Partial Replay of
Long-Running Applications

Alvin Cheung
Armando Solar-Lezama
Sam Madden

MIT CSAIL



Bugs are difficult to reproduce

Software Bug Contributed to Blackout

Kevin Poulsen, SecurityFocus 2004-02-11
"It had never evidenced itself until that day," said spokesman Ralph DiNicola.

"This fault was so deeply embedded, it took them weeks of poring through millions of lines
of code and data to find it."

How Long Did It Take To Fix Bugs?
Sunghun Kim, E. James Whitehead, Jr.

[the plots] show that fixing 50% of the bugs requires appx. 100 to
300 days ... The median bug-fix time is about 200 days.

“ # bugs can’t be reproduced in bugzilla

gnome 4528
mysql 4175
gentoo 2011
redhat / fedora 2623
firefox 1367
apache 297

9/7/2011 FSE 2011 2



Reproducing Bugs

e Ask user for buggy input

e Guide model checker to find execution trace

— Non-trivial effort and time

e Use software replayer

9/7/2011 FSE 2011



9/7/2011

Software Replay




Software Replay

B i

Replaying large
logs take time

Logging slows

|
|
program-down :
|
|

Developer site

User site

9/7/2011 FSE 2011




bbr to the rescue!

9/7/2011 FSE 2011



Replayer Wishlist

e Small runtime overhead

 Small log size

* Fast replay time

9/7/2011 FSE 2011



bbr: A Branch Deterministic
Partial Replayer

Small runtime overhead / Small log size

* Record only branches and dynamic array indices
— Huge log size reduction for data-intensive apps

Fast replay time
* Replay fragment of original execution

 Find execution trace that follows the same
control flow path as the original

— We call that a branch-deterministic trace

* Use symbolic execution to find execution trace
— We call this a partial symbolic replay

9/7/2011 FSE 2011



Running Example

* memcached.c, commit f1f4aec
char *do add delta (item *it, const int64 t delta)

{
int64_t value = ITEM data(it);

int incr = parse_ comm:

if (incr) {

}

else {
value -= delta; What if value was negative?

if (value < 0) {
value = 0;

9/7/2011 FSE 2011



Using bbr to replay

while (!shutdown) {

bbr_checkpoint();
process_req();

replayer solver

process_req() l

1 1
symbolic execution
constraints trace

2
2123
Developer site

process_req()

User site

9/7/2011 FSE 2011 10



Symbolic Execution Example

Code

char *do add delta (item *it,
const int64 t delta)

{
int64 t value = ITEM data(it);
int incr = parse command(...)

if (incr) {

}

else {

value -= delta;

if (value < 0) {

value = 0;

9/7/2011 } FSE 2011

Symbolic State

value 2 symVarl
incr > sym\Var2

Log: branch not taken
Add constraint:

symVar2 # 0
delta > symVar3
value =2 symVarl —symVar3
Log: branch taken
Add constraint:

symVarl —symVar2 <0
value 2 0

11



9/7/2011

bbr internals

FSE 2011

12



Modeling Memory

Continuum of memory models

T

Entirely symbolic

* Any symbolic variable can be an address
e Rely on solver to find actual values for addresses

& No need to explicitly keep track of aliases

* Generate huge constraints with long solve times
® Not scalable to replay long executions

9/7/2011 FSE 2011 13



Modeling Memory

Continuum of memory models

T

Entirely concrete

 All addresses must be concrete values
* Needs complete alias knowledge

& Extremely efficient and scalable

® Can’t do this due to partial replay!

9/7/2011 FSE 2011 14



Why do we not have complete alias
information?

* Allow replaying of execution fragments

* Access memory locations allocated prior to
start of replay

— We don’t know what they point to and their
aliasing information

- Make assumptions about possible aliases
- Explicitly keep track of may-aliases
— Ask solver to solve for the actual aliases

9/7/2011 FSE 2011 15



Modeling Memory: Our Approach

Continuum of memory models

T

Mixed

\Qf More scalable
\Qf Works for partial replay

x Can’t replay bugs that rely on unsafe memory
operations such as buffer overruns

There are many other tools that target those bugs

9/7/2011 FSE 2011 16



Parallel Solver

* Constraints consist of independent groups
— i.e., do not share any variables

e Split constraints and solve in parallel

— Substantial savings in solve time

9/7/2011 FSE 2011

17



9/7/2011

Experiments

FSE 2011

18



Goals

Runtime overhead
Log growth rates
Ability to replay real-world bugs

Effectiveness of parallel solving



Overhead Experiment

e 6 different long-running apps
* Compared time overhead of native versus 4
different logging mechanisms
Replay from beginning:
— non-det: log all non-deterministic data
— loads: log values of unpredictable memory loads
Partial replay:
— bbr: truncates log after N requests

— snapshot: core dumps every N requests + log all non-
deterministic data in between

9/7/2011 FSE 2011 20



Overhead Experiment

4
3.5
™ bbr
3 non-det
“ snapshot
25 — W loads T

=
Ul
i

Normalized time overhead
N
i

=
]

sqlite memcached tcpdump betaftpd thttpd ghttpd
9/7/2011 FSE 2011

o
(9]
]




Discussion

* bbr has the lowest time overhead and log
growth rate

— Partially due to data-intensive nature of apps

* Results on CPU-intensive apps were not as
good

— Apps executed many branches



Bug Replay Experiment

Replayed a total of 11 different real bugs
——m

sqlite cast 2.4M

memcached CAS 24k 1705 158s
tcpdump ISIS 61M 2.3M 5s
thttpd defang 514k 21k 2s
ghttpd CGI 352k 8k 2s

* Variety of bugs were replayed

9/7/2011 FSE 2011

23



Constraint Splitting Experiment

* Replayed different # of requests for two web
servers and compared solve times

App # constraints # groups Single solve Parallel solve
(# requests) time time

ghttpd (10) 20383 823

ghttpd (50) 60384 2314
betaftpd (10) 1534 106
Betaftpd (50) 13223 530

* Significant difference in solve times

9/7/2011 FSE 2011 24




bbr: a partial replayer using
symbolic execution

Low overhead
Small log sizes
Reproduce real-world bugs



