate SQL query.

As a special case, a number of fragments check for the existence
of a particular record in a relation by iterating over all records and
setting a result Boolean variable to be true if it exists. In such cases,
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the generated invariants are similar to other aggregate invariants, and
our prototype translates such code fragments into SELECT COUNT(*)
> 0 FROM ... WHERE e, where e is the expression to check for
existence in the relation. We rely on the database query optimizer to
further rewrite this query into the more efficient form using EXISTS.

Limitations. We have verified that in all cases where the generated
template is expressive enough for the invariants and postconditions, our
prototype does indeed find the solution within a preset timeout of 10
minutes. However, there are a few examples from the two applications
where our prototype either rejects the input code fragment or fails to
find an equivalent SQL expression from the kernel language represen-
tation. Fragments are rejected because they involve relational update
operations that are not handled by TOR. Another set of fragments
include advanced use of types, such as storing polymorphic records in
the database, and performing different operations based on the type
of records retrieved. Incorporating type information in the theory of
ordered relations is an interesting area for future work. There are also
a few that Qbs fails to translate into SQL, even though we believe that
there is an equivalent SQL query without updates. For instance, some
fragments involve sorting the input list by Collections.sort, followed
by retrieving the last record from the sorted list, which is equivalent to
max or min depending on the sort order. Including extra axioms in the
theory would allow us to reason about such cases.

4.7.2 Performance Comparisons

Next, we quantify the amount of performance improvement as a result
of query inference. To do so, we took a few representative code frag-
ments for selection, joins, and aggregation, and populated databases
with different number of persistent objects. We then compared the
performance between the original code and our transformed versions
of the code with queries inferred by Qbs. Since Hibernate can either
retrieve all nested references from the database (eager) when an object
is fetched, or only retrieve the top level references (lazy), we measured
the execution times for both modes (the original application is config-
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(a) Selection with 10% selectivity
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(d) Aggregation code fragment

Figure 4.14: Webpage load times comparison of representative code fragments

ured to use the lazy retrieval mode). The results shown in Figure 4.14
compare the time taken to completely load the webpages containing
the queries between the original and the Qbs inferred versions of the
code.

Selection Code Fragment. Figure 4.14a and Figure 4.14b show
the results from running a code fragment that includes persistent data
manipulations from fragment #40 in Table 4.3. The fragment returns
the list of unfinished projects. Figure 4.14a shows the results where 10%
of the projects stored are unfinished, and Figure 4.14b shows the results
with 50% unfinished projects. While the original version performs the
selection in Java by first retrieving all projects from the database, Qbs
inferred a selection query in this case. As expected, the query inferred
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by Qbs outperforms the original fragments in all cases as it only needs
to retrieve a portion (specifically 10 and 50%) of all persistent objects
from the database.

Join Code Fragment. Figure 4.14c shows the results from a code
fragment with contents from fragment #46 in Table 4.3 (which is the
same as the example from Figure 4.1). The fragment returns the pro-
jection of User objects after a join of Roles and Users in the database
on the roleId field. The original version performs the join by retrieving
all User and Role objects and joining them in a nested loop fashion as
discussed in Section 4.2. The query inferred by Qbs, however, pushes
the join and projection into the database. To isolate the effect of per-
formance improvement due to query selectivity (as in the selection code
fragment), we purposefully constructed the dataset so that the query
returns all User objects in the database in all cases, and the results show
that the query inferred by Qbs still has much better performance than
the original query. This is due to two reasons. First, even though the
number of User objects returned in both versions are the same, the Qbs
version does not need to retrieve any Role objects since the projection
is pushed into the database, unlike the the original version. Secondly,
thanks to the automatically created indices on the Role and User tables
by Hibernate, the Qbs version essentially transforms the join imple-
mentation from a nested loop join into a hash join, i.e., from an O(n2)
to an O(n) implementation, thus improving performance asymptoti-
cally.

Aggregation Code Fragment. Finally, Figure 4.14d shows the re-
sults from running code with contents from fragment #38, which re-
turns the number of users who are process managers. In this case, the
original version performs the counting by bringing in all users who are
process managers from the database, and then returning the size of the
resulting list. Qbs, however, inferred a COUNT query on the selection
results. This results in multiple orders of magnitude performance im-
provement, since the Qbs version does not need to retrieve any objects
from the database beyond the resulting count.
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4.7.3 Advanced Idioms

In the final set of experiments, we used synthetic code fragments to
demonstrate the ability of our prototype to translate more complex
expressions into SQL. Although we did not find such examples in either
of our two real-world applications, we believe that these can occur in
real applications.

Hash Joins. Beyond the join operations that we encountered in the
applications, we wrote two synthetic test cases for joins that join rela-
tions r and s using the predicate r.a = s.b, where a and b are integer
fields. In the first case, the join is done via hashing, where we first
iterate through records in r and build a hashtable, whose keys are the
values of the a field, and where each key maps to a list of records from
r that has that corresponding value of a. We then loop through each
record in s to find the relevant records from r to join with, using the
b field as the look up key. Qbs currently models hashtables using lists,
and with that our prototype is able recognize this process as a join op-
eration and convert the fragment accordingly, similar to the join code
fragments mentioned above.

Sort-Merge Joins. Our second synthetic test case joins two lists by
first sorting r and s on fields a and b respectively, and then iterating
through both lists simultaneously. We advance the scan of r as long
as the current record from r is less than (in terms of fields a and b)
the current record from s, and similarly advance the scan of s as long
as the current s record is less than the current r record. Records that
represent the join results are created when the current record from r

equals to that from s on the respective fields. Unfortunately, our cur-
rent prototype fails to translate the code fragment into SQL, as the
invariants for the loop cannot be expressed using the current the pred-
icate language, since that involves expressing the relationship between
the current record from r and s with all the records that have been
previously processed.

Iterating over Sorted Relations. We next tested our prototype
with two usages of sorted lists. We created a relation with one unsigned
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integer field id as primary key, and sorted the list using the sort method
from Java. We subsequently scanned through the sorted list as follows:

List records = Query("SELECT id FROM t");
List results = new ArrayList();
Collections.sort(records); // sort by id
for (int i = 0; i < 10; ++i) {
results.add(records.get(i));

}

Our prototype correctly processes this code fragment by translating
it into SELECT id FROM t ORDER BY id LIMIT 10. However, if the loop is
instead written as follows:

List records = Query("SELECT id FROM t");
List results = new ArrayList();
Collections.sort(records); // sort by id
int i = 0;
while (records.get(i).id < 10) {
results.add(records.get(i));
++i;

}

The two loops are equivalent since the id field is a primary key of the
relation, and thus there can at most be 10 records retrieved. However,
our prototype is not able to reason about the second code fragment, as
that requires an understanding of the schema of the relation, and that
iterating over id in this case is equivalent to iterating over i in the first
code fragment. Both of which require additional axioms to be added to
the theory before such cases can be converted.

4.8 Summary

In this section, we discussed Qbs, a system for inferring relational spec-
ifications from imperative code that retrieves data using ORM libraries.
Our system automatically infers loop invariants and postconditions as-
sociated with the source program, and converts the validated post-
condition into SQL queries. Our approach is both sound and precise
in preserving the ordering of records. We developed a theory of or-
dered relations that allows efficient encoding of relational operations
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into a predicate language, and we demonstrated the applicability using
a set of real-world code examples. The techniques developed in this
system represent an instance of verified lifting, which is applicable to
the general problem of inferring high-level structure from low-level code
representations.



5
Assisting Users Specify Database Queries

In this section we give an overview of systems that help users write
database queries. We organize the systems using four different aspects:
the intended users of the system, the usage model, the algorithms used
to infer the user’s intended query, and whether the system includes
a refinement mechanism for iterative interactions with the user. We
discuss each of the aspects in detail in the following sections.

5.1 Intended Users

Most of the systems we consider in this tutorial focus on helping users
who possess little or no prior knowledge of traditional query languages
such as SQL. The target users for each system are listed in Table 5.1
and can be categorized into the following:

Users with no programming knowledge. These systems aim to
help end-users (e.g., data scientists as mentioned in Section 1) find
answers from or manipulate datasets that they have collected. Since
the target users have no programming knowledge, such systems pro-
vide alternative interfaces for users to express their query needs (e.g.,
via natural language [Li et al., 2007, Gulwani and Marron, 2014], or

62
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graphically [Tableau Software]), translate user inputs into queries, and
return the query results to the users. The intermediate queries that are
generated by the system are usually not shown to the users.

Users with application programming experience. Unlike end-
users, these users are often developers who have knowledge about appli-
cation programming, but not necessarily query languages. The goal of
such systems is to help users in translating their application code into
queries [Cheung et al., 2013, Iu and Zwaenepoel, 2010, Wiedermann
et al., 2008], and integrate the retrieved query results programmatically
within a larger general-purpose application, such as a web application.
As such, these systems resemble traditional compilers that convert ap-
plication code fragments into semantically equivalent queries. The in-
tention is that transforming code fragments that interact with DBMS
into queries will improve application performance, since DBMSs come
with different optimization strategies and specialized implementations
of relational operators, and the developer might not be aware of those
when writing the code.

Expert developers. This group of users are experts in query lan-
guages who might need help in formulating their queries from one
query language to another [Abouzied et al., 2012], debugging their
queries [Tran et al., 2009], or suggesting further queries that they might
be interested in issuing given prior queries [Khoussainova et al., 2010].
Such systems resemble programming tools that users might use during
application development.



64 Assisting Users Specify Database Queries

System Intended Users
Das Sarma et al [Sarma et al., 2010] 1.
DataPlay [Abouzied et al., 2012, 2013] 2.
Explore-by-Example [Dimitriadou et al.,
2014, Çetintemel et al., 2013]

1.

GestureQuery [Jiang et al., 2013] 1.
HadoopToSQL [Iu and Zwaenepoel, 2010] 3.
JReq [Iu et al., 2010] 3.
LifeJoin [Cheung et al., 2012, 2011] 1.
NaLIR [Li and Jagadish, 2014a,b] 1.
NaLIX [Li et al., 2007] 1.
NLyze [Gulwani and Marron, 2014] 1.
Precise [Popescu et al., 2003, 2004] 1.
Query By Example [Zloof, 1975] 1.
Query By Synthesis [Cheung et al., 2013] 3.
QueRIE [Chatzopoulou et al., 2009] 4.
Query by Output [Tran et al., 2009] 4.
Quicksilver [Lu and Bodík, 2013] 1.
SketchStory [Lee et al., 2013] 1.
SnipSuggest [Khoussainova et al., 2010,
2009]

4.

SQLSynthesizer [Zhang and Sun, 2013] 1.
Tableau [Tableau Software] 1.
Wiedermann et al [Wiedermann et al.,
2008]

3.

where:
1: users with no knowledge of query languages
2: knowledge about quantified queries
3: Java developers
4: knowledge of SQL

Table 5.1: Intended users of different systems
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5.2 Usage Model

The systems we describe reflect a significant degree of experimentation
with regards to the kind of interface that a system should present to
its users. The ideal usage model will depend on several factors such as
the level of expertise of its expected users, and the context in which
the system will be used. Additionally, the underlying technologies used
by the different systems impose constraints on the usage models and
may require additional setup or maintenance tasks from database ad-
ministrators in order to fulfill their role.

The classification for each system is summarized in Table 5.2. The
four main types of user input accepted by these systems are outlined
below.

Input-output examples. Systems that are intended for users with
little or no knowledge of query languages tend to allow end users to pro-
vide input and output examples. Such examples are essentially partial
specifications for the intended behavior of the system, Formally, such
systems solicit a list of input tuples I and output tuples o from the
user, with the goal to formulate a query Q such that O ∈ Q(I), where
o ∈ O. Note that the system is free to infer a query Q that retrieves
a superset of the outputs provided by the user, with the understand-
ing that the user’s intention is to retrieve O; in cases where inputs are
not solicited then I is assumed to be all the accessible relations in the
database.

There are a variety of ways that users can provide examples to the
system. In LifeJoin [Cheung et al., 2012], the system first generates
a list of potential output tuples, and the user is presented with an
interface that asks her to label the ones that should be in the output
set. Explore-by-example [Dimitriadou et al., 2014] follows a similar
approach, where the tool presents an initial set of tuples that the user
might be interested in, and the user is asked to select those of interest
in order for the tool to retrieve more tuples that are similar to those
selected.

One drawback of this approach is that the set of queries that can be
generated is limited in expressivity to those represented by the tuples
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that the system initially presents to the user. For instance, if the user
would like to compute the average employee salary but that tuple does
not show up in the list of potential output, then the user will not
be able to ask the system to generate that query. Furthermore, even
if the system is expressive enough to generate tuples with aggregate
values, the user might still need to interpret the meaning of each tuple
shown before being she can decide whether to include it in the output
results or not. While the user might be able to do so for queries that
involve simple selection or projection, it might be difficult to do so
for queries that involve complex expressions. As an extreme example,
the system might generate a query that sum up all values of a given
column and present that to the user. In that case it will be very difficult
for the user to interpret how that number was derived without any
explanation. Finally, the system might overwhelm the user by asking
her to manually select from too many potential tuples.

A similar technique is used in SQLSynthesizer [Zhang and Sun,
2013]. Unlike LifeJoin, the user is asked to provide both the input and
output examples. In SQLSynthesizer, the user defines the input and
output relations, and provide a small number of sample tuples for both.
While the user no longer needs to manually select from a long list of
tuples, it might be difficult for her to come up with the appropriate list
of input and output tuples that is constraining enough for the system
to find the intended query.

Visual query interface. The second type of interaction mode is by
providing the user with a graphical interface. For instance, Query-by-
Example [Zloof, 1975] and Quicksilver [Lu and Bodík, 2013] illustrate
an interesting combination of graphical interface and soliciting input-
output examples from the user. In Query-by-Example, the user is pre-
sented with a spreadsheet interface and is asked to provide names for
each column in the spreadsheet, where each name is supposed to be
the name of some relation’s field. Subsequently, the user is asked to
provide sample output tuples using the spreadsheet interface, and the
tool then proceeds to generate a query. Similarly, Quicksilver allows
the user to provide sample tuples using a drag-and-drop interface by
directly dragging tuples from the input tables. Both of these systems
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retain the same problem formulation as the previous category in terms
of a providing partial specification of the intended query.

On the other hand, there are a number of tools that allow users
to directly construct queries using a graphical query language. Unlike
providing input-output examples, these systems allow users to provide
a full functional specification of their intended query. For instance, the
Dataplay [Abouzied et al., 2012] system provides a graphical interface
for users to directly construct and manipulate query trees. The tool
assumes users have knowledge about quantified queries and provides
an development environment for constructing queries.

A number of tools such as Tableau [Tableau Software] is modeled
after traditional data exploration tools [Sarawagi et al., 1998]. These
tools allow users to visualize the input data using a spreadsheet inter-
face, and defines a number of visual operators for the user to express
their queries in a graphically manner. SketchStory [Lee et al., 2013], on
the other hand, allows users to draw free-form visualizations and label
them using field names from persistent relations, and the tool proceeds
to generate queries given the field names and the structure of the visu-
alization. Similarly, the system described in [Jiang et al., 2013] allows
users to specify queries using finger gestures on a touchscreen.

Natural language. Given the advances in natural language pro-
cessing, the database research community has explored using natural
language utterances to directly pose questions to the DBMS [Androut-
sopoulos et al., 1995]. There has been a number of systems built recently
due to the advances in statistical natural language processing [Popescu
et al., 2003, Gulwani and Marron, 2014, Li and Jagadish, 2014a, Li
et al., 2007]. Unfortunately, due to the ambiguities in natural languages,
and the lack of refinement mechanisms, the main difficulty in building
such system is how to limit the expressivity of the input so that the
system can parse and translate the input into a valid query.

Using other programming languages. A few systems [Cheung
et al., 2013, Iu and Zwaenepoel, 2010, Wiedermann et al., 2008, Iu
et al., 2010] allow users to provide inputs in terms of a program frag-
ment written in other general-purpose programming languages for ap-
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plications (such as Java). Like visual query interfaces, such mechanism
also allows users to provide full query specification. As discussed in
Section 5.1, these systems target developers rather than end-users who
might not have any knowledge about query languages. The goal is to
free developers from the need to understand DBMS implementation
details, and to automatically identify the application code fragments
that should be expressed as a database queries for efficient execution.

5.2.1 Interaction

For some of the interaction models outlined above, the input provided
by the user already contains a complete description of the intended
queries, so the systems can guarantee that the output fully satisfies
the intended query without the need for further interaction. On the
other hand, systems where the intended user input is expected to be
incomplete or ambiguous require mechanisms to help users understand
what is the query that the system inferred and potentially provide ad-
ditional input if the results are unsatisfactory. The issue of interaction
is described in more detail in Section 5.4.

5.2.2 System Setup

Some of the input modes described above, particularly those that rely
on machine learning, require an explicit setup step which usually in-
volves collecting some prior data for training purposes. For instance,
SnipSuggest [Khoussainova et al., 2010] uses query logs from other users
in order to produce query fragment suggestions. Such system is most
beneficial when deployed on a large-scale DBMS that is shared among
multiple users (e.g., when the DBMS is deployed on the cloud), and
that users are willing to contribute their query logs to train the system.
Other system setup examples include collecting history of prior inter-
actions between the system and the user [Chatzopoulou et al., 2009],
and collecting labeled instances of (query, intention) pairs in order to
train a model [Gulwani and Marron, 2014].

The common theme among all such systems is that they all use
statistical-based machine learning as search algorithm, and hence they
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need to acquire a large number of labeled query instances to boot-
strap the algorithm. Because of that, it might take some time before
the system has accumulated enough prior data. From the end-user’s
perspective, it might be difficult for her to tell when the system has
become fully functional.

5.3 Search Algorithms

Given user’s input, the next step is to infer the query that the user
had in mind. In this section we discuss the different search algorithms
that have been devised for this purpose, with the results summarized
in Table 5.4.

5.3.1 Explicit Search

The simplest way to infer user’s query is to exhaustively search through
the space of possible queries. Unfortunately, the search space is pro-
hibitively large except for trivial queries. To make the search tractable,
systems that use brute force search all come with a number of heuristics
to reduce the search space. Das Sarma et al [Sarma et al., 2010] stud-
ied the complexity of finding a query Q that describes the relationships
between a database D and an existing view V . In this case V can be
viewed as a full specification of a result set that the user would like to
retrieve, and the task is to infer a query Q such that Q(D) equals (or
approximately equals to) V . The work studies the complexity of find-
ing solutions to the problem using explicit search for different types
of queries (unsurprisingly most of the interesting types of queries are
NP-hard), along with approximation algorithms for each type, in terms
of closeness between the original result set V and the one returned by
Q.

Other systems use different strategies to prune down the search
space. In NaLIR [Li and Jagadish, 2014a], given a natural language
input, the system generates all parse trees up to a certain depth. All
syntactically valid parse trees are then ranked. Ranking is based on a
measure that compares the the syntactic category that each word in the
input utterance is assigned to, and whether the assigned category cor-



70 Assisting Users Specify Database Queries

System Initial Input Final system output
Das Sarma et al [Sarma
et al., 2010]

query log view definitions

DataPlay [Abouzied et al.,
2012, 2013]

graphical query tree requested data

Explore-by-Example [Dim-
itriadou et al., 2014, Çet-
intemel et al., 2013]

labels on initial set of
tuples

requested data with
SQL query used

GestureQuery [Jiang et al.,
2013]

screen gestures requested data

HadoopToSQL [Iu and
Zwaenepoel, 2010]

Java code SQL query

JReq [Iu et al., 2010] Java code SQL query
LifeJoin [Cheung et al.,
2012, 2011]

input-output exam-
ples

program to be executed
on phones

NaLIR [Li and Jagadish,
2014a,b]

natural language SQL query

NaLIX [Li et al., 2007] natural language Xquery
NLyze [Gulwani and Mar-
ron, 2014]

natural language requested data

Precise [Popescu et al.,
2003, 2004]

natural language requested data

Query By Examples [Zloof,
1975]

graphical query tree requested data

Query By Synthesis [Che-
ung et al., 2013]

Java code SQL query

QueRIE [Chatzopoulou
et al., 2009]

query log from user recommended queries

Query by Output [Tran
et al., 2009]

query and database in-
stance

SQL queries that are in-
stance equivalent

Quicksilver [Lu and Bodík,
2013]

input-output exam-
ples

requested data

SketchStory [Lee et al.,
2013]

visualizations (e.g.,
graphs)

SQL query

SnipSuggest [Khoussain-
ova et al., 2010, 2009]

query logs from users
and partial query

SQL query

SQLSynthesizer [Zhang
and Sun, 2013]

input-output exam-
ples

requested data

Tableau [Tableau Software] graphical query tree data visualization
Wiedermann et al [Wieder-
mann et al., 2008]

Java code SQL query

Table 5.2: Usage models of different systems
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responds to the information extracted from the database schema. On
the other hand, the PRECISE system [Popescu et al., 2003] takes in
natural language utterance as input and generates all possible parses
of the input by solving a max-flow problem. To differentiate among
the different parses, the system uses a query equivalence checker to
eliminate those that are deemed as semantically equivalent. The sys-
tem returns the retrieved answers to the user if it is able to reduce the
number of queries to one, otherwise it flags the user input as ambiguous
and returns an error. In summary, while using explicit search is guar-
anteed to find the intended query, the prohibitive cost of enumeration
often causes systems to restrict the search space to make the search
tractable, as illustrated by the systems described.

5.3.2 Artificial Intelligence Approaches

Many prior systems use algorithms from classification and statistical
machine learning to solve the query inference problem. Such systems
often fall under two different categories:

Decision tree learning. A number of systems use decision trees to
infer the user’s query [Dimitriadou et al., 2014, Zhang and Sun, 2013,
Tran et al., 2009]. The typical setting is as follows. Given the user
inputs (say, a number of desired output tuples), the system first gen-
erates a universal relation U by performing a cross product (or a join
based on primary key and foreign key relations) on the set of relations
that are involved. The system determines the involved relations by ex-
amining the field names that are mentioned in the user input. After
that, the query inference problem is reduced to inferring the projection
and Boolean selection predicates on U. Learning selection predicates
is formulated as a classification problem, where the system uses the
provided inputs to categorize all tuples into two groups: those that are
indicated by the users as belong to the output set, and those that are
not. Different systems use different decision tree learning techniques
to solve the problem (e.g., using Classification and Regression Tree
(CART) [Breiman et al., 1984] or other learning techniques [Frank and
Witten, 1998]) to determine the selection predicates. A heuristic is usu-
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ally applied to limit the number of predicates involved. The predicates
are then translated into filtering conditions in the query. Finally, the
list of fields to be projected are computed by comparing the fields in U
and the fields included in the user input. If multiple decision trees (i.e.,
queries) are generated, then the system would rank them according to
a predefined metric, such as query complexity.

While decision trees can be used to learned a variety of queries,
there are a number of issues associated with them. First, if the database
contains a large number of tuples, then physically generating and enu-
merating each of the tuple in the universal relation U will be expensive.
Also, unless the user provided a large number of positive examples,
otherwise the number of negative examples can easily overwhelm that
of the positive examples due to the number of tuples stored in the
database. Such heavily skewed dataset can affect the quality of the
learned decision tree [Cieslak and Chawla, 2008]. Finally, it is difficult
to learn queries beyond selections and projections (e.g., those that in-
volve aggregates or user-defined functions), unless the system generates
all possible means that aggregates can be applied to the input tables
and asks users to label the results, but doing so will incur a prohibitive
cost.

Statistical techniques. There are other artificial intelligence tech-
niques that are used besides learning decision trees. These techniques
tend to be derived from statistical machine learning that are commonly
used in recommendation systems. Such systems usually require collect-
ing prior data before making predictions (as discussed in Section 5.2.2).
In the general setting, the system first defines a number of “features”
associated with each collected data. For instance, features about previ-
ous queries from the query log, such as the relations that are involved in
each query, the aggregate functions that are used (if any); a summary
of previous queries issued by the same user, etc. Given such features,
the user input is mapped to the same feature space, and the system
then infers the query by finding those that are closest to the user in-
put in the feature space. As expected, different systems have proposed
various techniques in computing distances and evaluating closeness be-
tween the user’s input and the candidate solutions.
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As a concrete example, given a query fragment, SnipSug-
gest [Khoussainova et al., 2010] recommends different ways to fill in
the rest of the fragment, based on similar queries that other users have
previously issued. In order to make recommendations, the system uses
aspects such as the relations and fields that are involved in previous
queries as features. Given an input query fragment q, the system first
maps the fragment to the feature space. Subsequently, it suggests to
complete the query fragment by adding k features to it. The list of k
features are chosen such that

Σk
i=0P(ei |q1, ... , qn)

is maximized. Here q1, ... , qn represents the set of features that are
present in the query fragment q, and the conditional probability P(e|q)
is computed by computing from the number of previously issued queries
that contain the features e and q, i.e.,

P(e|q) = |e ∪ q|
|q|

where |q| refers to the number of previously issued queries where feature
q is present. The system also includes other metrics to define query
distances and approximation algorithms to efficiently find the list of k
features.

Other systems follow a similar approach. For instance, the system
proposed in [Chatzopoulou et al., 2009] computes a summary of previ-
ously issued queries from a given user, and use that as the feature set
in generating recommendations. GestureQuery [Jiang et al., 2013] uses
various finger movements detected on the screen as features in order
to determine the intended query operator that the user would like to
issue.

In summary, statistical based learning techniques are able to infer
highly expressive queries (assuming that the input data contain a vari-
ety of different query types). However, as discussed in Section 5.2.2, one
issue with statistical approaches is that it is often unclear how much
prior data is needed before the system can make accurate predictions.
Furthermore, the set of features chosen to model the search space can
greatly affect the prediction results, and feature selection has been an
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active area of research in the machine learning community [Guyon and
Elisseeff, 2003].

5.3.3 Domain Specific Languages

In this approach, the system defines a domain specific language (DSL)
on top of the one provided by the database. The intention is that end-
users might be more comfortable in expressing their data retrieval needs
using an application-specific language rather than a general query lan-
guage. After receiving a user’s input in the DSL, the system translates
the input into the underlying query language using syntax-driven rules
that are typical in classical compilers. The key differences among the
systems are the type of DSL (visual, gestural, written, etc), and the
means that the DSL is compiled to the query language.

For instance, DSLs such as Linq [Microsoft, b] and Links [Cooper
et al., 2007] embed query constructs as part of the application language.
Developers can express their queries using such constructs, and the
DSL compiler will compile such constructs into the underlying query
language supported by the database. Similar ideas have been explored
earlier in languages such as RIGEL [Rowe and Shoens, 1979] and ex-
tensions to Pascal [Schmidt, 1977].

One issue with embedding query language constructs in an applica-
tion programming language is that developers still need to understand
the semantics of such constructs, which are often very similar to rela-
tional algebra, in order to make use of them. Other systems use different
interaction modes with users in order to understand their query needs.
For example, Dataplay [Abouzied et al., 2012] defines a visual DSL
based on quantifiers. The system allows the user to directly manipu-
late relations and other symbols using a graphical interface to construct
a quantified logical formula describing the output relation (e.g., to find
all high-earning employees that are over 21, the user might write the
formula ∀o ∈ output . o.age > 21 ∧ o.salary > 100, 000 using the
graphical interface). Given this declarative specification, the system
then compiles the specification into SQL, and the retrieved data are dis-
played on the graphical interface to the user. Similar DSL are defined
in other systems as well, for instance the graphical DSLs supported
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by SketchStory [Lee et al., 2013] and Tableau [Tableau Software], the
stylized templates that Query By Example [Zloof, 1975] provides users
to specify the output relation, the gestural query language discussed in
GestureQuery [Jiang et al., 2013] for users issuing queries from a touch-
based device, and the restricted grammar in NaLIX [Li et al., 2007] that
translates templates of natural language sentences into XML queries.
Similarly, systems such as JReq [Iu et al., 2010], HadoopToSQL [Iu and
Zwaenepoel, 2010], and the technique proposed in [Wiedermann et al.,
2008] transform input code fragments into queries if they are expressed
in stylized loop templates. The transformation works by analyzing the
input code fragments and using predefined rules to convert various im-
perative program constructs into query expressions (e.g., converting
conditionals in imperative programming language into selection predi-
cates in SQL).

Depending on the design of the DSL, the mapping between state-
ments in the DSL and the underlying query language might not be
one-to-one. For instance, in Dataplay, the input formula might be trans-
latable to multiple SQL queries (e.g., projecting extra fields that are
not mentioned in the formula). As such, such systems typically provide
means for users to provide further constraints, such as providing input-
output examples as additional constraints, or warning the user that her
input contains ambiguities and asking for revision (see Section 5.4 for
details).

In comparison to artificial intelligence techniques, DSL-based sys-
tems are less expressive as the space of possible queries that can be
inferred are pre-defined by the translation rules embedded in the sys-
tem. On the other hand, such systems do not incur any learning /
setup phrase, and can easily translate the user’s input into a query if
it is expressed using the DSL.

5.3.4 Program Synthesis

Program synthesis (as discussed in Section 3), is the newest technique
available to researchers to assist users in specifying database queries [Lu
and Bodík, 2013, Cheung et al., 2012, 2013, Gulwani and Marron, 2014].
Program synthesis allows users to provide constraints using a variety of
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mechanisms (e.g., input-output examples, explicit logical constraints,
etc). Some synthesis techniques themselves rely on explicit search, but
they also make use of various techniques to prune the size of the search
space in inferring the user’s intended query that satisfies all input con-
straints.

As an illustration, Query By Synthesis (QBS) [Cheung et al., 2013]
is an example of such system, where it uses the semantics of the im-
perative code (i.e., the application code) written by developers as the
constraint to guide the search. Give source code written in Java, QBS
automatically identifies code fragments that make use of persistent data
(by analyzing calls to popular libraries for interacting with databases,
such as JDBC [Java Persistence 2.0 Expert Group, 2009] and Hiber-
nate [JBoss]. For each found code fragment, QBS tries to convert them
into semantically equivalent SQL queries. Unlike the DSL approach,
QBS does not rely on syntax-driven rules to find and convert the input
code fragment into SQL. Instead, it compiles the input code fragment
to a small kernel language. The kernel language is carefully designed to
not model the entire semantics of Java, as many of the program con-
structs in Java has no semantic equivalents in SQL (e.g., exceptions).
Instead, the language includes standard constructs in an imperative
language, along with common operations on lists. Figure 5.1 shows a
sample Java code fragment, its representation in the kernel language,
and the SQL query inferred by QBS.

Next, QBS formulates the problem of finding the SQL query to
convert each kernel language code fragment as a search for postcondi-
tions (and loop invariants if needed). This allows the system to leverage
standard program verification techniques [Hoare, 1969, Floyd, 1967] to
validate the transformation once a postcondition is found. To facilitate
easy transformation of the postcondition into SQL, the predicate lan-
guage used to express postconditions (and loop invariants) is based on
a theory of ordered relations. The theory itself closely resembles rela-
tional algebra (i.e., it includes operators such as selection, projection,
and join), except that relations are modeled as ordered lists rather than
multisets. Operations on ordered relations are defined using a number
of axioms.
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List<User> getRoleUser () {
List<User> listUsers = new ArrayList<User>();
List<User> users = this.userDao.getUsers();
List<Role> roles = this.roleDao.getRoles();
for (User u : users) {
for (Roles r : roles) {
if (u.roleId().equals(r.roleId())) {
User userok = u;
listUsers.add(userok);

}}}
return listUsers;

}

List listUsers := [ ];
int i, j = 0;
List users := Query(SELECT * FROM users);
List roles = Query(SELECT * FROM roles);
while (i < users.size()) {
while (j < roles.size()) {
if (users[i].roleId = roles[j].roleId)
listUsers := append(listUsers, users[i]);

++j;
}
++i;

}

List<User> getRoleUser () {
List<User> listUsers = db.executeQuery(

"SELECT u
FROM users u, roles r
WHERE u.roleId == r.roleId
ORDER BY u.roleId, r.roleId");

return listUsers;
}

Figure 5.1: Java code fragment (top), its representation in the QBS kernel language
(middle), and the translated code fragment into SQL (bottom).
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The search for postcondition and invariants is done using a com-
bination of lightweight code analysis and constraint-based synthesis.
First, using Hoare logic, the analyzer first generates a number of log-
ical constraints describing the relationship between the postcondition
and each program expression in the code fragment (e.g., if the loop ter-
minates and its invariant is preserved, then the postcondition is true).
During this process, the analyzer simply treats the postcondition and
any loop invariants as an uninterpreted functions whose definitions are
to be filled in later on. In addition, the analyzer also identifies po-
tential “ingredients” of the postcondition and loop invariants (e.g., if
the code fragment includes a conditional, then the analysis will include
relational selection as a possible candidate). After that, the logical con-
straints and identified potential components of the postcondition and
loop invariants are sent to a program synthesizer. If the synthesizer is
able to find a postcondition and loop invariants that satisfy the con-
straints, the code fragment is converted into its SQL equivalent. As an
example, Table 5.3(top) shows the constraints generated by the code
analyzer for the code fragment shown in Figure 5.1(top). In the figure
outerInvariant, innerInvariant, and postcondition represent the loop in-
variants for the outer and inner loops, and the postcondition for the
code fragment respectively. Each of them is treated as a function call
whose definition needs to be synthesized. The synthesized definitions
are shown in Table 5.3(bottom).

Quicksilver [Lu and Bodík, 2013] is another system that uses synthe-
sis to infer user queries. Unlike QBS, Quicksilver targets end users who
might not have knowledge about query languages. To use the system,
the user first uploads her data via a web interface. The system then
displays data in a spreadsheet format, and provides a programming-
by-example interface for users to indicate tuples that should be in the
output. Given the output samples, the system formulates the synthesis
problem as:

∃Q(∀p ∈ P(∃r ∈ R|Q(r) = p))

where P represents the set of examples provided by the user, and R
is the universal relation (i.e., cross product of all the input relations).
The goal of the system is to find a query Q such that Q returns all
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Constraints generated for the outer loop
initialization outerInvariant(0, users, roles, [ ])

loop exit i ≥ size(users) ∧ outerInvariant(i, users, roles, listUsers)
→ postcondition(listUsers, users, roles)

preservation (same as inner loop initialization)
Constraints generated for the inner loop

initialization i < size(users) ∧ outerInvariant(i, users, roles, listUsers)
→ innerInvariant(i, 0, users, roles, listUsers)

loop exit j ≥ size(roles) ∧ innerInvariant(i, j, users, roles, listUsers)
→ outerInvariant(i + 1, users, roles, listUsers)

preservation j < size(roles) ∧ innerInvariant(i, j, users, roles, listUsers)
→ (geti(users).id = getj(roles).id ∧

innerInvariant(i, j + 1, users, roles,
append(listUsers, geti(users)))) ∨

(geti(users).id ̸= getj(roles).id ∧
innerInvariant(i, j + 1, users, roles, listUsers))

Function name Synthesized definition
outerInvariant(i, users, roles, listUsers) i ≤ size(users) ∧

listUsers =
𝜋ℓ(◁▷𝜙 (topi(users), roles))

innerInvariant(i, j, users, roles, listUsers) i < size(users)
∧ j ≤ size(roles) ∧

listUsers = append(
𝜋ℓ(◁▷𝜙 (topi(users), roles)),
𝜋ℓ(◁▷𝜙 (geti(users), topj(roles)))

postcondition(listUsers, users, roles) listUsers =
𝜋ℓ(◁▷𝜙 (users, roles))

where 𝜙(eusers, eroles) := eusers.roleId = eroles.roleId,
ℓ contains all the fields from the User class

Table 5.3: Sample constraints generated by QBS for the code fragment shown in
Figure 5.1.
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the input examples P when executed on some relation r constructed
from the universal relation. Note that Q can return a superset of the
examples from P. Like QBS, the system uses CEGIS to learn Q, and
validation is performed using the data provided by the user rather than
using a specialized theory as in QBS.

Finally, instead of using a synthesis-only approach, NLyze [Gulwani
and Marron, 2014] combines synthesis and rule-based translations in
learning user queries (as a spreadsheet manipulation script). Given an
input utterance (a natural language sentence), the system first enumer-
ates all possible queries based on types of the values that are mentioned
in the input. Meanwhile, the system also generates another set of can-
didate queries using syntax-based translation rules, where the rules are
learned using labeled data, as discussed in Section 5.2.2. The candidate
queries are then ranked according to a scoring function defined on top
of a number of features, among which is the number of times that the
translation rules have been applied in generating the candidate query.

Using program synthesis to infer queries has a number of advan-
tages. First, compared to the DSL approach, synthesis serves as a
means to dynamically search for the query given the user’s input, and
does not require devising DSL, or needing to implement and maintain
syntax-driven rules for conversion. This allows the general framework
to be used in converting other source to target languages. In addition,
unlike machine learning techniques, it does not require collecting ex-
tensive amount of prior data and devising complex models in order to
infer queries of interest. However, as discussed in Section 3, since most
synthesizers are based on logic, finding approximate matches (e.g., rec-
ommending similar queries rather than finding semantic equivalents) is
a challenging task. However, a few systems [Cheung et al., 2012, Gul-
wani and Marron, 2014] have demonstrated good results by combining
program synthesis with other techniques.

5.4 Query Refinement

While many systems have been able to achieve high precision in infer-
ring user’s queries, there are occasions where the system fails to find
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System Search Algorithm
Das Sarma et al [Sarma et al., 2010] explicit search with pruning

heuristics
DataPlay [Abouzied et al., 2012, 2013] generate all queries from input
Explore-by-Example [Dimitriadou et al.,
2014, Çetintemel et al., 2013]

decision tree

GestureQuery [Jiang et al., 2013] classifier and gesture driven
rules

HadoopToSQL [Iu and Zwaenepoel, 2010] syntax driven rules
JReq [Iu et al., 2010] syntax driven rules
LifeJoin [Cheung et al., 2012, 2011] program synthesis
NaLIR [Li and Jagadish, 2014a,b] natural language syntax tree

driven rules
NaLIX [Li et al., 2007] natural language syntax tree

driven rules
NLyze [Gulwani and Marron, 2014] machine learning and program

synthesis
Precise [Popescu et al., 2003, 2004] explicit search modeled as a

graph matching problem
Query By Examples [Zloof, 1975] syntax driven rules
Query By Synthesis [Cheung et al., 2013] program synthesis
QueRIE [Chatzopoulou et al., 2009] machine learning
Query by Output [Tran et al., 2009] decision tree
Quicksilver [Lu and Bodík, 2013] program synthesis and ranking
SketchStory [Lee et al., 2013] gesture driven rules
SnipSuggest [Khoussainova et al., 2010, 2009] machine learning
SQLSynthesizer [Zhang and Sun, 2013] decision tree and ranking
Tableau [Tableau Software] syntax driven rules
Wiedermann et al [Wiedermann et al., 2008] syntax driven rules

Table 5.4: Search algorithms of different systems
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System Refinement mechanism
DataPlay [Abouzied et al., 2012, 2013] more labeled examples
Explore-by-Example [Dimitriadou et al.,
2014, Çetintemel et al., 2013]

more labeled examples

GestureQuery [Jiang et al., 2013] preview results for user to
provide more gestures

LifeJoin [Cheung et al., 2012, 2011] more labeled examples
NaLIX [Li et al., 2007] suggest possible valid natural

language sentences
SQLSynthesizer [Zhang and Sun, 2013] more labeled examples

Figure 5.2: Refinement mechanisms (only systems that support refinement are
shown)

the intended query using the initial input from the user. For instance,
the initial input from the user might be under-specified, or it is ambigu-
ous enough that the system found multiple possibilities. In this section,
we discuss different mechanisms that systems have devised in helping
users refine their initial inputs and provide additional feedback, with
results shown in Figure 5.2.

5.4.1 Ranking Multiple Possibilities

When the system is able to infer multiple different queries given a user’s
input, one obvious mechanism is to generate an error message to the
user, or return all found possibilities and let the user determine which
(if any) matches her intention. In cases where the system follows the
latter approach [Khoussainova et al., 2010, Li et al., 2007, Gulwani and
Marron, 2014], the system usually provides a ranking of the potential
queries, where ranking is determined by the complexity of the found
queries [Gulwani and Marron, 2014, Li et al., 2007], or by similarities
with previously issued queries [Khoussainova et al., 2010]. The user
then has the option of selecting one of the queries from the ranked list,
or reissuing a new request. One drawback of this approach is that if the
user does not have knowledge about the query language, then showing
her the inferred queries will not be helpful in helping the user refine
her request, unless the system is able to formulate the inferred queries
in the input language (e.g., as natural language sentences).
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5.4.2 Labeling Additional Tuples

A number of systems allow users to provide additional labeled tuples
for query refinement purposes. For instance, explore-by-example [Dim-
itriadou et al., 2014] would initially show a number of tuples that it
believes would be of interest to the user. The user has the option to pro-
vide feedback by labeling the list of tuples returned as either positive
or negative examples. Based on the labels, the system will refine the
set of tuples that is retrieved from the database. The tool is designed
to be interactive with the user, until she is satisfied with the tuples re-
turned, at which point the system will generate the final query that it
used to retrieve such tuples. Similar techniques are employed in other
systems [Zhang and Sun, 2013, Cheung et al., 2012, Lu and Bodík,
2013]. One challenge in using interactive sessions as refinement is that
it might require a large number of rounds until the system is able to
infer the query that the user has in mind, and that has been a research
topic in computational learning theory [Abouzied et al., 2013, Angluin
et al., 1992].

5.4.3 Other Techniques

Finally, a few systems have devised alternative techniques for user re-
finement. For instance, Dataplay [Abouzied et al., 2012] allows users
to first construct her query using a visual language. As mentioned in
Section 5.3.3, the constructed logical formula might be under-specified.
As such, the system would retrieve tuples satisfying the initial user in-
put. In addition, it provides an interface that allows users to label each
retrieved tuple, in a manner that resembles input-output examples (as
discussed in Section 5.2). The system that uses the additional input to
refine the result. On the other hand, given an initial gestural specifica-
tion, GestureQuery [Jiang et al., 2013] shows a preview of the tuples
that would be retrieved (along with statistics about the retrieved tu-
ples), and the user can make refinements by making additional gestures
on the screen.



6
Conclusion and Future Work

We have described in previous sections different aspects of prior systems
that aim to help users specify database queries. In this section we
describe new research opportunities that are enabled by prior research
and discuss the challenges involved in each topic.

6.1 Beyond Input-Output Examples

While providing input-output examples is an effective way to solicit
initial and subsequent feedback from the user, this mechanism is lim-
ited to learning simple queries. As discussed in Section 5.2, it is highly
unlikely that users are willing to label large number of tuples during
the refinement process, besides the fact that the system might take a
long time to enumerate all tuples that are contained in the candidate
query (as an extreme case, imagine the user highlighting 5 relations
but provide no further specification as initial input to the system, in
that case the system will need to perform a cross product of all 5 rela-
tions, enumerate each of the resulting tuples, and ask the user to label
each one). One way to reduce the number of input-output examples
needed from the user is to make use of prior history of user queries,

84
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for instance construct probabilities for different types of queries that
the user might issue, and use them to bias the search [Gulwani and
Marron, 2014]. An interesting topic is to allow the user design a high-
level language to express partial constraints on the desired data. Given
that language, the system can provide a mixed-mode interface where
the user can provide specifications using both input-output examples
and relational expressions to the system. DSL-based systems such as
Dataplay [Abouzied et al., 2012] have done initial exploration in that
aspect.

Besides letting users provide more concise constraints to the sys-
tem, mixed-mode interfaces also allow systems to learn more complex
queries. For instance, data scientists often issue queries that involve
complex aggregates and user-defined algebraic functions. Such queries
are very difficult for systems to learn using input-output examples. As
an example, consider the user providing a tuple with a single numeric
value that represents the sum of salaries of a certain department. It
would be very difficult for any system to learn such query given the
number of vast number of ways for which such number could be com-
puted.

6.2 Extending System Capabilities

All of the systems described above focus on learn data retrieval tasks.
It would be interesting to expand such systems to handle other data
manipulation tasks as well. For instance, loading data from raw files
into DBMS, exporting data from one relation and importing them into
another, etc. While there has been work done in using usage models
and algorithms discussed earlier in data transformations [Kandel et al.,
2011], data cleaning [Stonebraker et al., 2013], and spreadsheet manip-
ulations [Gulwani et al., 2012], it would be interesting to make use of
such techniques for other data manipulation tasks as well.

6.3 Refinement Techniques

Many previous systems allow users to label tuples as a means to provide
specifications to the system. However, all such deployments are limited
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in that they only allow users to label each tuple as either positive
(i.e., it should be retained result set), or negative (i.e., it should be
removed from the result set). An interesting research question is to
investigate semantically richer interfaces for the user to provide inputs.
For instance, allowing the user to label tuples as “partially correct, ”
perhaps because it contains all the fields that the user would like to
retrieve, but were padded with some extra fields. This feature would
also be useful in recommendation systems where the user can assign a
score to each returned tuple rather than labeling each with a concrete
“yes” or “no.”

On the other hand, another interesting topic is to enable the sys-
tem to explain how each of the output tuples were derived. Seeing such
derivations will help the user provide more appropriate examples for
refinement purposes. While showing the raw database queries used to
retrieve each tuple might not be beneficial (as the user might not under-
stand the query language, as discussed in Section 5.4.1), other means
of explanations include showing the support of each output tuple (e.g.,
the set of positive tuples that the user previously labeled), and illus-
trating the effects of the user labeling an output tuple in terms of the
set of tuples that will be added or removed.

6.4 Combining Different Inference Algorithms

As discussed in Section 5.3, each of the algorithms has its own advan-
tages and disadvantages. An exciting area of research has been combin-
ing different algorithms in improving the precision in query inference.
For instance, NLyze [Gulwani and Marron, 2014] combines natural lan-
guage processing and program synthesis techniques in inferring user
queries. Other combinations are also possible. For example, since clas-
sical program synthesizers are not good in situations where the user
provides conflicting specifications (e.g., due to input errors or changes
in interests), one possibility is to incorporate techniques from machine
learning research (such as support vector machines) to handle such
uncertainties. Furthermore, techniques such as active learning [Settles,
2010] can also be used in conjunction with program synthesis algo-
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rithms such as CEGIS (as discussed in Section 3.3) in reducing the
number of user interaction rounds before being able to infer the in-
tended query.

In conclusion, modern data applications have been underserved by
traditional query languages, which were designed with different ap-
plications in mind. Recent research in alternative means for users to
specify queries have resulted in many systems and techniques for that
purpose, and synthesis in particular has shown promise in bridging the
gap between the user’s intention and the need to write queries that are
highly efficient. However, there is still a lot of exciting research to be
done in this area, and it would be interesting to leverage techniques
from other fields (e.g., artificial intelligence) in improving the accuracy
of these systems.
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