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Collecting System Runtime Data

 Many uses
 Real-time system monitoring
 Detect security breaches
 Dynamic recompilation

 However, collecting such information is 
often difficult
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Example: Software Profiling
 Sampling / statistical profilers

 Gprof, oprofile
 Might not be accurate
 Can only be used to collect certain types of statistics

 Augment source code / Binary instrumentation
 ATOM, valgrind, dtrace
 Tedious work
 Create substantial overhead

 Want: a unifying infrastructure that can be used to 
collect and reason about program’s runtime data that 
is easy to use and introduces low overhead
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Our Contributions
 Easy to use interface

 Use declarative queries

 Uniform data model that represents all sorts of 
runtime data
 Model them using the streaming data model

 Small footprint / overhead
 Be acquisitional: queries drive what data is collected

 you only pay to collect data you asked for

 Decouple program running site and monitoring site
 Use both sampling and instrumentation techniques
 Query evaluation tricks
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Outline

 Data Model

 Query Evaluation Techniques

 Experiments

 Conclusions
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Program Runtime Data as Streams
 EndoScope provides a number of basic streams that represent 

data coming from the runtime environment
 function start (function name, time)
 variable value (name, value, time)
 cpu usage (% busy, % idle, time)
 …

 Users can define additional streams on top of basic 
streams

 Streams are defined into two categories
 Enumerable streams are those that have discrete values in time 

(e.g., function start stream)
 Non-enumerable streams are those that have infinite values in time 

(e.g., CPU usage stream)
 Non-enumerable streams need to be quantified before they can be 

used (e.g., in an iterator)  
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Operations on Streams

 Quantify
 Sample non-enumerable streams at points 

in time

 Select 
 Project
 Aggregate
 Window-based join
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Conditions / Triggers

 Specify actions to be performed when 
certain event occurs

 Action examples:
 Start monitor CPU / heap usages
 Generate report to user
 Update machine learning models
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Query Examples
 when 
select  avg(f1.duration) > 5 sec and     

avg(f2.duration) > 5 sec
from    function_duration f1, f2 
where   f1.function_name = “foo” and

f2.function_name = “bar”
then

sample cpu_load every 1 min  

 select * 
from   function_start fs, cpu_load cl
where  fs.function_name = “foo” and

cl.busy > 70%
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Optimizing Query Execution

 Goal: introduce as little runtime overhead as 
possible while providing reasonable query 
execution performance

 Three levels of optimization
 Execution site
 Query plan
 Stream implementation
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Execution Site Selection

 Query plan can be executed on 
program running site or remote 
monitoring site
 Aspects to consider

 cpu bound vs. network bound
 Amount of data needed to be sent
 Number of monitoring sites

 System conditions change over time!
 Change query plans adaptively (future work)
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Query Plan Optimization
 select * 

from   function_start fs, cpu_load cl
where  fs.function_name = “foo” and

cl.busy > 70%

 Join evaluation strategy 1:
 Monitor all “foo” call sites and cpu usage at all times

 Join evaluation strategy 2:
 Instrument all “foo” call sites
 Every time when “foo” is called, sample cpu usage, check if > 70%

 Join evaluation strategy 3:
 Do not instrument “foo”
 Continuously sample cpu usage
 If sampled usage is > 70%, then instrument “foo” call sites
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Query Plan Optimization (2)

 Need cost model
 Simple cost model: 

Extra instructions             Frequency
from data collecting  x   of such operations

operations

 Challenge
 Frequency estimates changes over program 

lifetime!
 Change query plans adaptively (future work)
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Optimizing Stream Implementation

 Implementing function start stream
 Exact

 Instrument all call sites
 Use code analysis to reduce # functions to instrument

 Approximate
 Sample stack trace and check if function is called

 Need cost model, and understand how much 
approximation user can tolerate 
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Experiments Setup

 Implemented a simple profiler for Java 
programs on top of EndoScope 

 Monitored performance of 3 apps
 SimpleApp included with Apache Derby
 TPC-C implementation using Derby
 Petstore app hosted on Tomcat that uses 

Derby

 Measured runtime overhead

18



Runtime Overhead Experiment

 Rank all functions by their call 
frequencies over program run

 Issue query to system
 Progressively increase the % of functions 

monitored, with the least frequently called 
function chosen first

 Compare time overhead with other 
profilers
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25-50% less overhead when 
compared to other profilers
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Join Operator Ordering Expt

 Query on top of TPC-C implementation
 SELECT * 
FROM   function_start fs, cpu_load cl
WHERE  fs.function_name in (f1,f2..) 

AND cl.busy > 70%

 Quantify the effects of operators ordering by 
measuring the time overhead of 3 different 
query plans
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Less overhead when # functions 
monitored is small

Less overhead with continuous 
CPU monitoring
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Contributions

 Introduced a low overhead, query 
driven, acquisitional software 
monitoring framework

 Proposed data model, a declarative 
query language, and query evaluation 
techniques

 Implemented a simple profiler for Java 
programs and validated on real-world 
systems
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