Performance Profiling with EndoScope,
an Acquisitional Software Monitoring

!'_ Framework

Alvin Cheung
Sam Madden

MIT CSAIL
August 25, 2008

i Collecting System Runtime Data

= Many uses

» Real-time system monitoring
= Detect security breaches

= Dynamic recompilation

= However, collecting such information is
often difficult

Example: Software Profiling

= Sampling / statistical profilers
= Gprof, oprofile
= Might not be accurate
= Can only be used to collect certain types of statistics

= Augment source code / Binary instrumentation

= ATOM, valgrind, dtrace
= Tedious work
= Create substantial overhead

= Want: a unifying infrastructure that can be used to
collect and reason about program’s runtime data that
IS easy to use and introduces low overhead

Our Contributions

= Easy to use interface
= Use declarative queries

= Uniform data model that represents all sorts of
runtime data

= Model them using the streaming data model

= Small footprint / overhead

= Be acquisitional: queries drive what data is collected
= you only pay to collect data you asked for

= Decouple program running site and monitoring site
= Use both sampling and instrumentation techniques
= Query evaluation tricks

i Outline

s Data Model

Program Runtime Data as Streams

= EndoScope provides a number of basic streams that represent
data coming from the runtime environment

= function start (function name, time)
= Vvariable value (name, value, time)
= Cpu usage (% busy, % idle, time)

= Users can define additional streams on top of basic
streams

= Streams are defined into two categories

= Enumerable streams are those that have discrete values in time
(e.g., function start stream)

= Non-enumerable streams are those that have infinite values in time
(e.g., CPU usage stream)

= Non-enumerable streams need to be guantified before they can be
used (e.g., in an iterator)

6

i Operations on Streams

= Quantify
= Sample non-enumerable streams at points
In time
= Select
= Project
= Aggregate

= Window-based join

i Conditions / Triggers

= Specify actions to be performed when
certain event occurs

= Action examples:
= Start monitor CPU / heap usages
= Generate report to user
=« Update machine learning models

i Query Examples

= when
select avg(fl.duration) > 5 sec and
avg(f2.duration) > 5 sec

from function duration 1, 2
where f1l.function _name = “foo” and

f2_.function_name = *“bar”
then

sample cpu load every 1 min

s select *

from function_start fs, cpu_ load cl
where Tfs.function name = “foo0” and
cl.busy > 70%

i QOutline

Query Evaluation Techniques

10

Architecture

instrumentation

tuples

~

(

plan \)
Query Plan Stream O
Optimizer Processing SO?
Engine J
A 4
Code
Instrumentor qu
collected
: : data
instrumentation
instructions
Profiled
Program !

e Al

ery pl:

K Program Execution Site /

Stream ')() query results
Processing 5 O e’
Engine
\
B
query plan % é /
al User
| Query
Plan
Query query
Plan
Optimizer \

K Remote Monitoring Site /

11

i Optimizing Query Execution

= Goal: Iintroduce as little runtime overhead as
possible while providing reasonable query
execution performance

= Three levels of optimization

= Execution site
= Query plan
= Stream implementation

12

i Execution Site Selection

= Query plan can be executed on
program running site or remote
monitoring site

= Aspects to consider
= cpu bound vs. network bound
= Amount of data needed to be sent
= Number of monitoring sites

= System conditions change over time!
- Change query plans adaptively (future work)

13

Query Plan Optimization

select * _
from function_start fs, cpu_load cl
where Tfs.function_name = “foo” and

cl.busy > 70%

Join evaluation strategy 1:
= Monitor all “foo” call sites and cpu usage at all times

Join evaluation strategy 2:
= Instrument all “foo” call sites
= Every time when “foo” is called, sample cpu usage, check if > 70%

Join evaluation strategy 3:
= Do not instrument “foo”
= Continuously sample cpu usage
= |If sampled usage is > 70%, then instrument “foo” call sites
14

i Query Plan Optimization (2)

= Need cost model
= Simple cost model:

Extra instructions Frequency
from data collecting | x| of such operations

operations

= Challenge

= Frequency estimates changes over program
lifetime!

- Change query plans adaptively (future work)

15

Optimizing Stream Implementation

= Implementing function start stream

= Exact
= Instrument all call sites
= Use code analysis to reduce # functions to instrument

= Approximate

= Sample stack trace and check if function is called

s Need cost model, and understand how much
approximation user can tolerate

16

i Outline

Experiments

17

i Experiments Setup

= Implemented a simple profiler for Java
programs on top of EndoScope

= Monitored performance of 3 apps

= SimpleApp included with Apache Derby

= TPC-C implementation using Derby

= Petstore app hosted on Tomcat that uses
Derby

» Measured runtime overhead

18

i Runtime Overhead Experiment

= Rank all functions by their call
frequencies over program run

= ISsue query to system

= Progressively increase the % of functions
monitored, with the least frequently called
function chosen first

= Compare time overhead with other
profilers

19

Execution Time (sec)

B~ B~ o) o) @)

- o) - o) o

o o o O o
]]]

TPC-C Total Execution Time v.s. % Functions Profiled

700

(@)
o)
o

— =Unprofiled — - visualvm

= jrat

350

20

Execution Time (sec)

700

650

(@))
o
o

TPC-C Total Execution Time v.s. % Functions Profiled

— -Unprofiled

= jrat

~#-EndoScope

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of Functions Profiled

21

i Join Operator Ordering Expt

= Query on top of TPC-C implementation

« SELECT *
FROM function_start fs, cpu load cl
WHERE fs.function _name in (fl1,f2..)
AND cl.busy > 70%

= Quantify the effects of operators ordering by
measuring the time overhead of 3 different
guery plans

22

Execution Time (sec)

900

800 A

-.\I
o
o

600

)]
o
o

400

300

Plan Comparison on TPC-C Single Threaded

I

1

— ~Unprofiled

—<Plan 1: Monitor Functions and Sample CPU

—#®—Plan 2: CPU Sampling Triggered by Function Monitoring
~#-Plan 3: Function Monitoring Triggered by CPU Sampling

0.1 0.2 0.3 0.4 0.5 0.6 0.7
% Functions Profiled

i Outline

s Conclusions

24

i Contributions

= Introduced a low overhead, query
driven, acquisitional software
monitoring framework

= Proposed data model, a declarative
guery language, and gquery evaluation
techniques

= Implemented a simple profiler for Java
programs and validated on real-world
systems

25

