
Performance Profiling with EndoScope,
an Acquisitional Software Monitoring
Framework

Alvin Cheung
Sam Madden
MIT CSAIL

August 25, 2008

Collecting System Runtime Data

 Many uses
 Real-time system monitoring
 Detect security breaches
 Dynamic recompilation

 However, collecting such information is
often difficult

2

Example: Software Profiling
 Sampling / statistical profilers

 Gprof, oprofile
 Might not be accurate
 Can only be used to collect certain types of statistics

 Augment source code / Binary instrumentation
 ATOM, valgrind, dtrace
 Tedious work
 Create substantial overhead

 Want: a unifying infrastructure that can be used to
collect and reason about program’s runtime data that
is easy to use and introduces low overhead

3

Our Contributions
 Easy to use interface

 Use declarative queries

 Uniform data model that represents all sorts of
runtime data
 Model them using the streaming data model

 Small footprint / overhead
 Be acquisitional: queries drive what data is collected

 you only pay to collect data you asked for

 Decouple program running site and monitoring site
 Use both sampling and instrumentation techniques
 Query evaluation tricks

4

Outline

 Data Model

 Query Evaluation Techniques

 Experiments

 Conclusions

5

Program Runtime Data as Streams
 EndoScope provides a number of basic streams that represent

data coming from the runtime environment
 function start (function name, time)
 variable value (name, value, time)
 cpu usage (% busy, % idle, time)
 …

 Users can define additional streams on top of basic
streams

 Streams are defined into two categories
 Enumerable streams are those that have discrete values in time

(e.g., function start stream)
 Non-enumerable streams are those that have infinite values in time

(e.g., CPU usage stream)
 Non-enumerable streams need to be quantified before they can be

used (e.g., in an iterator)
6

Operations on Streams

 Quantify
 Sample non-enumerable streams at points

in time

 Select
 Project
 Aggregate
 Window-based join

7

Conditions / Triggers

 Specify actions to be performed when
certain event occurs

 Action examples:
 Start monitor CPU / heap usages
 Generate report to user
 Update machine learning models

8

Query Examples
 when
select avg(f1.duration) > 5 sec and

avg(f2.duration) > 5 sec
from function_duration f1, f2
where f1.function_name = “foo” and

f2.function_name = “bar”
then

sample cpu_load every 1 min

 select *
from function_start fs, cpu_load cl
where fs.function_name = “foo” and

cl.busy > 70%

9

Outline

 Data Model

 Query Evaluation Techniques

 Experiments

 Conclusions

10

Remote Monitoring SiteProgram Execution Site

Code
Instrumentor

Stream
Processing

Engine

Profiled
Program

User

Query
Plan

Optimizer

Query Plan
Optimizer

Query
Plan

tuples

collected
data

query

instrumentation
plan

query plan
query plan

instrumentation
instructions

query results

Architecture

11

Stream
Processing

Engine

Optimizing Query Execution

 Goal: introduce as little runtime overhead as
possible while providing reasonable query
execution performance

 Three levels of optimization
 Execution site
 Query plan
 Stream implementation

12

Execution Site Selection

 Query plan can be executed on
program running site or remote
monitoring site
 Aspects to consider

 cpu bound vs. network bound
 Amount of data needed to be sent
 Number of monitoring sites

 System conditions change over time!
 Change query plans adaptively (future work)

13

Query Plan Optimization
 select *

from function_start fs, cpu_load cl
where fs.function_name = “foo” and

cl.busy > 70%

 Join evaluation strategy 1:
 Monitor all “foo” call sites and cpu usage at all times

 Join evaluation strategy 2:
 Instrument all “foo” call sites
 Every time when “foo” is called, sample cpu usage, check if > 70%

 Join evaluation strategy 3:
 Do not instrument “foo”
 Continuously sample cpu usage
 If sampled usage is > 70%, then instrument “foo” call sites

14

Query Plan Optimization (2)

 Need cost model
 Simple cost model:

Extra instructions Frequency
from data collecting x of such operations

operations

 Challenge
 Frequency estimates changes over program

lifetime!
 Change query plans adaptively (future work)

15

Optimizing Stream Implementation

 Implementing function start stream
 Exact

 Instrument all call sites
 Use code analysis to reduce # functions to instrument

 Approximate
 Sample stack trace and check if function is called

 Need cost model, and understand how much
approximation user can tolerate

16

Outline

 Data Model

 Query Evaluation Techniques

 Experiments

 Conclusions

17

Experiments Setup

 Implemented a simple profiler for Java
programs on top of EndoScope

 Monitored performance of 3 apps
 SimpleApp included with Apache Derby
 TPC-C implementation using Derby
 Petstore app hosted on Tomcat that uses

Derby

 Measured runtime overhead

18

Runtime Overhead Experiment

 Rank all functions by their call
frequencies over program run

 Issue query to system
 Progressively increase the % of functions

monitored, with the least frequently called
function chosen first

 Compare time overhead with other
profilers

19

20

25-50% less overhead when
compared to other profilers

21

Join Operator Ordering Expt

 Query on top of TPC-C implementation
 SELECT *
FROM function_start fs, cpu_load cl
WHERE fs.function_name in (f1,f2..)

AND cl.busy > 70%

 Quantify the effects of operators ordering by
measuring the time overhead of 3 different
query plans

22

23

Less overhead when # functions
monitored is small

Less overhead with continuous
CPU monitoring

Outline

 Data Model

 Query Evaluation Techniques

 Experiments

 Conclusions

24

Contributions

 Introduced a low overhead, query
driven, acquisitional software
monitoring framework

 Proposed data model, a declarative
query language, and query evaluation
techniques

 Implemented a simple profiler for Java
programs and validated on real-world
systems

25

