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Abstract
As the number of big data management systems continues to
grow, users increasingly seek to leverage multiple systems in
the context of a single data analysis task. To efficiently sup-
port such hybrid analytics, we develop a tool called PipeGen
for efficient data transfer between database management sys-
tems (DBMSs). PipeGen automatically generates data pipes
between DBMSs by leveraging their functionality to trans-
fer data via disk files using common data formats such as
CSV. PipeGen creates data pipes by extending such func-
tionality with efficient binary data transfer capabilities that
avoid file system materialization, include multiple important
format optimizations, and transfer data in parallel when pos-
sible. We evaluate our PipeGen prototype by generating 20
data pipes automatically between five different DBMSs. The
results show that PipeGen speeds up data transfer by up to
3.8× as compared to transferring using disk files.

Categories and Subject Descriptors H.2.4 [Database
Management]: Systems—Distributed databases, Query pro-
cessing; H.2.5 [Database Management]: Heterogeneous
Databases

Keywords Hybrid analytics, heterogeneous data transfer
1. Introduction
Modern data analytics requires retrieving data stored in mul-
tiple database management systems (DBMSs). As an ex-
ample, consider a scientist who collects image data in an
array database [45] while storing other metadata in a rela-
tional DBMS. To analyze her data, she writes a query that
retrieves data from the relational store and ingests it tem-
porarily into the array database to join it with her image data.
She further extracts features from her images that she moves
to a graph database [29] to leverage its specialized capabil-
ities such as machine learning algorithms. This type of hy-
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brid analytics is increasingly common. Most big data system
vendors today already support some type of connection be-
tween Hadoop [4] and their parallel database management
system [12, 33, 46]. Several efforts focus on creating a more
complete virtualized layer on top of all of an enterprise’s
data [19, 34, 40]. Yet other efforts build new generation sys-
tems designed specifically for hybrid analytics [1, 14]. Un-
fortunately, in spite of the need, hybrid analytics remains
poorly supported because individual DBMSs remain poorly
connected. We lack solutions for seamlessly and efficiently
moving intermediate query results as an analysis crosses sys-
tem boundaries. This functionality is critical to ensuring the
high performance of hybrid analytics.

In general, a hybrid analytics task involves transfer-
ring data among n different DBMSs, each potentially hav-
ing its own internal data format. Efficient hybrid analytics
thus requires moving data efficiently among the DBMSs
involved [43]. This problem is comparable to performing
an extract-transform-load operation, and there are two ap-
proaches to solving this problem. First, many DBMSs sup-
port serializing data between the internal format used by the
DBMS and an external one. Users can transfer data by ex-
porting it from one DBMS and importing into another. This
works well when a common data format exists between the
DBMSs involved, for instance text-based data formats such
as comma-separated values (CSV) or binary data formats
such as Arrow [6]. Unfortunately, moving data using a text-
oriented format is costly: it requires serializing the data from
the source DBMS, storing the serialized data to the disk, and
importing it into the internal format of the target DBMS.1

Using binary formats alleviates some of these overheads, al-
though data materialization via the disk still incurs unnec-
essary and significant time and storage space. Additionally,
while support for text-oriented formats such as CSV are
common, shared binary formats remain rare. For example,
CSV is the only text-oriented data format supported by all
five DBMSs used in our evaluation, and no common binary
data format is supported by all of them.

A second approach to moving data that avoids using
the disk as an intermediary is to implement dedicated

1 In this paper, we use DBMS to refer to relational and non-relational stores.
Also, we assume the transferred data is not persisted in the target DBMS
after query execution.



data transfer programs, i.e., data pipes, between specific
source and target DBMSs. Common data transfer proto-
cols such as JDBC [2] and Thrift [7] are often not im-
plemented to support reading or writing data in parallel,
and because of this are impractical for efficiently moving
data between systems. Other dedicated software packages
exist, which do transfer data in parallel between specific
systems, such as spark-sframe for moving data between
Spark and GraphLab [48]. Unfortunately, generalizing this
approach requires implementing O(n2) data pipes to trans-
fer data between n different DBMSs. Besides being imprac-
tical, this approach requires knowledge about the internals of
each DBMS, making it inaccessible to non-technical users.
Even for technical professionals, implementing dedicated
data pipes is often a brittle and error-prone process with
quickly outdated mechanisms.

In this paper, we describe a new tool called PipeGen
that retains the benefits of dedicated data pipes but with-
out the shortcomings of manual data pipe implementation
or serialization via physical storage. The key idea is to lever-
age a DBMS’s existing data serialization functionality for
commonly-used formats (e.g., CSV) to automatically gen-
erate data pipes from DBMS binaries. To do so, PipeGen
assumes existing import and export functionality for a given
DBMS and unit tests that exercise the code associated with
these operations, where export tests cover code paths from
reading data in the internal representation to serializing it
to the disk, and import tests read serialized data from disk
back into the internal data representation. Should existing
tests not cover all relevant code paths, PipeGen allows users
to provide additional test cases to increase coverage.

Data pipes are created in two steps. First, PipeGen exe-
cutes the data export unit tests and analyzes the DBMS bi-
nary to create an export data pipe that transmits data via a
network socket rather than the disk. Then, PipeGen uses the
import unit tests to create an import data pipe that reads data
from a network socket rather than a disk file. The same tests
are used to validate the correctness of the generated data
pipes. To use the generated pipes, users issue queries that
export and import from disk files using a special filename,
whereupon PipeGen creates a network socket and connects
the generated import and export pipes to transmit data.

To further speed up data transfer, PipeGen comes with a
number of optimizations. First, PipeGen attempts to trans-
mit data using binary rather than text-oriented formats. This
is done by serializing data using external binary encoders
(Apache Arrow [6] in our current implementation) rather
than text encoders in the generated pipes. As another op-
timization, PipeGen analyzes the code to eliminate textual
delimiters during data transfer. Finally, PipeGen compresses
the encoded data to further reduce transfer time.

We have implemented a prototype of PipeGen that gen-
erates data pipes for DBMSs written in Java by analyzing
their bytecode implementations. PipeGen currently does not
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Figure 1. Total time for an astronomy workflow with and
without PipeGen data pipes. Distances were computed in
Myria and transferred to Spark for clustering.

address the problem of schema matching and mapping. It
assumes that users of the generated data pipes will insert ap-
propriate operators to transform data as needed.

In sum, this paper makes the following contributions:
• We describe an approach based on program analysis

to automatically create data pipes for efficient direct data
transfer between DBMSs (Section 3 and Section 4).

• We present techniques that improve the performance of
the generated pipes, including encoding data using binary
rather than text-oriented formats, applying compression, and
transferring data in columnar form (Section 5).

• We build a prototype of PipeGen and evaluate it by gen-
erating data pipes between five different Java-based DBMSs.
The optimized data pipes perform up to 3.8× faster than a
naïve approach that transfers data via the file system using
CSV (Section 6).

2. Motivating Example
Consider an astronomer who studies the evolution of galax-
ies using N-body simulations of the universe [24]. The sim-
ulation output takes the form of a series of snapshots, each
one comprising particles distributed in 3D space. A typical
workflow for the astronomer is to first cluster the particles
for each snapshot into galaxies and then analyze the evolu-
tion of these galaxies over time. In this example, the particle
clustering is a critical piece of the analysis and astronomers
often experiment with different clustering algorithms [26].

In our scenario, an astronomer uses the Myria DBMS [23,
31] to analyze the output of an N-body simulation, including
performing an initial particle clustering, when she learns of
a novel clustering method. This new method may or may not
outperform the current approach, and the astronomer is inter-
ested in evaluating the two. Critically, however, Myria does
not support this technique, but it is available in Spark [52].

A typical approach is the following: perform data prepa-
ration in Myria, export the intermediate result to the file sys-
tem, and import the files into Spark. Since the only common
file format supported by both systems is CSV (they support
JSON but produce incompatible documents), the intermedi-



ate result is materialized using CSV files. A second iteration
is necessary to bring results back to Myria for comparison.

Unfortunately, transferring large datasets via the file sys-
tem is an expensive proposition, and for some datasets there
may be insufficient space available for a second materializa-
tion. The alternate approach of modifying the DBMS source
code to support efficient data transfer requires deep program-
ming and DBMS expertise.

To illustrate, we execute the workflow described above
using a two-node cluster and the 100 GB present-day snap-
shot of an astronomy simulation stored in Myria. An initial
data clustering has already been performed on the data in
Myria. Our goal is to count differences in cluster assign-
ments between this existing data clustering and those for
power iteration clustering (PIC) [28] available on Spark. We
compute pairwise distances in Myria between all particles
having distance less than threshold ε = 0.00024, set by our
astronomy collaborators. This yields approximately one bil-
lion pairs. We then transfer this data to Spark where we per-
form PIC clustering. Finally, we transfer the resulting as-
signments back to Myria for comparison with the existing
clusters. To contrast different data transfer mechanisms, we
perform the transfer using as intermediary both the file sys-
tem and data pipes generated by PipeGen.

Figure 1 illustrates the performance of each of these steps.
When using the file system, transferring the large set of
intermediate pairwise differences is already more expensive
than either of the other two steps alone. Using the data pipe
generated by PipeGen, however, reduces the data transfer
time from 66 to 28 minutes.

If the astronomer finds the results useful, she may repeat
the comparison for the other snapshots and may even include
the new clustering algorithm as part of her regular data
analytics pipeline. In those scenarios, the data pipes created
by PipeGen will repeatedly deliver the performance benefit.

3. The PIPEGEN Approach
PipeGen enables users to move data efficiently between
DBMSs. In this section, we give an overview of PipeGen’s
usage and approach.

3.1 Using PipeGen
PipeGen works in two phases. First, a user invokes PipeGen
to generate new bytecode for the data pipes. Second, the user
writes and executes queries that use the generated pipes.
Constructing a data pipe. To generate a data pipe, the user
invokes PipeGen with several inputs. These include a pair
of scripts that execute unit tests associated with import and
export functionality for a specific data format (e.g., CSV,
JSON, or binary format), and the locations of the DBMS
binaries and any external libraries used. Given these inputs,
PipeGen analyzes the bytecode of the DBMS and generates
an optimized data pipe.
Using the generated data pipe. To use a generated data
pipe, the user executes two queries: one that exports data

Worker1

Worker"

Source	
DBMS	

User

t = scan(data)
x = distances(t,t)
export(x,'db://Target')

x = import('db://Source')
u = cluster(x)

Worker	Directory
source.w1à target.wm
source.wnà target.w1

[1] [2]

[3]

[4]

Worker1

Worker#

Target
DBMS	

…

Figure 2. Using the data pipe generated by PipeGen for the
hybrid analysis from Section 2: 1. User submits a query to
the source DBMS (e.g., Myria) to compute distance and ex-
port to the target DBMS using data pipe. 2. User issues an
import query on the target DBMS (e.g., Spark) to cluster the
result. Data is transferred using the generated data pipe in 3.,
and in 4. a worker directory (see Section 4.3) coordinates the
connection process. PipeGen-related components are high-
lighted in green.

from a source DBMS extended by PipeGen, and one that
imports data into a target DBMS extended by PipeGen, as
shown in Figure 2. These queries may occur in any order;
PipeGen will automatically block until both DBMSs are
ready (see Section 4.3). The queries issued to each DBMS
are written as if the data was moved using the original
export and import code, and they use a special filename (e.g.,
“db://X”) to identify the use of the generated data pipes.

After receiving the queries, PipeGen connects the gen-
erated import and export data pipes in the source and tar-
get DBMSs by passing them a network socket to transmit
data. In the case where both DBMSs support multiple worker
threads, they are matched with each other by a worker direc-
tory maintained by PipeGen, as shown in Figure 2.

Alternatively, the PipeGen automatically-generated data
pipes can be used in other contexts such as by being
integrated into an existing hybrid [14, 27] or federated
DBMS [25], with the query optimizer determining when
the generated pipes should be used. However, in this paper
we focus on the first usage, where users explicitly submit
queries for execution.

3.2 Data Pipe Generation Overview
To generate a data pipe, PipeGen takes as input the byte-
code of a DBMS and tests that exercise the import and ex-
port functionality for a given format. It begins by executing
and analyzing the provided tests. Using the results, it mod-
ifies the bytecode of the DBMS to generate a data pipe that
can transfer data directly between that DBMS and another
PipeGen-extended DBMS that uses a common data format.
When the common format is text-oriented, PipeGen further
optimizes the format of the transferred data to improve per-
formance, as we will discuss in Section 5. Finally, PipeGen
verifies the correctness of the new data pipe. The full process
is illustrated in Figure 3.
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Figure 3. Compile-time components of PipeGen. The file
IO redirector (IORedirect) generates a data pipe to transfer
data via a socket, while the format optimizer (FormOpt)
improves efficiency for text-oriented formats.

PipeGen supports single-node and parallel DBMSs. For
the latter, as illustrated in Figure 2, the bytecode produced
transfers data in parallel directly between individual work-
ers. Our implementation and evaluation currently target
shared-nothing systems, but the approach can be applied to
other parallel architectures.

4. File IO Redirection
In this section, we discuss the redirection component of
PipeGen. This component, called IORedirect, creates a data
pipe from the DBMS’s existing serialization code and mod-
ifies that code such that instead of using the file system, data
are exported to (and imported from) a network socket pro-
vided by PipeGen at runtime. When the source and target
DBMSs are colocated on the same machine, the socket is
a local loopback one. Otherwise the socket connects to the
remote machine hosting the target DBMS, with the address
provided by a directory as part of PipeGen (Section 4.3).

4.1 Basic Operations
To generate a data pipe, PipeGen first locates in the DBMS’s
bytecode the relevant fragments that import from and export
data to disk files. It does this by instrumenting the execution
of the export and import unit tests to inject tracing code that
enables PipeGen to identify file system operations (e.g., file
open and close). It then substitutes these operations with
equivalents on a network socket. This allows transmitting
arbitrary size datasets (in contrast to an approach based on
memory-mapped files, for example), and for file systems that
do not support named pipes (e.g., HDFS).

However, it does not suffice to replace all file system op-
erations in the bytecode with socket equivalents, as a DBMS
may open multiple, unrelated files such as debugging logs.
IORedirect disambiguates this by capturing the filenames
that are used in all file open calls. Calls with filenames other
than the target of the import or export are eliminated.

IORedirect then modifies each remaining call site by
adding code that redirects I/O operations to a network
socket. The new code is executed only when a user speci-
fies a reserved filename (“db://X”) for import or export. The

DBMS A (source) DBMS B (target)

export filename="db://B"
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Operator
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Figure 4. PipeGen creates a data pipe to transmit data via a
socket. A user utilizes the data pipe by specifying a reserved
filename (“db://X”) as the import/export destination.

1 void e x p o r t ( S t r i n g fname , . . . ) {
2 . . .
3 s t r e a m = new F i l e O u t p u t S t r e a m ( fname ) ;
4 . . .
5 s t r e a m . c l o s e ( ) ; }

⇓
1 void e x p o r t ( S t r i n g fname , . . . ) {
2 . . .
3 s t r e a m = fname . matches ( f o r m a t )
4 ? new D a t a P i p e O u t p u t S t r e a m ( fname ) ;
5 : new F i l e O u t p u t S t r e a m ( fname ) ;
6 . . .
7 s t r e a m . c l o s e ( ) ; }

Figure 5. Modifications to create a Java data pipe. Unit tests
indicate that line 3 (top) should be modified. The modified
code below matches against the reserved filename format
(bottom, line 3), and uses the generated data pipe if a match
is found (bottom, line 4). Thanks to subtyping, other uses of
the stream are unaffected (e.g., line 7).

conditional nature of the redirection is important because we
want to preserve a DBMS’s ability to import from and export
to disk files. This modified architecture is shown in Figure 4.

When adding the conditional logic to each relevant call
site, IORedirect introduces a specialized data pipe class into
the DBMS that reads or writes to a remote DBMS via a
passed-in network socket rather than the file system. This
class is a subtype of its file system-oriented counterpart.
Subtyping allows PipeGen to substitute all instances of the
file IO classes with a data pipe instance. To illustrate, a
socket descriptor can be substituted for a file descriptor in
a C or C++-like language, while Java or .NET file streams
can be interchanged with network socket streams.

IORedirect modifies the code to use the generated data
pipe when the reserved filename is specified. Figure 5 illus-
trates one modification made by IORedirect for the Myria
DBMS, which is written in Java. Here an instantiation of
FileOutputStream is replaced with a ternary operator that
checks for the reserved filename and substitutes a data pipe
class (a subtype of FileOutputStream) if so. Thanks to sub-
typing, other IO operations (e.g., close) operate as before.

4.2 Verification
To verify the correctness of the modifications as well as the
correctness of the optimizations that we describe in Sec-
tion 5, PipeGen also includes a module called PipeVerify.

Following standard practices in the programming systems
community [17, 32, 35, 36, 41], PipeGen defines correctness



of the generated data pipes based on passing the unit test
cases that are used during pipe generation. Operationally, the
correctness of the generated data pipe is verified as follows.
First, PipeVerify launches a verification proxy that imports
and exports data as if it were a remote DBMS. This proxy
redirects all data received over a data pipe to the file system,
and transmits data from the file system through a data pipe.
Next, PipeVerify executes the unit tests for the modified
DBMS using the reserved filename format that activates the
data pipe for all files and connects the unit test outputs and
inputs over that pipe to the the verification proxy. As data
is imported and exported over the data pipe, the verification
proxy reads from and writes to disk. PipeVerify then relies
on existing unit test logic to verify that the contents that are
read from or written to disk are correct.

Finally, IORedirect exposes a dynamic debugging mode
that verifies the correctness of the generated data pipe at
runtime. Under this mode, a user specifies that n elements of
the transmitted data be both written to the disk using existing
serialization logic, and also transmitted over the data pipe.
The receiving DBMS then reads the data from the file system
and compares it to the values that have been transmitted over
the pipe. Any deviations trigger a failure and imply that the
failing query should itself be used as an additional unit test
during data pipe creation.

4.3 Parallel Data Pipes
Many multi-node DBMSs support importing or exporting
data in parallel using multiple worker threads. PipeGen uses
a worker directory to match up the worker threads in the
source and target DBMSs. The directory is instantiated by
PipeGen when the DBMS starts and is accessible by all
DBMS worker processes.

The worker directory is used as follows. When a user ex-
ports data from DBMS A to DBMS B, as DBMS B prepares
to import, each worker b1, . . . ,bn registers with the direc-
tory to receive data from DBMS A. As data is exported from
DBMS A, workers a1, . . . ,an query the directory to obtain
the address and port of a receiving worker bi. Each export-
ing worker ai blocks until an entry is available in the di-
rectory, after which it connects to its corresponding worker
using a network socket. A simplified Java implementation
for the query process is shown in Figure 6, and Figure 7 de-
scribes the overall workflow.

The worker directory ordinarily assumes that the num-
ber of workers between the source and target DBMSs are
identical. However, a user may embed metadata to explicitly
indicate the number of exporting and importing processes.
For example, an export from DBMS A using two workers to
DBMS B with three workers would use the respective file-
names db://A?workers=2 and db://A?workers=3. When
the number of importing workers exceeds the exporters, the
worker directory opens a “stub” socket for the orphaned im-
porting worker that immediately signals an end-of-file con-
dition; under this approach the extra importing workers sit

1 class DataPipeOutStream extends
FileOutputStream {

2 DataPipeOutStream(String fname) {
3 e = Directory.query(fname);
4 skt = new Socket(e.host , e.port);
5 ... } }

Figure 6. Simplified Java implementation of directory
query logic. The query (line 3) blocks until an import worker
has registered with the directory. The resulting directory en-
try is used to open a socket to the remote DBMS (line 4).
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Figure 7. Using the worker directory to initiate data trans-
fer. In (1), import worker b j from query Q1 registers with
the directory and awaits a connection. In (2), export worker
ai queries the directory and blocks until an entry is available,
after which it uses the details to connect (3).

idle until the data transfer has completed. The case where
the number of exporters exceeds the number of importers is
handled similarly, though we leave this as a future extension.
Finally, IORedirect supports simultaneous data transfer by
independent queries by attaching a unique query identifier
to the reserved filename (e.g., db://A?id=n).

5. Optimizations
The data pipe that IORedirect generates can immediately be
used to transfer data between two systems using a common
format covered by unit tests. For example, a user might use
the data pipe to transfer data between Spark and Giraph
using Hadoop sequence files, as that format is supported by
both systems and is exercised by unit tests.

Unfortunately, it is rare for two DBMSs to support the
same efficient binary format. For example, Apache Parquet
is (natively) supported by only two of the systems we eval-
uate (Spark [52] and Hadoop [4]). Giraph does not support
Parquet without third-party extension while Derby [3] does
not support import and export of any binary format.

By contrast, support for text-oriented formats is far more
pervasive: all of the DBMSs we evaluate (Myria [23], Spark
[52], Giraph [8], Hadoop [4], and Derby [3]) support bulk
import and export using a CSV format, and all but Derby
support JSON. Accordingly, we expect users to revert to
text-based data formats to transfer data between such sys-
tems, due to the lack of shared binary-based data formats.



Unfortunately, text-based formats are inefficient and in-
cur substantial performance overhead, including:

• String encoding of numeric types. It is often the case
that the size of a converted string greatly exceeds that of
its original value, which increases transfer time. For exam-
ple, the 4-byte floating point value −2.2250738585072020 ·
10−308 requires 24 bytes to encode as a string.

• String conversion and parsing overhead. Export and
import logic spends a substantial amount of time converting
primitive values into/from their string representation.

• Extraneous delimiters. For attributes with fixed-width
representations, many formats include extraneous separators
such as delimiters or newlines.

• Row-orientation. DBMSs that output CSV and JSON
often do so in a row-oriented manner; this is the case for all
of the DBMSs we evaluate in Section 6. This makes it dif-
ficult to apply layout and compression techniques that ben-
efit from a column-oriented layout. For instance, our exper-
iments show that converting the exported data to column-
major form before transmitting offers a modest performance
benefit (see Figure 12).

To improve the performance of text-based formats,
PipeGen comes with a format optimizer called FormOpt
(Figure 3) to address these inefficiencies. FormOpt opti-
mizes a given text format in one of two modes. First, it ana-
lyzes the DBMS bytecode to determine if the export or im-
port logic uses an external library to serialize data to JSON
or CSV (PipeGen currently supports the Jackson JSON li-
brary [16] and we plan to support Java JSONArrays and the
Apache Commons library [5]). If so, FormOpt replaces use
of the library with a PipeGen-aware variant, to be discussed
in 5.2. The implementation of this variant is then directly re-
sponsible for performing the optimizations described above.

On the other hand, a DBMS might directly implement
serialization functionality without using an external library.
For example, Myria directly implements its JSON export
functionality. For such systems, FormOpt supports a second
mode that leverages string decoration to target the string
production and consumption logic that occurs during data
export and import. Since components of string decoration
are used when applying the library extension strategy, we
introduce it first and then discuss the extension process.

5.1 String Decorations
Without using external libraries, data is serialized into CSV
or JSON format by first converting objects and primitive val-
ues into strings, concatenating the strings while interspersing
delimiters and metadata such as attribute names, and writing
the result. To optimize these steps, FormOpt modifies the
DBMS bytecode such that, whenever the modified DBMS
attempts to write the string representation of a fixed-width
primitive, it instead writes to a compact binary representa-
tion provided by PipeGen. Ordinary strings and other non-
primitive values are transmitted in their unmodified form. As

we will see, doing so eliminates the transmission of unnec-
essary values such as delimiters and attribute names.

To accomplish this bytecode-level modification,
PipeGen’s data pipe (introduced in Section 4.1) must
receive the primitive values of the data to transmit before
their conversion into strings. The core difficulty in ensuring
this property is that there may be many primitive values
embedded in any given string that is written to the data
pipe. For example, a particular DBMS might concatenate
together all attributes before writing them to the output
stream s: s.write(attr1.toString() + “,” + attr2-
.toString() + ...). By the time the data pipe receives
the concatenated value, it will be too late as both of the
attributes would have already been converted into strings.

FormOpt addresses this by introducing a new aug-
mented string called AString, which is a subtype of
java.lang.String. AString is backed by an array of
Objects rather than characters, with the goal of storing the
data to be transmitted in binary rather than textual form. By
substituting String instances for AStrings in the appropri-
ate locations, FormOpt avoids the problem described above
by storing references to the objects to be serialized rather
than their string representation.

For example, given ordinary string concatenation:
s = new Integer (1).toString () + "," + "a";

FormOpt changes the statement into one that uses
AStrings:

s = new AString (1) + new AString(",") +
new AString("a");

Each of the three instances maintains its associated value
as an internal field (1, ",", and "a" respectively) and the
concatenated result—itself an AString instance—internally
maintains the state [1, ",", "a"]. Note that the final
AString instance need not include the concatenated string
"1,a" in its internal state since it may easily reproduce (and
memoize) it on demand. More complex types are immedi-
ately converted into strings during this aggregation process
to ensure that subsequent changes to their state do not af-
fect the internal state of the AString instance. However,
as we shall see below, converting a complex object into a
string (e.g., through a toString invocation) may produce
an AString instance, which allows for nesting.

When a DBMS’s implementation invokes an IO method
on an injected data pipe, the data pipe implementation in-
spects any string parameter to see if it is an AString. Ad-
ditionally, methods exposed by the data pipe that produce
a string return an AString. During export, this allows the
data pipe to directly utilize the unconverted values present in
the internal state of an AString; similarly, during import the
AString implementation efficiently executes common op-
erations such as splitting on a delimiter and conversion to
numeric values without materializing as character string.

This resolves the problems we described above, but does
not address the issue of where to substitute an AString for a



Algorithm 1 String decoration
function TRANSFORM(T : tests)
1: for each t ∈ T do
2: Find relevant IO call sites C
3: for each c ∈C do
4: Construct data-flow graph G
5: for each expression e ∈ G do
6: if e is literal v or
7: e is instantiation String(v) or
8: e is v.toString() then
9: Replace v with AString(v)

10: else if e is Integer.parseInt(v) then
11: Replace v with AString.parseInt(v)
12: else if e is Float.parseFloat(v) then
13: Replace v with AString.parseFloat(v)
14: Similarly for other string operations

regular string instance. Intuitively, we want to substitute only
values that are (directly or indirectly) related to data pipe
operations, rather than replacing all string instances in the
bytecode. To find this subset, PipeGen executes each of the
provided unit tests and marks all call sites where data is writ-
ten to/read from the data pipe. PipeGen then performs data-
flow analysis to identify the sources of those values (for ex-
port) and conversions to primitive values (for import). This
produces a data-flow graph (DFG) that identifies candidate
expressions for substitutions.

Using the resulting DFG, FormOpt replaces three types
of string expressions: string literals and constructors, con-
version/coercion of any value to a string (for export), and
conversion/coercion of any string to a primitive (for import).
To illustrate this, Figure 8 shows (a) two potential imple-
mentations of an export function, (b) the code after string
replacement, and (c) the accumulated values in the internal
state of the AStrings after one iteration of the loop.

Algorithm 1 summarizes the replacement process. On
lines 1-2, the algorithm executes each test and identifies the
relevant file IO call sites. On line 4, it uses these sites to con-
struct a DFG. For each expression e that converts to or from
a string format, it replaces e with a corresponding AString
operation (lines 5-14). Lines 6-9 target expressions relevant
for data export; for example, a string literal v is replaced
with an augmented instance AString(v). To support effi-
cient imports, the algorithm performs a similar replacement
for strings converted to primitive values (lines 10-14).

This optimization is also applied to speed up transmitting
user-defined types (UDTs) using text encoding. As above,
the implementation used to convert instances is contained
in the DFG produced by unit test execution, and so each
conversion is replaced with an AString instance. For ex-
ample, a UDT with value {["abc", 6.7]} might pro-
duce an AString instance with the state {"[", "abc",
",", 6.7, "]"}] that is efficiently transferred to the
destination DBMS. If the importing code later parses the
string by splitting on a token, the result is directly pro-
duced using this state. On the other hand, if the UDT is
converted to a byte array representation during export (e.g.,
"abc\0\x40\xD6\x66\x66"), when this array is wrapped in
an AString it is sent unmodified to the destination system.

PipeGen verifies the correctness of these modifications
by executing the specified unit tests as discussed in 4.2.
PipeGen turns off this optimization if one or more unit tests
fail following the modifications made by the FormOpt com-
ponent in string decoration mode, although we have not en-
countered this in our experiments.

5.2 Using External Libraries
As mentioned, many DBMSs use external libraries to serial-
ize data. PipeGen targets these external libraries directly by
including a custom implementation for each external library
(of which there are a few that are commonly used) by over-
riding the methods with PipeGen-aware versions. Under this
mode, FormOpt replaces instantiations of a given formatting
library with a PipeGen-aware implementation that avoids the
overhead associated with strings and delimiters. For exam-
ple, whenever the DBMS invokes a method that builds or
parses the text format, PipeGen instead internally constructs
or produces a binary representation. When the resulting text
fragment is converted to string form, the PipeGen-aware ver-
sion generates an AString that contains the binary repre-
sentation in its internal state. During import, the PipeGen-
aware library recognizes that it is interacting with a data pipe
(q.v. Section 4.1) and directly consumes the intermediate bi-
nary representation. This allows the PipeGen-aware library
to construct an efficient internal representation of the input.

As before, FormOpt must identify only those locations
where a library is used for import and export. Our approach
for doing so—using unit tests and DFGs—is similar to that
of string decoration. For example, if a user specifies JSON
when invoking PipeGen, FormOpt will examine the byte-
code of the DBMS for instantiations of supported JSON li-
braries. Using the resulting DFG, FormOpt replaces string
literals, constructors, and conversion/coercion expressions
in a manner identical to that discussed earlier. Additionally,
FormOpt replaces the instantiation of the library with an
augmented variant along with any writer or stream interfaces
that the library exposes. For example, consider the following
simplified version of the Spark JSON export function:

String toJSON(RDD <String > rdd) {
Writer w = new CharArrayWriter ();
JsonGenerator g = new JsonGenerator(w);
foreach(Object e: rdd){generateJSON(g,e);}
return w.toString (); }

The PipeGen-aware implementation overrides this to:
String toJSON(RDD <String > rdd) {
Writer w = new AWriter(new ACharWriter ());
JsonGenerator g =

new AJsonGenerator(new JsonGenerator(w));
foreach(Object e: rdd) {generateJSON(g,e);}
return w.toString (); } // an AString!

As in string decoration, FormOpt disables library call
replacement if the generated code does not pass all unit
test cases. If string decoration also fails to pass the tests,



1 void export(filename, !)
2 s = open(filename);
3 for(v: !)
4 s.write(str(v));
5 s.write(",");

1 void export(filename, !)
2 s = open(filename);
3 r = "";
4 for(v: !)
5 r += str(v) + ",";
6 s.write(r);

void export(filename, !)
s = open(filename);
for(v: !)

s.write(AString(v));
s.write(AString(","));

void export(filename, !)
s = open(filename);
r = AString("");
for(v: !)

r += AString(v)+Astring(",");
s.write(r);

Expression AString Contents

"1 = AString(&') &'
s.write("1)

"2 = AString(", ") ", "
s.write("2)

⋮
- = AString("") ""
". = AString(&/) &/
"0 = AString(", ") ", "
- += ". + "0 "", &/, ", "

⋮
s.write(-)

(a) (b) (c)

Figure 8. (a) Two ways to implement CSV export (inserting newlines instead of a comma on the last value is omitted for
clarity); (b) after replacement of literals and conversions; (c) accumulated values in AString instances after one iteration.

then PipeGen only generates the basic data pipe as discussed
in Section 4.

5.3 Intermediate Format
Using AStrings resolves the first two sources of overhead
introduced above (encoding of numeric types and conver-
sion/parsing overhead). In this section, we introduce opti-
mizations designed to eliminate delimiters and avoid redun-
dant metadata. These optimizations are implemented inside
PipeGen’s data pipe.

5.3.1 Delimiter Inference and Removal
Text-oriented formats such as CSV and JSON include de-
limiters that separate attributes and denote the start and
end of composite types. In some cases these delimiters are
fixed in advance; for example, square brackets are used in
JSON to indicate an array. However, default delimiters of-
ten vary on a per-system basis. This is common under CSV,
where some systems default to a non-comma delimiter (e.g.,
Hadoop uses tab separation by default) or allow the delim-
iter to be specified by the user (e.g., Derby). To eliminate
delimiters, FormOpt needs to first infer them. FormOpt does
so by first running the provided unit tests. During the exe-
cution of each test, FormOpt counts the length-one strings
within the array and identifies which character is most likely
to be the delimiter. For example, the array [1,"|","a,b","\n"]
contains exactly one length-one string ("|"), and FormOpt
concludes that this is most likely to be the delimiter. The
input [1,"|","a","\n"] is ambiguous, since both "|" and "a"
appear with equal frequency. In this case, FormOpt applies,
in order, the following tie-breaking heuristics: (i) prefer non-
alphanumeric delimiters, and (ii) prefer earlier (in terms of
position) delimiters. Under both heuristics, FormOpt would
select "|" as the final delimiter.

Note that should FormOpt infer an incorrect delimiter,
invalid data will be transmitted to the remote DBMS. In the
previous example, if FormOpt’s selection of "|" was invalid
and the character "a" was actually the correct delimiter, it
would incorrectly transmit the tuple (1,"a") instead of the
correct value ("1|",""). More importantly, this is likely to

cause the unit tests to fail as discussed in Section 4. This
results in FormOpt disabling the optimization until the unit
tests were extended to fully disambiguate the inference.

5.3.2 Redundant Metadata Removal
More complex text formats such as JSON may not require
the delimiter inference described above, but instead serial-
ize complex composite types such as arrays and dictionaries.
When producing/consuming JSON or a similar textual for-
mat, the composite types produced by a DBMS often contain
values that are highly redundant. For example, consider the
following document produced by the Spark toJSON method:

{"column1": 1, "column2": "value1"}
{"column1": 2, "column2": "value2"}
{"column1": 3, "column2": "value3"}

When such JSON documents are moved between systems,
the repeated column names greatly increase the size of the
intermediate transfer. To avoid this overhead, FormOpt mod-
ifies the format of the intermediate data to transmit exactly
once the set of keys associated with an array of dictionaries.
In the above example, FormOpt would transmit the column
names ["column1","column2"] as a key header, and then the
values [(1,"value1"), ...] as a sequence of pairs. When im-
porting, FormOpt reverses this process to produce the origi-
nal JSON document(s).

The logic for this transformation is embedded into the
JSON state machine (a subcomponent of the data pipe) that
is used to consume the AString array. When FormOpt tran-
sitions into the key state for the first dictionary in an array, it
accumulates that key in the key header. Once the dictionary
has been fully examined, PipeGen transmits the key header
to the remote DBMS. Subsequent dictionaries in that array
are transmitted without keys, so long as they are identical to
the initial dictionary. While this approach may be extended
to nested JSON documents, our prototype currently only op-
timizes top-level dictionaries.

If a new key is encountered in some subsequent dictio-
nary after the key header has been transmitted, FormOpt
adopts one of two strategies. First, if the keys from the new
dictionary are a superset of those found in the key header,



FormOpt appends the new key to the existing key header and
retransmits it; this is possible since keys in a JSON object are
unordered [11]. This addresses the common case where the
set of exported keys was not complete due to, for example, a
missing value in the initial exported dictionary.

A second case occurs when the keys associated with a
new dictionary are disjoint from those in the key header.
This might occur during export from a schema-free DBMS,
where exported elements have widely varying formats. In
this case, FormOpt disables the optimization for the current
dictionary and does not remove keys during its transmission.
5.4 Column Orientation & Compression
DBMSs that output text-oriented formats generally do so in
a row-oriented manner. For example, a Spark RDD contain-
ing n elements that is exported to CSV or JSON will gen-
erate n lines, each containing one element in the RDD. This
is also true in the other systems we evaluate, for both JSON
and CSV formats. However, once FormOpt produces an effi-
cient data representation, we no longer need to transmit data
in row-major form. For example, the data pipe can accu-
mulate blocks of exported data and transform it to column-
major form to improve transfer performance. Indeed, recent
work on column-oriented DBMSs suggests that some of the
benefits (e.g., compacting/compression, improved IO effi-
ciency) [44] may also improve performance for data transfer.

After examining various formats for the wire representa-
tion of our data (see Section 6.3) we settled on Apache Ar-
row as the format we transmit, since it performs the best. To
maximize performance, our prototype accumulates blocks
of rows in memory, pivots them into column-major form
by embedding them into Arrow buffers, and transmits these
buffers to the destination DBMS. The receiving DBMS re-
verses this process.
6. Evaluation
We have implemented a prototype of PipeGen in Java.
PipeGen enhances Java DBMSs that make use of the local
file system or HDFS for data import and export. All mod-
ifications are made on bytecode and do not require access
to the source code of the DBMS. PipeGen uses btrace [47]
for instrumentation, javassist [9, 10] for bytecode modi-
fication, and Soot [49] to produce dataflow graphs used to
identify augmentation sites.

Our prototype assumes that a DBMS’s import and export
implementations are well-behaved, meaning that they do
not perform large seeks, since seeks are not supported by
network sockets. It also expects that a file is opened exactly
once, since otherwise multiple sockets will be created when
using the pipe. For text-based formats, PipeGen assumes that
character strings are used to serialize data (rather than byte
arrays, for instance), and that values are constructed through
string concatenation rather than random access.

We evaluate PipeGen using benchmarks that show data
transfer times between five Java DBMSs: Myria [23], Spark
1.5.2 [52], Giraph 1.0.0 [8], Hadoop 2.7.1 [4], and Derby
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Figure 9. Total speedup between file system and PipeGen
for 109 elements. Transfer occurred from a source DBMS (x-
axis) to a destination DBMS (bar color/pattern) using CSV.
The number of workers/tasks was fixed at 16.
10.12.1.1 [3]. We first examine performance differences be-
tween the PipeGen data pipes and importing/exporting data
through the file system (Section 6.1). Next, we analyze the
performance gains from each of our optimizations (Sec-
tion 6.2). We then evaluate the impact of different data for-
mats transferred between DBMSs (Section 6.3), along with
the compression method across colocated and wide-area
clusters (Section 6.4). Finally, we show the number of mod-
ifications made during data pipe compilation (Section 6.5).

Unless otherwise specified, all experiments utilize a 16-
node cluster of m4.2xlarge instances in the Amazon Elastic
Compute Cloud. Each node has 4 virtual CPUs, 16 GB of
RAM, and a 1TB standard elastic block storage device. We
deploy the most recent stable release of each DBMS under
OpenJDK 1.8. Except for Derby (a single-node DBMS), we
deploy each system across the cluster using YARN [50]. For
each pair of DBMSs, we colocate workers and assign each
YARN container 2 cores and 8 GB of RAM.

With the exception of Figure 10, the experiments in this
section all involve the transfer of n elements with a schema
having a unique integer key in the range [0,n] followed by
three (integer ∈ [0, n], double) pairs. Each 8-byte double was
sampled from a standard normal distribution. For Giraph,
we interpreted the values as a graph having n weighted
vertices each with three random directed edges weighted by
the following double.
6.1 Paired Transfer
Figure 9 shows the total transfer time between pairs of
DBMSs using an export/import through the file system us-
ing functionality provided by the original DBMS versus an
export/import using PipeGen-generated data pipes. For this
experiment, we transfer 109 elements using 16 workers, and
enable all optimizations. Since CSV is the only common for-
mat supported by all DBMSs, file system transfers use this
format and the PipeGen data pipes are generated from CSV
export and import code.

As the results show, data pipes significantly outperform
their file system-oriented counterparts. For this transfer size,
the average speedup over all DBMSs is 3.2×, with maxi-
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Figure 10. Overall speedup between file system and
PipeGen transfer for different data types and sizes. Each
transfer moves 4 ·108 elements of the given data type.

# Workers 1 4 8 16

Speedup 3.1 3.7 3.5 3.7

Table 1. Overall speedup (file system / PipeGen runtime)
from Myria to Spark for 4 · 108 elements when varying the
number of workers and tasks involved in the transfer.

mum speedup up to 3.8×. This speedup is approximately the
same across all transfer sizes and pairs of DBMSs. As shown
in Table 1, this speedup is also similar for various cluster
sizes. In this experiment, we compare PipeGen with using
local file system. As we show later, going through HDFS is
even slower (see Figure 11).

This result emphasizes the impact that PipeGen can have
on hybrid data analytics: without writing a single line of
code, a user can get access to 20 optimized data pipes and
speed up transfers between any combination of the five sys-
tems tested (by 3.2× on average). PipeGen produces this
benefit automatically without requiring that developers agree
on an efficient common data format or have access to the
DBMS source code.

Meanwhile, the magnitude of the benefit does depend on
the types of data transferred. Figure 10 shows the speedup
between the file system and PipeGen for 4 · 108 elements
of various data types. As the figure shows, transfer perfor-
mance for fixed-width primitives is significantly better than
string transfers due to the smaller amount of data transferred
when using AStrings. While strings do not benefit from our
optimizations, they still benefit from avoiding serializing to
the file system.

6.2 Optimizations
Next, we drill down into the different components of the
speedup afforded by PipeGen’s data pipes. In this section,
we evaluate the performance benefits of FormOpt’s opti-
mizations, which convert text-formatted data to binary after
removing delimiters and metadata.

6.2.1 String Decoration
We first evaluate the optimizations due to using AStrings as
described in Section 5.1. Figure 11 shows the performance
of an export between Myria and Giraph. For this pair of
DBMSs, FormOpt’s optimizations are responsible for ap-

proximately one third of the runtime benefit beyond what
IORedirect already provides.

To assess the benefits of avoiding both text-encoding
and delimiters, we also compare the performance against
a manually-constructed data pipe that transmits binary data
and removes delimiters. To produce the manually con-
structed pipes, we modify each DBMS to directly trans-
mit/receive results to/from a network socket and remove
logic related to text-encoding that might degrade perfor-
mance.

We then transfer data in both directions and measure
the total runtime. Overall, the PipeGen-generated data pipes
perform closely to their manually-optimized counterparts.
Transferring from Myria to Giraph is slower due to Gi-
raph’s import implementation, which materializes AString
instances into character strings and escapes individual char-
acters.

6.2.2 Library Extensions
We implemented a library extension implementation for the
Jackson JSON library and evaluate its performance under
the library extension mode of FormOpt. Interestingly, for
the pairs of DBMSs that we examine, most do not support
mutually-compatible exchange using JSON as an intermedi-
ate format. Myria produces a single JSON document, Spark
and Giraph both expect a document-per-line, and Derby does
not natively support bulk import and export of JSON at all.

Figure 12 shows the performance of using library ex-
tensions with Jackson between Spark and Giraph. We use
a mutually-compatible JSON adjacency-list format for the
schema of transmitted data. We find that the relative perfor-
mance benefit closely matches that of the string decorations.

6.3 Intermediate Format
Once FormOpt captures the transferred data in an AString,
PipeGen can use any intermediate format to transfer the data
between DBMSs. As expected, the choice of that intermedi-
ate format significantly impacts performance. This observa-
tion is important as a key contribution of PipeGen is to free
developers from the need to add new data import and export
code to the DBMS every time a new data format becomes
available.

Our experiments include two third-party formats: proto-
col buffers [20] and Arrow [6]. We also evaluate the ba-
sic custom format from the previous section, which trans-
mits schema information as a header, values in binary form,
and uses length-prefixing for strings. We examine proto-
col buffers using a version where message templates are
fixed at compile time and another where they are dynam-
ically constructed. Figure 13 shows the results. Protocol
buffers, depending on whether message formats are stati-
cally or dynamically generated, perform approximately as
well as PipeGen’s custom binary format. Arrow offers a sub-
stantial boost in performance due primarily to its optimized
layout and efficient allocation and iteration process [6]. The
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Figure 11. Transfer time between the Myria and Giraph using PipeGen and a manually-optimized variant. In (a) we export
tuples from Myria and import them as vertices in Giraph. In (b) we reverse the direction of transfer. We show as baseline
transfer through the file system, and HDFS with replication factors of 1 and 3. We then activate PipeGen optimizations as
follows. First, we apply the IORedirect component. Next, we transmit fixed-width values in binary form. We then activate
delimiter removal. The PipeGen series shows all optimizations, which additionally include column pivoting.
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Figure 13. Transfer performance by intermediate format
between Hadoop and Spark. Message templates for proto-
col buffers were generated both at compile time and dynam-
ically at runtime.

column-oriented format offers a further modest advantage
over its row-oriented counterpart.

Overall, Arrow yields the highest performance as an in-
termediate format. Since we preallocate a buffer when pivot-
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Figure 14. Transfer time from Myria to Giraph for 109 ele-
ments with various Arrow buffer sizes. Each column buffer
was sized to hold the number of values listed on the x-axis.

ing blocks of data into a columnar format, we must select an
appropriate size for this intermediate buffer. In Figure 14 we
show transfer performance between Myria and Giraph for
various ArrowBuf sizes. Note that since Arrow is column-
oriented, we allocate one buffer for each attribute. As long
as the buffer is not too small, the buffer size has only a neg-
ligible impact on performance.
6.4 Compression & Inter-cluster Transfer
Orthogonal to the previous choices is PipeGen’s ability to
compress the data transferred between pairs of DBMSs. Util-
ity of this approach depends on the geographical distance be-
tween DBMS workers, with nearby DBMSs being less likely
to benefit than distant ones.

Figure 15 shows Myria-to-Giraph transfer performance
when applying compression. We show three techniques: run-
length encoding (RLE), dictionary-based compression (zip),
and uncompressed transfer. We separately show transfer per-
formance for colocated workers (Figure 15(a)), workers with
a 40ms artificial latency introduced into the network adapter
(Figure 15(b)), and workers located in different data centers
with∼100ms latency (Figure 15(c)). For colocated workers,
we also show transfer performance using shared memory; all
other transfers utilize sockets.

For colocated nodes, both compression techniques add
modest overhead to the transfer process that yields a loss
in performance. For nodes with higher latency, our results
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Figure 15. Transfer time between Myria and Giraph using compression. We show transfer for (a) workers on the same physical
node, (b) 40ms artificially-introduced latency, and (c) separate datacenters (approximately 100ms latency). For RLE, zip, and
uncompressed formats we transfer data over a socket. For colocation we also show transfer using uncompressed shared memory.

shows a modest benefit for dictionary-oriented compres-
sion. This suggests that this strategy may be beneficial for
physically-separated DBMSs.
6.5 Code Modifications
Table 2 shows modifications made by the IORedirect and
FormOpt components in terms of the number of classes and
lines of code affected. These results show that the number of
changes is modest across all of the DBMSs we evaluate. The
total number of modifications is small for the IORedirect
component, suggesting that DBMS implementations rarely
open an import or export file at more than one call site. The
FormOpt component modifies more, with library extension
requiring fewer changes than string decoration. Even with
string decoration, for the DBMSs that we evaluate, primitive
values are converted to/from a string in close proximity
in the code where they are written/read. This reduced the
number of modifications required for this optimization.

Mode DBMS Execution IORedirect FormOpt

Time (sec) #Classes LOC #Classes LOC

String Hadoop 245 3 6 6 36
Decoration Myria 160 2 8 5 54

Giraph 223 2 9 4 47
Spark 187 5 18 8 38
Derby 130 2 5 2 67

Lib. Extension Spark 178 5 18 2 6

Table 2. Number of classes and lines of code modified by
the IORedirect and FormOpt phases and execution time.

7. Related Work
PipeGen automatically embeds data pipes into a DBMS. Pre-
vious work in data integration has explored similar manual
embedding for data transfer. For example, Rusinkiewicz et
al. proposed a common transfer format mediated via STUB
operators [38]. These operators are similar to data pipes, but
are manually generated and do not address direct transfer.
Prior work has also explored automatic generation of trans-
formation operators that are similar to data pipes. For ex-
ample, Mendell et al. used code generation under an XML
streaming engine [30]. Other tools target automatic parsing
of semi-structured data for ad hoc processing [18]. While
these efforts shares some commonality with PipeGen, they
do not address data transfer performance between DBMSs.

Similarly, data exchange involves transfer between
DBMSs. However, while work exists related to generat-
ing mappings between schemata across heterogeneous sys-
tems [15], optimization has focused primarily on inference
performance [22, 39], or does not address data shipping per-
formance [37]. In contrast, PipeGen focuses on optimizing
this and assumes that a user (or optimizer) can generate
queries that reconcile schemata.

One concurrent effort [13] investigates optimizations that
select data transfer formats based on the source and target
engines, query, data, and cluster configuration. This line of
work could serve to further improve the performance of the
data pipes that PipeGen generates (e.g., by using it instead
of Apache Arrow buffers).

Finally, PipeGen’s IORedirect component redirects spe-
cific file system calls to sockets. This is similar to previous
work such as the CDE tool, which uses ptrace for redirec-
tion [21]. Similar work uses redirection for prototyping [42],
sandboxing [51] and information flow analysis [53].

8. Conclusion
In this paper we described PipeGen, a tool that automatically
generates efficient data pipes between DBMSs. PipeGen
leverages DBMSs’ support for transmitting data via a com-
mon data format and unit test cases to create data pipes from
existing bytecode. As future work, we plan to target other
common formats (e.g., Apache Parquet) and apply our tech-
niques to non-Java systems.

We implemented a prototype of PipeGen and evaluated
it by generating data pipes across relational and graph-based
DBMSs. Our experiments show that the generated data pipes
can speed up data transfers by up to 3.8× as compared to
transferring data via the file system.

Acknowledgments
This work is supported in part by the National Science
Foundation through grants IIS-1247469, IIS-1110370, IIS-
1546083, and CNS-1563788; DARPA award FA8750-16-2-
0032; DOE award DE-SC0016260; and gifts from the Intel
Science and Technology Center for Big Data, Adobe, Ama-
zon, Facebook, and Google.



References
[1] D. Agrawal, M. Lamine, L. Berti-Equille, S. Chawla, A. El-

magarmid, H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat,
S. Kruse, M. Ouzzani, P. Papotti, J. Quiane, N. Tang, and
M. Zaki. Rheem: Enabling multi-platform task execution. In
SIGMOD, 2016.

[2] L. Andersen. Jdbc 4.2. Technical Report JSR 221, Oracle,
March 2014.

[3] Apache Software Foundation. Derby. https://db.apache.
org/derby, 2015.

[4] Apache Software Foundation. Hadoop. https://hadoop.
apache.org, 2015.

[5] Apache Software Foundation. Apache Commons CSV.
https://commons.apache.org/proper/commons-csv/,
2016.

[6] Apache Software Foundation. Apache arrow. https://
arrow.apache.org/, 2016.

[7] Apache Software Foundation. Apache Thrift. https://
thrift.apache.org/, 2016.

[8] C. Avery. Giraph: Large-scale graph processing infrastructure
on Hadoop. In Hadoop Summit, Santa Clara, 2011.

[9] S. Chiba. Load-time structural reflection in java. In ECOOP,
pages 313–336. Springer, 2000.

[10] Chiba, S. Javassist. http://www.javassist.org.

[11] D. Crockford and T. Bray. The JavaScript object notation
(JSON) data interchange format. IETF RFC, 7159:1–15,
2006.

[12] D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-
Saborit, A. Avanes, M. Flasza, and J. Gramling. Split query
processing in Polybase. In SIGMOD, pages 1255–1266, 2013.

[13] A. Dziedzic, A. Elmore, and M. Stonebraker. Data Transfor-
mation and Migration in Polystores. In HPEC. IEEE, 2016.

[14] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska,
U. Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner,
T. Kraska, et al. A demonstration of the BigDAWG polystore
system. VLDB, 8(12):1908–1911, 2015.

[15] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data ex-
change: semantics and query answering. Theoretical Com-
puter Science, 336(1):89–124, 2005.

[16] FasterXML. Jackson JSON Processor. http://wiki.
fasterxml.com/JacksonHome/, 2016.

[17] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data
structure transformations from input-output examples. In
PLDI, pages 229–239, 2015.

[18] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to
shovels: Fully automatic tool generation from ad hoc data. In
POPL, page 421, 2008.

[19] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor,
A. Clement, and S. Hand. Musketeer: all for one, one for
all in data processing systems. In EuroSys, page 2, 2015.

[20] Google. Protocol Buffers. https://developers.google.
com/protocol-buffers/, 2016.

[21] P. J. Guo and D. R. Engler. CDE: Using system call interpo-
sition to automatically create portable software packages. In
USENIX ATC, 2011.

[22] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio grows up: from research prototype to industrial tool. In
SIGMOD, page 805, 2005.

[23] D. Halperin, V. T. de Almeida, L. L. Choo, S. Chu, P. Koutris,
D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker,
et al. Demonstration of the Myria big data management
service. In SIGMOD, pages 881–884, 2014.

[24] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. Quinn.
Massively parallel cosmological simulations with ChaNGa. In
IPDPS, pages 1–12. IEEE, 2008.

[25] V. Josifovski, P. Schwarz, L. Haas, and E. Lin. Garlic: a new
flavor of federated query processing for DB2. In SIGMOD,
pages 524–532, 2002.

[26] A. Knebe, F. R. Pearce, H. Lux, Y. Ascasibar, P. Behroozi,
J. Casado, C. C. Moran, J. Diemand, K. Dolag,
R. Dominguez-Tenreiro, et al. Structure finding in cos-
mological simulations: the state of affairs. MNRAS, 435(2):
1618, 2013.

[27] H. Lim, Y. Han, and S. Babu. How to fit when no one size fits.
In CIDR, volume 4, page 35, 2013.

[28] F. Lin and W. W. Cohen. Power iteration clustering. In ICML,
page 655, 2010.

[29] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed GraphLab: a framework for
machine learning and data mining in the cloud. VLDB, 5(8):
716–727, 2012.

[30] M. Mendell, H. Nasgaard, E. Bouillet, M. Hirzel, and
B. Gedik. Extending a general-purpose streaming system for
XML. In EDBT, page 534, 2012.

[31] Myria: Big Data Management as a Cloud Service. http:
//myria.cs.washington.edu/.

[32] P.-M. Osera and S. Zdancewic. Type-and-example-directed
program synthesis. In PLDI, pages 619–630, 2015.

[33] F. Özcan, D. Hoa, K. S. Beyer, A. Balmin, C. J. Liu, and Y. Li.
Emerging trends in the enterprise data analytics: Connecting
Hadoop and DB2 Warehouse. In SIGMOD, pages 1161–1164,
2011.

[34] A. Pan, J. Raposo, M. Álvarez, P. Montoto, V. Orjales, J. Hi-
dalgo, L. Ardao, A. Molano, and Á. Viña. The Denodo data
integration platform. In VLDB, pages 986–989, 2002.

[35] D. Perelman, S. Gulwani, D. Grossman, and P. Provost. Test-
driven synthesis. In PLDI, pages 408–418, 2014.

[36] M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional
program synthesis from natural language and examples. In
ICAI, pages 792–800, 2015.

[37] T. Risch, V. Josifovski, and T. Katchaounov. Functional
data integration in a distributed mediator system. In The
Functional Approach to Data Management, pages 211–238.
Springer, 2004.

[38] M. Rusinkiewicz, K. Loa, and A. K. Elmagarmid. Distributed
operation language for specification and processing of multi-
database applications. 1988.

https://db.apache.org/derby
https://db.apache.org/derby
https://hadoop.apache.org
https://hadoop.apache.org
https://commons.apache.org/proper/commons-csv/
https://arrow.apache.org/
https://arrow.apache.org/
https://thrift.apache.org/
https://thrift.apache.org/
http://www.javassist.org
http://wiki.fasterxml.com/JacksonHome/
http://wiki.fasterxml.com/JacksonHome/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://myria.cs.washington.edu/
http://myria.cs.washington.edu/


[39] K. Saleem, Z. Bellahsene, and E. Hunt. Porsche: Performance
oriented schema mediation. Information Systems, 33(7):637–
657, 2008.

[40] J. Sirosh. Microsoft acquires Metanautix to
help customers connect data for business insights.
http://blogs.microsoft.com/blog/2015/12/18/
microsoft-acquires-metanautix-to-help-customers-
connect-data-for-business-insights/, 2016.

[41] C. Smith and A. Albarghouthi. Mapreduce program synthesis.
In PLDI, pages 326–340, 2016.

[42] R. P. Spillane, C. P. Wright, G. Sivathanu, and E. Zadok.
Rapid file system development using ptrace. In ExpCS,
page 22, 2007.

[43] M. Stonebraker. ACM SIGMOD blog: The case for poly-
stores. http://wp.sigmod.org/?p=1629.

[44] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherni-
ack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al.
C-Store: a column-oriented dbms. In VLDB, pages 553–564,
2005.

[45] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The
architecture of SciDB. In SSDBM, pages 1–16, 2011.

[46] X. Su and G. Swart. Oracle in-database Hadoop: when
MapReduce meets RDBMS. In SIGMOD, pages 779–790,

2012.

[47] Sun Microsystems. BTrace. https://kenai.com/
projects/btrace, 2016.

[48] Turi. Spark unity codebase. https://github.com/
turi-code/spark-sframe, 2015.

[49] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In CASCON, page 13, 1999.

[50] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
et al. Apache Hadoop YARN: Yet another resource negotiator.
In SOCC, page 5, 2013.

[51] D. Wagner, I. Goldberg, and R. Thomas. A secure environ-
ment for untrusted helper applications. In USENIX Security,
1996.

[52] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, page 2, 2012.

[53] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in histar. In OSDI, pages
263–278, 2006.

http://blogs.microsoft.com/blog/2015/12/18/microsoft-acquires-metanautix-to-help-customers-
http://blogs.microsoft.com/blog/2015/12/18/microsoft-acquires-metanautix-to-help-customers-
connect-data-for-business-insights/
http://wp.sigmod.org/?p=1629
https://kenai.com/projects/btrace
https://kenai.com/projects/btrace
https://github.com/turi-code/spark-sframe
https://github.com/turi-code/spark-sframe

	Introduction
	Motivating Example
	The  Approach
	Using PipeGen
	Data Pipe Generation Overview

	File IO Redirection
	Basic Operations
	Verification
	Parallel Data Pipes

	Optimizations
	String Decorations
	Using External Libraries
	Intermediate Format
	Delimiter Inference and Removal
	Redundant Metadata Removal

	Column Orientation & Compression

	Evaluation
	Paired Transfer
	Optimizations
	String Decoration
	Library Extensions

	Intermediate Format
	Compression & Inter-cluster Transfer
	Code Modifications

	Related Work
	Conclusion

