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Abstract
Applications that interact with database management systems (DBMSs) are ubiquitous in our daily
lives. Such database applications are usually hosted on an application server and perform many
small accesses over the network to a DBMS hosted on a database server to retrieve data for pro-
cessing. For decades, the database and programming systems research communities have worked
on optimizing such applications from different perspectives: database researchers have built highly
efficient DBMSs, and programming systems researchers have developed specialized compilers and
runtime systems for hosting applications. However, there has been relative little work that exam-
ines the interface between these two software layers to improve application performance.

In this thesis, I show how making use of application semantics and optimizing across these
layers of the software stack can help us improve the performance of database applications. In
particular, I describe three projects that optimize database applications by looking at both the
programming system and the DBMS in tandem. By carefully revisiting the interface between the
DBMS and the application, and by applying a mix of declarative database optimization and modern
program analysis and synthesis techniques, we show that multiple orders of magnitude speedups
are possible in real-world applications. I conclude by highlighting future work in the area, and
propose a vision towards automatically generating application-specific data stores.
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Title: Associate Professor
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Chapter 1

Introduction

From online shopping websites to banking applications, we interact with applications that store

persistent data in database management systems (DBMSs) on a daily basis. As shown in Fig. 1-

1, such database applications are often organized into three tiers: a database server that hosts

a DBMS, an application server that hosts one part of the application, and a client that runs the

end-user portion of the application. The application can be anything from a browser running on

a laptop computer to a game running on a mobile phone that the end-user interacts with. To

distinguish among the various parts of the application that are executed on the different servers, in

this thesis I use the terms client, server, and query component to denote the software components

that are executed on the client device, application server, and database server, respectively. This is

depicted in Fig. 1-1.

Like many online transactional processing applications, developers of database applications

have traditionally focused on improving throughput. In recent years, however, application latency

has also become increasingly important. For instance, recent studies [11, 16] have shown that

increasing application latency can have dramatic adverse effects on customer retainment for web-

sites: as little as a half a second delay in webpage rendering can cause 20% drop in website traffic,

and 57% of online shoppers will leave a website if they need to wait for 3 seconds or more in page

rendering. As both the amount of persistent data and application complexity are strictly going

to increase in the future, it is important to build database applications that have low latency and

17
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Figure 1-1: Software architecture of three-tier database applications

systems that can deliver high throughput.

Unfortunately for the developer, optimizing database applications is not an easy task. While

dividing the application between the client, the application server, and database server simplifies

application development by encouraging code modularity and separation of development efforts, it

often results in applications that lack the desired performance. For example, the application com-

piler and query optimizer optimize distinct parts of the program, namely the application code and

the queries that the application issues to the DBMS. Unfortunately, because the two components do

not share any information, this often leads to missed opportunities to improve application perfor-

mance. In the following, I first briefly review the structure of database applications. Then, through

a series of projects, I discuss how using program analysis and program synthesis techniques can

significantly improve the performance of database applications, without requiring developers to

craft customized rewrites to the code in order to optimize their applications.
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1.1 Architecture of Database Applications

As mentioned, database applications are typically hosted on an application and a database server.

The application server is usually physically separated from the database server, although the two

are usually in close proximity to each other (e.g., both within the same data center). Due to the

close physical proximity between the application and database servers, there is usually low network

latency and high transfer bandwidth between the application and database servers (on the order of

microseconds for latency and gigabytes/second for bandwidth). In comparison, the network link

between the client device and the application server can be substantially slower (on the order of

milliseconds in terms of latency), with smaller bandwidth (on the order of megabytes/second).

Under this architecture, the way that database applications are executed is as follows. Upon

receiving a request from the client component, the application server starts executing the appro-

priate server component of the application to handle the client’s request. As shown in Fig. 1-2,

the server component periodically issues requests (i.e., queries) to the query component hosted on

DBMS as it executes in order to retrieve or manipulate data that are persistently stored. Upon re-

ceiving queries, the query component (e.g., a database driver) forwards them to the DBMS, which

processes them and returns the results back to the server component. This process continues until

the application finishes execution, for instance when the server component has gathered all the

data needed to generate the requested web page, upon which it will forward the results back to the

client component to be rendered on the client device.

1.2 Challenges in Implementing Database Applications

Unfortunately, the current way that database applications are structured and developed is often

at odds with the goal of reducing latency of the application. For example, in order to optimize

database applications programmers must manually make a number of decisions during application

development, none of which is related to the application logic itself. First, developers need to

determine where a piece of computation should be implemented (i.e., as the client, server, or the

query component). Early database applications had no choice but to place most computations on
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Figure 1-2: Interactions between application and database servers during database application
execution

the server or query components, as clients had limited computational power available. Such limi-

tations no longer exist given recent hardware advances. As a result, developers can now choose to

implement their database application logic in any of the components. However, implementing ap-

plication logic in each of the components often requires understanding different programming lan-

guages or paradigms. For instance, server components are often implemented in a general-purpose,

imperative language such as Java, while database queries are written in a domain-specific query

language such as SQL, and client components are often expressed using scripting languages such

as Javascript. In addition to the language that is used to implement each of the components, another

consequent of the above is that developers must decide where each computation is placed. For in-

stance, DBMSs are capable of executing general-purpose code using stored procedures. Likewise,

application servers can similarly execute relational operations on persistent data, for example by

first fetching persistent data from the DBMS and computing on such data within the application

server. Similarly, client components can be passive rendering engines of data received from the

application server (e.g., a text terminal), or actively request data based on client interactions (e.g.,

a web browser). Finally, developers also need to be aware of the interactions among the differ-

ent components of the application. For example, every interaction between the components (e.g.,
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sending a query from the application server to the database server, and forwarding result sets from

the database back to the application server) introduces a network round trip between servers, and

each such interaction increases application latency. Worse yet, given the network variability across

different links (e.g., the link between mobile devices and application server can be highly variable),

it is very difficult to predict the performance of database applications during development.

One technique that developers employ to handle the issues listed above is to manually im-

plement various optimizations in the code. For instance, they might implement relational oper-

ations in the server component if the results from such operations can be cached and reused in

the application server. Unfortunately, while handcrafting such optimizations can yield significant

performance improvements, these manual optimizations are done at the cost of code complexity,

readability, and maintainability, not to mention breaking the separation of functionality between

the different components in the application. Worse, these optimizations are brittle. Relatively

small changes in control flow or workload pattern can have drastic consequences and cause the

optimizations to hurt performance instead. Moreover, slight changes to the data table schema can

break such manually optimized queries. As a result, such optimizations are effectively a black

art, as they require a developer to reason about the behavior of the distributed implementation of

the program across different platforms and programming paradigms, and have intimate knowledge

about the implementation intricacies of the systems hosting each of the components.

These issues are further exacerbated by recent trends in database-backed application develop-

ment. Specifically, the rise of Object-Relational Mapping (ORM) libraries such as Django [2],

Hibernate [6], Rails [20], and query embedded languages such as LINQ [79] have further com-

plicated cross-layer optimizations. Both mechanisms abstract away the DBMS into a series of

functions represented by an API (in the case of ORMs) or new language constructs (in the case

of query embedded languages). The advantage of using such mechanism is that developers can

express their data requests in the same language used to implement the server component, without

the need to implement a separate query component (using SQL for example). As the application

executes, these function calls and language constructs are translated into queries (e.g., SQL) for

the DBMS to process, and the returned results from the DBMS are converted into representations
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that can be processed by the server component.

Unfortunately, while using ORM libraries free developers from the need to learn separate query

languages in implementing query components as they translate API calls directly to queries, they

introduce other issues. For instance, as a static library that is linked with the application, ORM

libraries lack high-level knowledge about the application, as they simply convert each library call

into templatized queries. Although some embedded query languages postpone the conversion until

runtime, they nonetheless do not take application semantics into account. As a result, the queries

generated by such libraries and languages are often inefficient, as I will discuss in Ch. 2.

1.3 Thesis Contributions

Since the early days of relational DBMS development, the interface between the application and

the DBMS has been one where the application sends SQL queries to the DBMS via an API function

call, and blocks execution until the DBMS returns results. In this thesis, we focus on optimizing

the server and query components of database applications by challenging this classical interface.

We argue that this narrow interface does not allow the application to convey useful information

to the DBMS beyond the explicit query to be executed, as a result forgoes many opportunities for

optimizing application performance. Specifically, we revisit this interface between the application

and the DBMS, and show that by moving non-query related code to the DBMS and vice versa to

the application server, along with dynamically controlling when queries are executed by the DBMS

and results returned to the application, we can achieve the gains of manual optimizations without

incurring substantial burden on the developers. By analyzing the application program, the runtime

system, and the DBMS as a whole, along with applying various program analysis and database

optimization to drive program optimizations, we have shown order-of-magnitude speedups in real-

world database applications. Not only that, we are able to achieve performance improvements

while still allowing developers to use the same high-level programming model to develop such

applications.

Concretely, I focus on three aspects of this problem in this thesis. In each case, we address
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each issue by designing systems that optimize both the runtime system and the DBMS as a whole

by leveraging application semantics:

• First, we investigate the requirement that developers need to determine whether a piece of

application logic should be implemented in the client, server, or the query component of the

database application. In Ch. 2, I introduce QBS. QBS frees the developer from needing to

determine whether computation should be implemented in imperative code or SQL by trans-

forming imperative code fragments that are part of the server component into declarative

queries that reside in the query component. Unlike traditional rule-based compilers, which

rely on pattern-matching in order to find code fragments that can be converted, QBS formu-

lates the code conversion problem as a code search. Furthermore, it uses program synthesis

technology to prune down the search space and automatically verify that the conversion pre-

serves semantics of the original code fragment. The query optimizer can then utilize various

specialized implementations of relational operators and statistics about persistent data to

determine the optimal way to execute the converted code.

• However, not all pieces of computation logic can be converted into declarative queries and

take advantage of specialized implementations of query operators in the DBMS. Because of

that, the database application will incur network round trips as it executes, either as a result

of the server component issuing queries to the query component, or the query component

returning results back to the server component. Yet, imperative code can still be transferred

to the DBMS and executed as stored procedures. Unfortunately, transferring imperative

code originally to be executed by the application server to the DBMS is often a double-

edged sword: while doing so can reduce the number of network round trips incurred during

program execution, it will also increase the load on the database server, and that might in

turn increase the latency for query execution.

To balance the two effects, I describe PYXIS in Ch. 3. PYXIS is a system that automatically

partitions program logic statically across multiple servers for optimal performance. PYXIS

works by first collecting a runtime profile of the application. Based on the collected pro-
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file, it partitions the original application program into the server component to be hosted

on the application server, and the query component to be executed on the DBMS. PYXIS

formulates code partitioning as an integer linear programming problem, with constraints be-

ing the amount of resources available on the servers (based on runtime profile and machine

specifications), and the network bandwidth that is available between servers.

• While PYXIS reduces the number of network round trips between the database and appli-

cation servers using static code partitioning, its results might be suboptimal as it can only

estimate the amount of data transferred between the two servers using periodic profiling, and

it will also take time before newly generated partitions will take effect. As an alternative to

code partitioning, I introduce SLOTH in Ch. 4. SLOTH is a tool that reduces application la-

tency by eliminating such network round trips between the two servers by batching multiple

queries that are issued by the server component as the application executes. SLOTH batches

queries by converting the application to execute under lazy evaluation—as the application

executes, each time when it tries to issue a query the SLOTH runtime component intercepts

and caches the query in a buffer rather than sending it to the DBMS. The application con-

tinues to execute as if the query results have been returned. Then, when it needs the results

from a (seemingly) issued query, the SLOTH runtime will issue all the cached queries in a

single batch, thus reducing the number of network round trips incurred.

We have achieved significant performance improvement on real-world database applications

using our tools. Figure 1-3 shows an example code fragment, the converted version in SQL using

QBS, and the resulting application latency improvement by multiple orders of magnitude compared

to the original version. Figure 1-4 shows the latency of a database application (TPC-C in this

case) implemented using JDBC and PYXIS, with the PYXIS version reducing application latency

by 3×. The same figure highlights the timing experiment where some of the CPUs were shut

down in the middle of the experiment (to simulate varying amount of resources available at the

data center). The results show that the PYXIS-generated version of the application adapted to

resource changes by switching to another pre-generated partitioning of the application. Finally,

Fig. 1-5 shows the amount of load time speed up across 112 benchmarks from a real-world web-

24



based database application (each benchmark represents a web page from the application), with

performance improvement up to 2× after using SLOTH. The same figure also shows the breakdown

of time spent across the different servers as the benchmarks are loaded.

I describe each of the projects in detail in the following chapters, followed by an architecture

for hosting and optimizing database applications by making use of the technologies discussed.

Then, I highlight further opportunities in cross-system optimization in Ch. 6, followed by related

work in Ch. 7, and conclude in Ch. 8.
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List<User> getRoleUser () {
List<User> listUsers =
new ArrayList<User>();

List<User> users = userDao.getUsers();
List<Role> roles = roleDao.getRoles();
for (User u : users) {
for (Roles r : roles) {
if (u.roleId().equals(r.roleId())) {
User userok = u;
listUsers.add(userok);

} } }
return listUsers;

}

List<User> getRoleUser () {
List<User> listUsers =
db.executeQuery(

"SELECT u
FROM users u, roles r
WHERE u.roleId == r.roleId
ORDER BY u.roleId, r.roleId"

);

return listUsers;
} 100#
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Chapter 2

QBS: Determining How to Execute

In this chapter I present QBS, a system that automatically transforms fragments of application

logic into SQL queries. QBS differs from traditional compiler optimizations as it relies on synthe-

sis technology to generate invariants and postconditions for a code fragment. The postconditions

and invariants are expressed using a new theory of ordered relations that allows us to reason pre-

cisely about both the contents and order of the records produced complex code fragments that

compute joins and aggregates. The theory is close in expressiveness to SQL, so the synthesized

postconditions can be readily translated to SQL queries.

In this chapter, I discuss the enabling technologies behind QBS along with our initial proto-

type implementation. Using 75 code fragments automatically extracted from over 120k lines of

open-source code written using the Java Hibernate ORM, our prototype can convert a variety of

imperative constructs into relational specifications and significantly improve application perfor-

mance asymptotically by orders of magnitude.1

2.1 Interacting with the DBMS

QBS (Query By Synthesis) is a new code analysis algorithm designed to make database-backed

applications more efficient. Specifically, QBS identifies places where application logic can be
1Materials in this chapter are based on work published as Cheung, Solar-Lezama, and Madden, “Optimizing

Database-Backed Applications with Query Synthesis,” in proceedings of PLDI 13 [40].
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converted into SQL queries issued by the application, and automatically transforms the code to

do this. By doing so, QBS move functionalities that are implemented in the server component

that is hosted on the application server to the query component to be executed in the DBMS. This

reduces the amount of data sent from the database to the application, and it also allows the database

query optimizer to choose more efficient implementations of some operations—for instance, using

indices to evaluate predicates or selecting efficient join algorithms.

One specific target of QBS is programs that interact with the database through ORM libraries

such as Hibernate for Java. Our optimizations are particularly important for such programs because

ORM layers often lead programmers to write code that iterates over collections of database records,

performing operations like filters and joins that could be better done inside of the database. Such

ORM layers are becoming increasingly popular; for example, as of August, 2015, on the job board

dice.com 13% of the 17,000 Java developer jobs are for programmers with Hibernate experience.

We are not the first researchers to address this problem; Wiedermann et al. [109, 110] identified

this as the query extraction problem. However, our work is able to analyze a significantly larger

class of source programs and generate a more expressive set of SQL queries than this prior work.

Specifically, to the best of our knowledge, our work is the first that is able to identify joins and

aggregates in general purpose application logic and convert them to SQL queries. Our analysis

ensures that the generated queries are precise in that both the contents and the order of records in

the generated queries are the same as those produced by the original code.

At a more foundational level, this work is the first to demonstrate the use of constraint-based

synthesis technology to attack a challenging compiler optimization problem. Our approach builds

on the observation by Iu et al. [67] that if we can express the postcondition for an imperative code

block in relational algebra, then we can translate that code block into SQL. Our approach uses

constraint-based synthesis to automatically derive loop invariants and postconditions, and then

uses an SMT solver to check the resulting verification conditions. In order to make synthesis and

verification tractable, we define a new theory of ordered relations (TOR) that is close in expres-

siveness to SQL, while being expressive enough to concisely describe the loop invariants necessary

to verify the codes of interest. The postconditions expressed in TOR can be readily translated to
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SQL, allowing them to be optimized by the database query planner and leading in some cases to

orders of magnitude performance improvements.

At a high level, QBS makes the following contributions:

• We demonstrate a new approach to compiler optimization based on constraint-based synthe-

sis of loop invariants and apply it to the problem of transforming low-level loop nests into

high-level SQL queries.

• We define a theory of ordered relations that allows us to concisely represent loop invari-

ants and postconditions for code fragments that implement SQL queries, and to efficiently

translate those postconditions into SQL.

• We define a program analysis algorithm that identifies candidate code blocks that can poten-

tially be transformed by QBS.

• We demonstrate our full implementation of QBS and the candidate identification analysis

for Java programs by automatically identifying and transforming 75 code fragments in two

large open source projects. These transformations result in order-of-magnitude performance

improvements. Although those projects use ORM libraries to retrieve persistent data, our

analysis is not specific to ORM libraries and is applicable to programs with embedded SQL

queries.

2.2 QBS Overview

This section gives an overview of our compilation infrastructure and the QBS algorithm to translate

imperative code fragments to SQL. I use as a running example a block of code extracted from an

open source project management application [24] written using the Hibernate framework. The

original code was distributed across several methods which our system automatically collapsed

into a single continuous block of code as shown in Fig. 2-1. The code retrieves the list of users

from the database and produces a list containing a subset of users with matching roles.
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List<User> getRoleUser () {
List<User> listUsers = new ArrayList<User>();
List<User> users = this.userDao.getUsers();
List<Role> roles = this.roleDao.getRoles();
for (User u : users) {
for (Roles r : roles) {
if (u.roleId().equals(r.roleId())) {
User userok = u;
listUsers.add(userok);

}
}

}
return listUsers;

}

Figure 2-1: Sample code that implements join operation in application code, abridged from actual
source for clarity

List listUsers := [ ];
int i, j = 0;
List users := Query(SELECT * FROM users);
List roles = Query(SELECT * FROM roles);
while (i < users.size()) {
while (j < roles.size()) {
if (users[i].roleId = roles[j].roleId)
listUsers := append(listUsers, users[i]);

++j;
}
++i;

}

Figure 2-2: Sample code expressed in kernel language
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Postcondition
listUsers = 𝜋ℓ(◁▷𝜙 (users, roles))
where
𝜙(eusers , eroles) := eusers .roleId = eroles .roleId
ℓ contains all the fields from the User class

Translated code
List<User> getRoleUser () {
List<User> listUsers = db.executeQuery(

"SELECT u
FROM users u, roles r
WHERE u.roleId == r.roleId
ORDER BY u.roleId, r.roleId");

return listUsers;
}

Figure 2-3: Postcondition as inferred from Fig. 2-1 and code after query transformation

The example implements the desired functionality but performs poorly. Semantically, the code

performs a relational join and projection. Unfortunately, due to the lack of global program infor-

mation, the ORM library can only fetch all the users and roles from the database and perform the

join in application code, without utilizing indices or efficient join algorithms the database system

has access to. QBS fixes this problem by compiling the sample code to that shown at the bottom of

Fig. 2-3. The nested loop is converted to an SQL query that implements the same functionality in

the database where it can be executed more efficiently, and the results from the query are assigned

to listUsers as in the original code. Note that the query imposes an order on the retrieved records;

this is because in general, nested loops can constraint the ordering of the output records in ways

that need to be captured by the query.

One way to convert the code fragment into SQL is to implement a syntax-driven compiler that

identifies specific imperative constructs (e.g., certain loop idioms) and converts them into SQL

based on pre-designed rules. Unfortunately, capturing all such constructs is extremely difficult and

does not scale well to handle different variety of input programs. Instead, QBS solves the problem

in three steps. First, it synthesizes a postcondition for a given code fragment, then it computes the

necessary verification conditions to establish the validity of the synthesized postcondition, and it
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finally converts the validated postcondition into SQL. A postcondition is a Boolean predicate on the

program state that is true after a piece of code is executed, and verification conditions are Boolean

predicates that guarantees the correctness of a piece of code with respect to a given postcondition.

As an example, given a program statement s: x = y;, if we want to show that the postcondition

x = 10 holds after s is executed, then one way to do so is to check whether the predicate y = 10

is true before executing the statement. In other words, if it is true that y = 10 before executing s ,

then we can prove that the postcondition holds, assuming we know the semantics of s . In this case

y = 10 is the verification condition with respect to the postcondition x = 10. Note that there can

be many postconditions for the same piece of code (e.g., True is an obvious but uninteresting one),

and the corresponding verification conditions are different.

While a typical problem in program verification is to find the logically strongest postcondition2

for a piece of code, in QBS our goal is to find a postcondition of the form v = Q(), where Q is

a SQL query to be executed by the database, along with the verification conditions that establish

the validity of the postcondition. Limiting the form of the postcondition greatly simplifies the

search, and doing so also guarantees that the synthesized postcondition can be converted into SQL.

Compared to syntax-driven approaches, solving the code conversion problem in this way allows us

to handle a wide variety of code idioms. We are unaware of any prior work that uses both program

synthesis and program verification to solve this problem, and I discuss the steps involved in the

sections below.

2.2.1 QBS Architecture

I now discuss the architecture of QBS and describe the steps in inferring SQL queries from imper-

ative code. The architecture of QBS is shown in Fig. 2-4.

Identify code fragments to transform. Given a database application written in Java, QBS first

finds the persistent data methods in the application, which are those that fetch persistent data via

ORM library calls. It also locates all entry points to the application such as servlet handlers.

From each persistent data method that is reachable from the entry points, the system inlines a
2 p is the strongest postcondition if there does not exist another postcondition p′ such that p′ → p.
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Figure 2-4: QBS architecture

neighborhood of calls, i.e., a few of the parent methods that called the persistent data method and

a few of the methods called by them. If there is ambiguity as to the target of a call, all potential

targets are considered up to a budget. A series of analyses is then performed on each inlined

method body to identify a continuous code fragment that can be potentially transformed to SQL;

ruling out, for example, code fragments with side effects. For each candidate code fragment, our

system automatically detects the program variable that will contain the results from the inferred

query (in the case of the running example it is listUsers) — we refer this as the “result variable.”

In order to apply the QBS algorithm to perform the desired conversion, our system must be able

to cope with the complexities of real-world Java code such as aliasing and method calls, which

obscure opportunities for transformations. For example, it would not be possible to transform the

code fragment in Fig. 2-1 without knowing that getUsers and getRoles execute specific queries

on the database and return non-aliased lists of results, so the first step of the system is to identify

promising code fragments and translate them into a simpler kernel language shown in Fig. 2-5.

The kernel language operates on three types of values: scalars, immutable records, and im-

mutable lists. Lists represent the collections of records and are used to model the results that are
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c ∈ constant ::= True | False | number literal | string literal

e ∈ expression ::= c | [ ] | var | e.f | {fi = ei} | e1 op e2 | ¬ e

| Query(...) | size(e) | geter (es)
| append(er , es) | unique(e)

c ∈ command ::= skip | var := e | if(e) then c1 else c2
| while(e) do c | c1 ; c2 | assert e

op ∈ binary op ::= ∧ | ∨ | > | =

Figure 2-5: Abstract syntax of the kernel language

returned from database retrieval operations. Lists store either scalar values or records constructed

with scalars, and nested lists are assumed to be appropriately flattened. The language currently

does not model the three-valued logic of null values in SQL, and does not model updates to the

database. The semantics of the constructs in the kernel language are mostly standard, with a few

new ones introduced for record retrievals. Query(...) retrieves records from the database and the

results are returned as a list. The records of a list can be randomly accessed using get, and records

can be appended to a list using append. Finally, unique takes in a list and creates a new list with

all duplicate records removed. Fig. 2-2 shows the example translated to the kernel language. At

the end of the code identification process, QBS would have selected a set of code fragments that

are candidates to be converted into SQL, and furthermore compile each of them into the kernel

language as discussed.

Compute verification conditions. As the next step, the system computes the verification con-

ditions of the code fragment expressed in the kernel language. The verification conditions are

written using the predicate language derived from the theory of ordered relations to be discussed

in Sec. 2.3. The procedure used to compute verification conditions is a fairly standard one [51, 57];

the only twist is that the verification condition must be computed in terms of an unknown postcon-

dition and loop invariants. The process of computing verification conditions is discussed in more

detail in Sec. 2.4.1.

Synthesize loop invariants and postconditions. The definitions of the postcondition and in-
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variants need to be filled in and validated before translation can proceed. QBS does this using a

synthesis-based approach that is similar to prior work [100], where a synthesizer is used to come

up with a postcondition and invariants that satisfy the computed verification conditions. The syn-

thesizer uses a symbolic representation of the space of candidate postconditions and invariants, and

efficiently identifies candidates within the space that are correct according to a bounded verifica-

tion procedure. It then uses a theorem prover (Z3 [80], specifically) to check if those candidates

can be proven correct. The space of candidate invariants and postconditions is described by a tem-

plate generated automatically by the compiler. To prevent the synthesizer from generating trivial

postconditions (such as True), the template limits the synthesizer to only generate postconditions

that can be translated to SQL as defined by our theory of ordered relations, such as that shown at

the top of Fig. 2-3.

As mentioned earlier, we observe that it is not necessary to determine the strongest invariants or

postconditions: we are only interested in finding postconditions that allow us transform the input

code fragment into SQL. In the case of the running example, we are only interested in finding a

postcondition of the form listUsers = Query(...), where Query(...) is an expression translatable

to SQL. Similarly, we only need to discover loop invariants that are strong enough to prove the

postcondition of interest. From the example shown in Fig. 2-1, our system infers the postcondition

shown at the top of Fig. 2-3, where 𝜋, 𝜎, and ◁▷ are ordered versions of relational projection,

selection, and join, respectively to be defined in Sec. 2.3. The process of automatic template

generation from the input code fragment and synthesis of the postcondition from the template are

discussed in Sec. 2.4.

Unfortunately, determining loop invariants is undecidable for arbitrary programs [32], so there

will be programs for which the necessary invariants fall outside the space defined by the templates.

However, our system is significantly more expressive than the state of the art as demonstrated by

our experiments in Sec. 2.7.

Convert to SQL. After the theorem prover verifies that the computed invariants and postcondition

are correct, the input code fragment is translated to SQL, as shown in the bottom of Fig. 2-3. The

predicate language defines syntax-driven rules to translate any expressions in the language into
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valid SQL. The details of validation is discussed in Sec. 2.5 while the rules for SQL conversion

are introduced in Sec. 2.3.2. The converted SQL queries are patched back into the original code

fragments and compiled as Java code.

2.3 Theory of Finite Ordered Relations

As discussed in Sec. 2.2, QBS synthesizes a postcondition and the corresponding verification con-

ditions for a given code fragment before converting it into SQL. To do so, we need a language to

express these predicates, and axioms that allow us to reason about terms in this language. For this

purpose, QBS uses a theory of finite ordered relations. The theory is defined to satisfy four main

requirements: precision, expressiveness, conciseness, and ease of translation to SQL. For preci-

sion, we want to be able to reason about both the contents and order of records retrieved from the

database. This is important because in the presence of joins, the order of the result list will not be

arbitrary even when the original list was arbitrary, and we do not know what assumptions the rest

of the program makes on the order of records. The theory must also be expressive enough not just

to express queries but also to express invariants, which must often refer to partially constructed

lists. For instance, the loop invariants for the sample code fragment in Fig. 2-1 must express the

fact that listUsers is computed from the first i and j records of users and roles respectively.

Conciseness, e.g., the number of relational operators involved, is important because the complex-

ity of synthesis grows with the size of the synthesized expressions, so if we can express invariants

succinctly, we will be able to synthesize them more efficiently. Finally, the inferred postconditions

must be translatable to standard SQL.

There are many ways to model relational operations (see Ch. 7), but we are not aware of any

that fulfills all of the criteria above. For example, relational algebra is not expressive enough to

describe sufficiently precise loop invariants. Defined in terms of sets, relational algebra cannot

naturally express concepts such as “the first i elements of the list.” First order logic (FOL), on

the other hand, is very expressive, but it would be hard to translate arbitrary FOL expressions into

SQL.
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c ∈ constant ::= True | False | number literal | string literal

e ∈ expression ::= c | [ ] | program var | {fi = ei} | e1 op e2 | ¬ e

| Query(...) | size(e) | getes (er ) | topes (er )
| 𝜋[fi1 ,...,fiN ](e) | 𝜎𝜙𝜎(e) | ◁▷𝜙◁▷ (e1, e2)

| sum(e) | max(e) | min(e)

| append(er , es) | sort[fi1 ,...,fiN ](e) | unique(e)
op ∈ binary op ::= ∧ | ∨ | > | =

𝜙𝜎 ∈ select func ::= p𝜎1 ∧ ... ∧ p𝜎N

p𝜎 ∈ select pred ::= e.fi op c | e.fi op e.fj | contains(e, er )
𝜙◁▷ ∈ join func ::= p◁▷1 ∧ ... ∧ p◁▷N
p◁▷ ∈ join pred ::= e1.fi op e2.fj

Figure 2-6: Abstract syntax for the predicate language based on the theory of ordered relations

2.3.1 Basics

Our theory of finite ordered relations is essentially relational algebra defined in terms of lists in-

stead of sets. The theory operates on three types of values: scalars, records, and ordered relations

of finite length. Records are collections of named fields, and an ordered relation is a finite list of

records. Each record in the relation is labeled with an integer index that can be used to fetch the

record. Figure 2-6 presents the abstract syntax of the theory and shows how to combine operators

to form expressions.

The semantics of the operators in the theory are defined recursively by a set of axioms; a sample

of which is shown in Fig. 2-7. get and top take in an ordered relation er and return the record stored

at index es or all the records from index 0 up to index es respectively. The definitions for 𝜋, 𝜎 and

◁▷ are modeled after relational projection, selection, and join respectively, but they also define an

order for the records in the output relation relative to those in the input relations. The projection

operator 𝜋 creates new copies of each record, except that for each record only those fields listed

in [fi1 , ... , fiN ] are retained. Like projection in relational algebra, the same field can be replicated

multiple times. The 𝜎 operator uses a selection function 𝜙𝜎 to filter records from the input relation.

𝜙𝜎 is defined as a conjunction of predicates, where each predicate can compare the value of a
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size

r = [ ]

size(r) = 0
r = h : t

size(r) = 1 + size(t)

get

i = 0 r = h : t
geti (r) = h

i > 0 r = h : t
geti (r) = geti−1(t)

append

r = [ ]

append(r , t) = [t]
r = h : t

append(r , t ′) = h : append(t, t ′)

top

r = [ ]

topr (i) = [ ]
i = 0

topr (i) = [ ]
i > 0 r = h : t

topr (i) = h : topt(i − 1)

join (◁▷)

r1 = [ ]

◁▷𝜙 (r1, r2) = [ ]

r2 = [ ]

◁▷𝜙 (r1, r2) = [ ]

r1 = h : t

◁▷𝜙 (r1, r2) = cat(◁▷′𝜙 (h, r2), ◁▷𝜙 (t, r2))

r2 = h : t 𝜙(e, h) = True

◁▷′𝜙 (e, r2) = (e, h) : ◁▷′𝜙 (e, t)

r2 = h : t 𝜙(e, h) = False

◁▷′𝜙 (e, r2) = ◁▷′𝜙 (e, t)

projection (𝜋)

r = [ ]

𝜋ℓ(r) = [ ]

r = h : t fi ∈ ℓ h.fi = ei
𝜋ℓ(r) = {fi = ei} : 𝜋ℓ(t)

selection (𝜎)

r = [ ]

𝜎𝜙(r) = [ ]

r = h : t 𝜙(h) = True

𝜎𝜙(r) = h : 𝜎𝜙(t)

r = h : t 𝜙(h) = False

𝜎𝜙(r) = 𝜎𝜙(t)

sum

r = [ ]

sum(r) = 0
r = h : t

sum(r) = h + sum(t)

max

r = [ ]

max(r) = −∞

r = h : t h > max(t)

max(r) = h

r = h : t h ≤ max(t)

max(r) = max(t)

min

r = [ ]

min(r) = ∞

r = h : t h < min(t)

min(r) = h

r = h : t h ≥ min(t)

min(r) = min(t)

contains

r = [ ]

contains(e, r) = False

e = h r = h : t
contains(e, r) = True

e ̸= h r = h : t

contains(e, r) = contains(e, t)

Figure 2-7: Axioms that define the theory of ordered relations
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record field and a constant, the values of two record fields, or check if the record is contained in

another relation er using contains. Records are added to the resulting relation if the function returns

True. The ◁▷ operator iterates over each record from the first relation and pairs it with each record

from the second relation. The two records are passed to the join function 𝜙◁▷. Join functions

are similar to selection functions, except that predicates in join functions compare the values of

the fields from the input ordered relations. The axioms that define the aggregate operators max,

min, and sum assume that the input relation contains only one numeric field, namely the field to

aggregate upon.

The definitions of unique and sort are standard; in the case of sort, [fi1 , ... , fiN ] contains the list

of fields to sort the relation by. QBS does not actually reason about these two operations in terms of

their definitions; instead it treats them as uninterpreted functions with a few algebraic properties,

such as

◁▷𝜙 (sortℓ1(r1), sortℓ2(r2)) = sortcat(ℓ1,ℓ2)(◁▷𝜙 (r1, r2)).

(where cat concatenates two lists together) Because of this, there are some formulas involving

sort and unique that we cannot prove, but we have not found this to be significant in practice (see

Sec. 2.7 for details).

2.3.2 Translating to SQL

The expressions defined in the predicate grammar can be converted into semantically equivalent

SQL queries. In this section we prove that any expression that does not use append or unique

can be compiled into an equivalent SQL query. We prove this in three steps; first, we define

base and sorted expressions, which are formulated based on SQL expressions without and with

ORDER BY clauses respectively. Next, we define translatable expressions and show that any

expression that does not use append or unique can be converted into a translatable expression.

Then we show how to produce SQL from translatable expressions.
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Definition 1 (Translatable Expressions). Any transExp as defined below can be translated into

SQL:

b ∈ baseExp ::= Query(...) | tope(s) | ◁▷True (b1, b2) | agg(t)

s ∈ sortedExp ::= 𝜋ℓ𝜋(sortℓs (𝜎𝜙(b)))

t ∈ transExp ::= s | tope(s)

where the term agg in the grammar denotes any of the aggregation operators (min, max, sum,

size).

Theorem 1 (Completeness of Translation Rules). All expressions in the predicate grammar in

Fig. 2-6, except for those that contain append or unique, can be converted into translatable expres-

sions.

The theorem is proved by defining a function Trans that maps any expression to a translatable

expression and showing that the mapping is semantics preserving. The definition of Trans relies

on a number of TOR expression equivalences:

Theorem 2 (Operator Equivalence). The following equivalences hold, both in terms of the con-

tents of the relations and also the ordering of the records in the relations:

• 𝜎𝜙(𝜋ℓ(r)) = 𝜋ℓ(𝜎𝜙(r))

• 𝜎𝜙2(𝜎𝜙1(r)) = 𝜎𝜙′(r), where 𝜙′ = 𝜙2 ∧ 𝜙1

• 𝜋ℓ2(𝜋ℓ1(r)) = 𝜋ℓ′(r), where ℓ′ is the concatenation of all the fields in ℓ1 and ℓ2.

• tope(𝜋ℓ(r)) = 𝜋ℓ(tope(r))

• tope2(tope1(r)) = topmax(e1,e2)(r)

• ◁▷𝜙 (r1, r2) = 𝜎𝜙′(◁▷True (r1, r2)), i.e., joins can be converted into cross products with selec-

tions with proper renaming of fields.

• ◁▷𝜙 (sortℓ1(r1), sortℓ2(r2)) = sortℓ1:ℓ2(◁▷𝜙 (r1, r2))
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• ◁▷𝜙 (𝜋ℓ1(r1),𝜋ℓ2(r2)) = 𝜋ℓ′(◁▷𝜙 (r1, r2)), where ℓ′ is the concatenation of all the fields in ℓ1

and ℓ2.

Except for the equivalences involving sort, the other ones can be proven easily from the ax-

iomatic definitions.

Given the theorem above, the definition of Trans is shown in Fig. 2-8. Semantic equivalence

between the original and the translated expression is proved using the expression equivalences

listed in Thm. 2. Using those equivalences, for example, we can show that for s ∈ sortedExp and

b ∈ baseExp:

Trans(𝜎𝜙′
𝜎
(s)) = Trans(𝜎𝜙′(𝜋ℓ𝜋(sortℓs (𝜎𝜙(b))))) [sortedExp definition]

= 𝜋ℓ𝜋(sortℓs (𝜎𝜙𝜎∧𝜙′
𝜎
(b))) [Trans definition]

= 𝜋ℓ𝜋(𝜎𝜙′
𝜎
(sortℓs (𝜎𝜙𝜎(b)))) [expression equivalence]

= 𝜎𝜙′
𝜎
(𝜋ℓ𝜋(sortℓs (𝜎𝜙𝜎(b)))) [expression equivalence]

= 𝜎𝜙′
𝜎
(s) [sortedExp definition]

Thus the semantics of the original TOR expression is preserved.

Translatable expressions to SQL. Following the syntax-directed rules in Fig. 2-9, any translat-

able expression can be converted into an equivalent SQL expression. Most rules in Fig. 2-9 are

direct translations from the operators in the theory into their SQL equivalents.

One important aspect of the translation is the way that ordering of records is preserved. Order-

ing is problematic because although the operators in the theory define the order of the output in

terms of the order of their inputs, SQL queries are not guaranteed to preserve the order of records

from nested sub-queries; e.g., the ordering imposed by an ORDER BY clause in a nested query is

not guaranteed to be respected by an outer query that does not impose any ordering on the records.

To solve this problem, the translation rules introduce a function Order—defined in Fig. 2-

10—which scans a translatable expression t and returns a list of fields that are used to order the

subexpressions in t. The list is then used to impose an ordering on the outer SQL query with an
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Query(...)

Trans(Query(...))) = 𝜋ℓ(sort[ ](𝜎True(Query(...))))

where ℓ projects all the fields
from the input relation.

𝜋ℓ2(t)

Trans(𝜋ℓ2(s)) = 𝜋ℓ′(sortℓs (𝜎𝜙(b)))

Trans(𝜋ℓ2(tope(s))) = tope(𝜋ℓ′(sortℓs (𝜎𝜙(b))))

where ℓ′ is the composition of ℓ𝜋 and ℓ2.

𝜎𝜙2(t)

Trans(𝜎𝜙2(s)) = 𝜋ℓ𝜋(sortℓs (𝜎𝜙∧𝜙2(b)))

Trans(𝜎𝜙2(tope(s)))

= tope(𝜋ℓ𝜋(sortℓs (𝜎𝜙∧𝜙2(b))))

◁▷𝜙◁▷ (t1, t2))

Trans(◁▷𝜙◁▷ (s1, s2))

= 𝜋ℓ′𝜋(sortℓ′s (𝜎𝜙′
𝜎
(◁▷True (b1, b2))))

where 𝜙′
𝜎 = 𝜙𝜎1 ∧ 𝜙𝜎2 ∧ 𝜙◁▷

with field names properly renamed,
ℓ′s = cat(ℓs1 , ℓs2), and ℓ′𝜋 = cat(ℓ𝜋1 , ℓ𝜋2).

Trans(◁▷𝜙 (tope(s1), tope(s2)))

= 𝜋ℓ(sort[ ](𝜎𝜙(◁▷True (tope(s1), tope(s2)))))

where ℓ contains all the fields from s1 and s2.

tope2(t)

Trans(tope2(s)) = tope2(s)

Trans(tope2(tope1(s))) = tope′(s)

where e ′ is the minimum value of e1 and e2.

agg(t)

Trans(agg(s)) = 𝜋ℓ(sort[ ](𝜎True(agg(s))))

Trans(agg(tope(s))) = 𝜋ℓ(sort[ ](𝜎True(agg(s))))

where ℓ contains all the fields from s .

sortℓs2 (t)

Trans(sortℓs2 (s)) = 𝜋ℓ𝜋(sortℓ′s (𝜎𝜙(b)))

Trans(sortℓs2 (tope(s))) = tope(𝜋ℓ𝜋(sortℓ′s (𝜎𝜙(b))))

where ℓ′s = cat(ℓs , ℓs2).

Let s = 𝜋ℓ𝜋(sortℓs (𝜎𝜙(b))). Trans is defined on expressions whose subexpressions (if any) are in
translatable form, so we have to consider cases where the sub-expressions are either s or tope(s).
Each case is defined above.

Figure 2-8: Definition of Trans
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JQuery(string)K = ( string )

Jtope(s)K = SELECT * FROM JsK LIMIT JeK
J◁▷True (t1, t2)K = SELECT * FROM Jt1K, Jt2K

Jagg(t)K = SELECT agg(field) FROM JtK
J𝜋ℓ1(sortℓ2(𝜎𝜙𝜎(t)))K = SELECT Jℓ1K FROM JtK WHERE J𝜙𝜎K

ORDER BY Jℓ2K, Order(t)
Junique(t)K = SELECT DISTINCT * FROM JtK

ORDER BY Order(t)

J𝜙𝜎(e)K = JeK.f1 op JeK AND ... AND JeK.fN op JeK
Jcontains(e, t)K = JeK IN JtK

J[fi1 , ... , fiN ]K = fi1 , ... , fiN

Figure 2-9: Syntactic rules to convert translatable expressions to SQL

ORDER BY clause. One detail of the algorithm not shown in the figure is that some projections in

the inner queries need to be modified so they do not eliminate fields that will be needed by the outer

ORDER BY clause, and that we assume Query(...) is ordered by the order in which the records are

stored in the database (unless the query expression already includes an ORDER BY clause).

Append and Unique. The append operation is not included in translatable expressions because

there is no simple means to combine two relations in SQL that preserves the ordering of records in

the resulting relation.3 We can still translate unique, however, using the SELECT DISTINCT con-

struct at the outermost level, as Fig. 2-9 shows. Using unique in nested expressions, however, can

change the semantics of the results in ways that are difficult to reason about (e.g., unique(tope(r))

is not equivalent to tope(unique(r))). Thus, the only expressions with unique that we translate to

SQL are those that use it at the outermost level. In our experiments, we found that omitting those

two operators did not significantly limit the expressiveness of the theory.

With the theory in mind, I now turn to the process of computing verification conditions of the

input code fragments.

3One way to preserve record ordering in list append is to use case expressions in SQL, although some database
systems such as SQL Server limit the number of nested case expressions.
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Order(Query(...)) = [record order in DB] Order(agg(e)) = [ ]

Order(topi (e)) = Order(e) Order(unique(e)) = Order(e)

Order(𝜋ℓ(e)) = Order(e) Order(𝜎𝜙(e)) = Order(e)

Order(◁▷𝜙 (e1, e2)) = cat(Order(e1), Order(e2))

Order(sortℓ(e)) = cat(ℓ, Order(e))

Figure 2-10: Definition of Order

i op

⎧⎨⎩
i | size(users) | size(roles) | size(listUsers) |

sum(𝜋ℓ(users) | sum(𝜋ℓ(roles) | max(𝜋ℓ(users) |
[other relational expressions that return a scalar value]

⎫⎬⎭ ∧

listUsers =

⎧⎪⎪⎨⎪⎪⎩
listUsers | 𝜎𝜙(users) |

𝜋ℓ(◁▷𝜙 (tope1(users), tope2(roles))) |
𝜋ℓ(◁▷𝜙3 (𝜎𝜙1(tope1(users),𝜎𝜙2(tope2(roles))))) |

[other relational expressions that return an ordered list]

⎫⎪⎪⎬⎪⎪⎭
Figure 2-11: Space of possible invariants for the outer loop of the running example.

2.4 Synthesis of Invariants and Postconditions

Given an input code fragment in the kernel language, the next step in QBS is to come up with an

expression for the result variable of the form resultVar = e, where e is a translatable expression as

defined in Sec. 2.3.2.

2.4.1 Computing Verification Conditions

In order to infer the postcondition, we compute verification conditions for the input code fragment

using standard techniques from axiomatic semantics [63]. As in traditional Hoare style verification,

computing the verification condition of the while statements involves a loop invariant. Unlike

traditional computation of verification conditions, however, both the postcondition and the loop

invariants are unknown when the conditions are generated. This does not pose problems for QBS

as we simply treat invariants (and the postcondition) as unknown predicates over the program
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Verification conditions for the outer loop
(oInv = outerLoopInvariant, iInv = innerLoopInvariant, pcon = postCondition)

initialization oInv(0, users, roles, [ ])

loop exit i ≥ size(users) ∧ oInv(i , users, roles, listUsers) → pcon(listUsers, users, roles)

perservation (same as inner loop initialization)

Verification conditions for the inner loop

initialization i < size(users) ∧ oInv(i , users, roles, listUsers) → iInv(i , 0, users, roles, listUsers)

loop exit j ≥ size(roles) ∧ iInv(i , j , users, roles, listUsers) → oInv(i + 1, users, roles, listUsers)

preservation j < size(roles) ∧ iInv(i , j , users, roles, listUsers)
→ (geti (users).id = getj(roles).id ∧ iInv(i , j + 1, users, roles,

append(listUsers, geti (users)))) ∨
(geti (users).id ̸= getj(roles).id ∧ iInv(i , j + 1, users, roles, listUsers))

Figure 2-12: Verification conditions for the running example

variables that are currently in scope when the loop is entered.

As an example, Fig. 2-12 shows the verification conditions that are generated for the running

example. In this case, the verification conditions are split into two parts, with invariants defined

for both loops.

The first two assertions describe the behavior of the outer loop on line 5, with the first one

asserting that the outer loop invariant must be true on entry of the loop (after applying the rule

for the assignments prior to loop entry), and the second one asserting that the postcondition for

the loop is true when the loop terminates. The third assertion states that the inner loop invariant

is true when it is first entered, given that the outer loop condition and loop invariant are true.

The preservation assertion is the inductive argument that the inner loop invariant is preserved

after executing one iteration of the loop body. The list listUsers is either appended with a record

from geti(users), or remains unchanged, depending on whether the condition for the if statement,

geti(users).id = getj(roles).id , is true or not. Finally, the loop exit assertion states that the outer

loop invariant is valid when the inner loop terminates.

45



2.4.2 Constraint based synthesis

The goal of the synthesis step is to derive postcondition and loop invariants that satisfy the verifi-

cation conditions generated in the previous step. We synthesize these predicates using the SKETCH

constraint-based synthesis system [99]. In general, SKETCH takes as input a program with “holes”

and uses a counterexample guided synthesis algorithm (CEGIS) to efficiently search the space of

all possible completions to the holes for one that is correct according to a bounded model checking

procedure. For QBS, the program is a simple procedure that asserts that the verification conditions

hold for all possible values of the free variables within a certain bound. For each of the unknown

predicates, the synthesizer is given a sketch (i.e., a template) that defines a space of possible pred-

icates which the synthesizer will search. The sketches are automatically generated by QBS from

the kernel language representation.

2.4.3 Inferring the Space of Possible Invariants

Recall that each invariant is parameterized by the current program variables that are in scope. Our

system assumes that each loop invariant is a conjunction of predicates, with each predicate having

the form lv = e, where lv is a program variable that is modified within the loop, and e is an

expression in TOR.

The space of expressions e is restricted to expressions of the same static type as lv involving

the variables that are in scope. The system limits the size of expressions that the synthesizer

can consider, and incrementally increases this limit if the synthesizer fails to find any candidate

solutions (to be explained in Sec. 2.4.5).

Fig. 2-11 shows a stylized representation of the set of predicates that our system considers for

the outer loop in the running example. The figure shows the potential expressions for the program

variable i and listUsers . One advantage of using the theory of ordered relations is that invariants

can be relatively concise. This has a big impact for synthesis, because the space of expressions

grows exponentially with respect to the size of the candidate expressions.
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2.4.4 Creating Templates for Postconditions

The mechanism used to generate possible expressions for the result variable is similar to that for

invariants, but we have stronger restrictions, since we know the postcondition must be of the form

resultVar = e in order to be translatable to SQL, and the form is further restricted by the set of

translatable expressions discussed in Sec. 2.3.2.

For the running example, QBS considers the following possible set of postconditions:

listUsers =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

users | 𝜎𝜙(users) | tope(users) |

𝜋ℓ(◁▷𝜙 (tope1(users), tope2(roles))) |

𝜋ℓ(◁▷𝜙3 (𝜎𝜙1(tope1(users),𝜎𝜙2(tope2(roles))))) |

[other relational expressions that return an ordered list]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
2.4.5 Optimizations

The basic algorithm presented above for generating invariant and postcondition templates is suffi-

cient but not efficient for synthesis. In this section I describe two optimizations that improve the

synthesis efficiency.

Incremental solving. As an optimization, the generation of templates for invariants and postcon-

ditions is done in an iterative manner: QBS initially scans the input code fragment for specific pat-

terns and creates simple templates using the production rules from the predicate grammar, such as

considering expressions with only one relational operator, and functions that contains one Boolean

clause. If the synthesizer is able to generate a candidate that can be used to prove the validity

of the verification conditions, then our job is done. Otherwise, the system repeats the template

generation process, but increases the complexity of the template that is generated by considering

expressions consisting of more relational operators, and more complicated Boolean functions. Our

evaluation using real-world examples shows that most code examples require only a few (< 3) it-

erations before finding a candidate solution. Additionally, the incremental solving process can be

run in parallel.

Breaking symmetries. Symmetries have been shown to be one of sources of inefficiency in con-
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straint solvers [104, 50]. Unfortunately, the template generation algorithm presented above can

generate highly symmetrical expressions. For instance, it can generate the following potential

candidates for the postcondition:

𝜎𝜙2(𝜎𝜙1(users))

𝜎𝜙1(𝜎𝜙2(users))

Notice that the two expressions are semantically equivalent to the expression 𝜎𝜙1∧𝜙2(users).

These are the kind of symmetries that are known to affect solution time dramatically. The tem-

plate generation algorithm leverages known algebraic relationships between expressions to reduce

the search space of possible expressions. For example, our algebraic relationships tell us that it

is unnecessary to consider expressions with nested 𝜎 like the ones above. Also, when generat-

ing templates for postconditions, we only need to consider translatable expressions as defined in

Sec. 2.3.2 as potential candidates. Our experiments have shown that applying these symmetric

breaking optimizations can reduce the amount of solving time by half.

Even with these optimizations, the spaces of invariants considered are still astronomically large;

on the order of 2300 possible combinations of invariants and postconditions for some problems.

Thanks to these optimizations, however, the spaces can be searched very efficiently by the con-

straint based synthesis procedure.

2.5 Formal Validation and Source Transformation

After the synthesizer comes up with candidate invariants and postconditions, they need to be val-

idated using a theorem prover, since the synthesizer used in our prototype is only able to perform

bounded reasoning as discussed earlier. We have implemented the theory of ordered relations in

the Z3 [80] prover for this purpose. Since the theory of lists is not decidable as it uses universal

quantifiers, the theory of ordered relations is not decidable as well. However, for practical purposes

we have not found that to be limiting in our experiments. In fact, given the appropriate invariants

and postconditions, the prover is able to validate them within seconds by making use of the axioms

that are provided.
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Type Expression inferred

outer loop i ≤ size(users) ∧ listUsers = 𝜋ℓ(◁▷𝜙 (topi (users), roles))
invariant

inner loop i < size(users) ∧ j ≤ size(roles) ∧
invariant listUsers = append(𝜋ℓ(◁▷𝜙 (topi (users), roles)),𝜋ℓ(◁▷𝜙 (geti (users), topj(roles)))

postcondition listUsers = 𝜋ℓ(◁▷𝜙 (users, roles))

where 𝜙(eusers , eroles) := eusers .roleId = eroles .roleId ,
ℓ contains all the fields from the User class

Figure 2-13: Inferred expressions for the running example

If the prover can establish the validity of the invariants and postcondition candidates, the post-

condition is then converted into SQL according to the rules discussed in Sec. 2.3.2. For instance,

for the running example our algorithm found the invariants and postcondition as shown in Fig. 2-

13, and the input code is transformed into the results in Fig. 2-3.

If the prover is unable to establish validity of the candidates (detected via a timeout), QBS asks

the synthesizer to generate other candidate invariants and postconditions after increasing the space

of possible solutions as described in Sec. 2.4.5. One reason that the prover may not be able to

establish validity is because the maximum size of the relations set for the synthesizer was not large

enough. For instance, if the code returns the first 100 elements from the relation but the synthesizer

only considers relations up to size 10, then it will incorrectly generate candidates that claim that the

code was performing a full selection of the entire relation. In such cases our algorithm will repeat

the synthesis process after increasing the maximum relation size. If the verification is successful,

the inferred queries are merged back into the code fragment. Otherwise QBS will invoke the

synthesizer to generate another candidate. The process continues until a verified one is found or a

time out happens.
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List objs1 = fetchRecordsFromDB();
List results1 = new ArrayList();

for (Object o : objs1) {
if (f(o))
results1.add(o);

}

List results2 = new ArrayList();
for (Object o : objs1) {
if (g(o))
results2.add(o);

}

Figure 2-14: Code fragment with alias in results

2.5.1 Object Aliases

Implementations of ORM libraries typically create new objects from the records that are fetched,

and our current implementation will only transform the input source into SQL if all the objects

involved in the code fragment are freshly fetched from the database, as in the running example. In

some cases this may not be true, as in the code fragment in Fig. 2-14.

Here, the final contents of results1 and results2 can be aliases to those in objs1. In that

case, rewriting results1 and results2 into two SQL queries with freshly created objects will not

preserve the alias relationships in the original code. Our current implementation will not transform

the code fragment in that case, and we leave sharing record results among multiple queries as

future work.

2.6 Preprocessing of Input Programs

In order to handle real-world Java programs, QBS performs a number of initial passes to identify

the code fragments to be transformed to kernel language representation before query inference.

The code identification process makes use of several standard analysis techniques, and in this
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section I describe them in detail.

2.6.1 Generating initial code fragments

As discussed in Sec. 2.2, code identification first involves locating application entry point methods

and data persistent methods. From each data persistent method, our system currently inlines a

neighborhood of 5 callers and callees. QBS only inline callees that are defined in the application,

and provide models for native Java API calls. For callers QBS only inline those that can be po-

tentially invoked from an entry point method. The inlined method bodies are passed to the next

step of the process. Inlining improves the precision of the points-to information for our analysis.

While there are other algorithms that can be used to obtain such information [112, 108], we chose

inlining for ease of implementation and is sufficient in processing the code fragments used in the

experiments.

2.6.2 Identifying code fragments for query inference

Given a candidate inlined method for query inference, QBS next identifies the code fragment to

transform to the kernel language representation. While QBS can simply use the entire body of the

inlined method for this purpose, we would like to limit the amount of code to be analyzed, since

including code that does not manipulate persistent data will increase the difficulty in synthesizing

invariants and postconditions with no actual benefit. QBS accomplishes this goal using a series of

analyses. First, QBS runs a flow-sensitive pointer analysis [91] on the body of the inlined method.

The results of this analysis is a set of points-to graphs that map each reference variable to one

or more abstract memory locations at each program point. Using the points-to information, QBS

performs two further analyses on the inlined method.

Location tainting. QBS runs a dataflow analysis that conservatively marks values that are derived

from persistent data retrieved via ORM library calls. This analysis is similar to taint analysis [105],

and the obtained information allows the system to remove regions of code that do not manipulate

persistent data and thus can be ignored for our purpose. For instance, all reference variables and

51



list contents in Fig. 2-1 will be tainted as they are derived from persistent data. The results from

this analysis are used to identify the boundaries of the code fragment to be analyzed and converted.

Type analysis. As Java uses dynamic dispatch to resolve targets of method calls, we implemented

class analysis to determine potential classes for each object in a given code fragment. If there are

multiple implementations of the same method depending on the target’s runtime type, then QBS

will inline all implementations into the code fragment, with each one guarded by a runtime type

lookup. For instance, if object o can be of type Bar or a subtype Baz, and that method foo is

implemented by both classes, then inlining o.foo() will result in:

if (o instanceof Baz) {

// implementation of Baz.foo()

} else if (o instanceof Bar) {

// implementation of Bar.foo()

} else throw new RuntimeException(); // should not reach here

This process is applied recursively to all inlined methods.

Def-use analysis. For each identified code fragment, QBS runs a definition-use analysis to de-

termine the relationship among program variables. The results are used after ensure that none of

the variables that are defined in the code fragment to be replaced is used in the rest of the inlined

method after replacement. And the checking is done before replacing the code fragment with a

verified SQL query.

Value escapement. After that, QBS performs another dataflow analysis to check if any abstract

memory locations are reachable from references that are outside of the inlined method body. This

analysis is needed because if an abstract memory location m is accessible from the external en-

vironment (e.g., via a global variable) after program point p, then converting m might break the

semantics of the original code, as there can be external references to m that rely on the contents of

m before the conversion. This analysis is similar to classical escape analysis [108]. Specifically, we

define an abstract memory location m as having escaped at program point p if any of the following

is true:
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• It is returned from the entry point method.

• It is assigned to a global variable that persists after the entry point method returns (in the

web application context, these can be variables that maintain session state, for instance).

• It is assigned to a Runnable object, meaning that it can be accessed by other threads.

• It is passed in as a parameter into the entry point method.

• It can be transitively reached from an escaped location.

With that in mind, we define the beginning of the code fragment to pass to the QBS algorithm

as the program point p in the inlined method where tainted data is first retrieved from the database,

and the end as the program point p’ where tainted data first escapes, where p’ appears after p in

terms of control flow. For instance, in Fig. 2-1 the return statement marks the end of the code

fragment, with the result variable being the value returned.

2.6.3 Compilation to kernel language

Each code fragment that is identified by the previous analysis is compiled to our kernel language.

Since the kernel language is based on value semantics and does not model heap updates for lists,

during the compilation process QBS translates list references to the abstract memory locations

that they point to, using the results from earlier analysis. In general, there are cases where the

preprocessing step fails to identify a code fragment from an inlined method (e.g., persistent data

values escape to multiple result variables under different branches, code involves operations not

supported by the kernel language, etc.), and QBS will simply skip such cases. However, the number

of such cases is relatively small as our experiments show.

2.7 Experiments

In this section I report our experimental results. The goal of the experiments is twofold: first, to

quantify the ability of our algorithm to convert Java code into real-world applications and measure
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the performance of the converted code fragments, and second to explore the limitations of the

current implementation.

We have implemented a prototype of QBS. The source code analysis and computation of

verification conditions are implemented using the Polyglot compiler framework [84]. We use

Sketch as the synthesizer for invariants and postconditions, and Z3 for validating the invariants

and postconditions.

2.7.1 Real-World Evaluation

In the first set of experiments, we evaluated QBS using real-world examples from two large-scale

open-source applications, Wilos and itracker, written in Java. Wilos (rev. 1196) [24] is a project

management application with 62k LOC, and itracker (ver. 3.0.1) [5] is a software issue manage-

ment system with 61k LOC. Both applications have multiple contributors with different coding

styles, and use the Hibernate ORM library for data persistence operations. We passed in the entire

source code of these applications to QBS to identify code fragments. The preprocessor initially

found 120 unique code fragments that invoke ORM operations. Of those, it failed to convert 21

of them into the kernel language representation, as they use data structures that are not supported

by our prototype (such as Java arrays), or access persistent objects that can escape from multiple

control flow points and hence cannot be converted.

Meanwhile, upon manual inspection, we found that those 120 code fragments correspond to

49 distinct code fragments inlined in different contexts. For instance, if A and C both call method

B, our system automatically inlines B into the bodies of A and C, and those become two different

code fragments. But if all persistent data manipulation happens in B, then we only count one of the

two as part of the 49 distinct code fragments. QBS successfully translated 33 out of the 49 distinct

code fragments (and those 33 distinct code fragments correspond to 75 original code fragments).

The results are summarized in Fig. 2-15, and the details can be found in Fig. 2-16.

This experiment shows that QBS can infer relational specifications from a large fraction of

candidate fragments and convert them into SQL equivalents. For the candidate fragments that are

reported as translatable by QBS, our prototype was able to synthesize postconditions and invariants,
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Application # persistent data code fragments translated failed
Wilos 33 29 4

itracker 16 12 4
Total 49 41 7

Figure 2-15: Real-world code fragments experiment

wilos code fragments

# Java Class Name Line Oper. Status Time (s)
17 ActivityService 401 A † –
18 ActivityService 328 A † –
19 AffectedtoDao 13 B X 72
20 ConcreteActivityDao 139 C * –
21 ConcreteActivityService 133 D † –
22 ConcreteRoleAffectationService 55 E X 310
23 ConcreteRoleDescriptorService 181 F X 290
24 ConcreteWorkBreakdownElementService 55 G † –
25 ConcreteWorkProductDescriptorService 236 F X 284
26 GuidanceService 140 A † –
27 GuidanceService 154 A † –
28 IterationService 103 A † –
29 LoginService 103 H X 125
30 LoginService 83 H X 164
31 ParticipantBean 1079 B X 31
32 ParticipantBean 681 H X 121
33 ParticipantService 146 E X 281
34 ParticipantService 119 E X 301
35 ParticipantService 266 F X 260
36 PhaseService 98 A † –
37 ProcessBean 248 H X 82
38 ProcessManagerBean 243 B X 50
39 ProjectService 266 K * –
40 ProjectService 297 A X 19
41 ProjectService 338 G † –
42 ProjectService 394 A X 21
43 ProjectService 410 A X 39
44 ProjectService 248 H X 150
45 RoleDao 15 I * –
46 RoleService 15 E X 150
47 WilosUserBean 717 B X 23
48 WorkProductsExpTableBean 990 B X 52
49 WorkProductsExpTableBean 974 J X 50
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itracker code fragments

# Java Class Name Line Operation Status Time (s)
1 EditProjectFormActionUtil 219 F X 289
2 IssueServiceImpl 1437 D X 30
3 IssueServiceImpl 1456 L * –
4 IssueServiceImpl 1567 C * –
5 IssueServiceImpl 1583 M X 130
6 IssueServiceImpl 1592 M X 133
7 IssueServiceImpl 1601 M X 128
8 IssueServiceImpl 1422 D X 34
9 ListProjectsAction 77 N * –

10 MoveIssueFormAction 144 K * –
11 NotificationServiceImpl 568 O X 57
12 NotificationServiceImpl 848 A X 132
13 NotificationServiceImpl 941 H X 160
14 NotificationServiceImpl 244 O X 72
15 UserServiceImpl 155 M X 146
16 UserServiceImpl 412 A X 142

where:
A: selection of records
B: return literal based on result size
C: retrieve the max / min record by first sorting and then returning the last element
D: projection / selection of records and return results as a set
E: nested-loop join followed by projection
F: join using contains
G: type-based record selection
H: check for record existence in list
I: record selection and only return the one of the records if multiple ones fulfill the selection
criteria
J: record selection followed by count
K: sort records using a custom comparator
L: projection of records and return results as an array
M: return result set size
N: record selection and in-place removal of records
O: retrieve the max / min record

X indicates those that are translated by. QBS

* indicates those that QBS failed to find invariants for.
† indicates those that are rejected by QBS due to TOR / pre-processing limitations.

Figure 2-16: Details of the 49 distinct code fragments. The times reported correspond to the
time required to synthesize the invariants and postconditions. The time taken for the other initial
analysis and SQL translation steps are negligible.
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and also validate them using the prover. Furthermore, the maximum time that QBS takes to process

any one code fragment is under 5 minutes (with an average of 2.1 minutes). In the following, I

broadly describe the common types of relational operations that our QBS prototype inferred from

the fragments, along with some limitations of the current implementation.

Projections and Selections. A number of identified fragments perform relational projections and

selections in imperative code. Typical projections include selecting specific fields from the list

of records that are fetched from the database, and selections include filtering a subset of objects

using field values from each object (e.g., user ID equals to some numerical constant), and a few

use criteria that involve program variables that are passed into the method.

One special case is worth mentioning. In some cases only a single field is projected out and

loaded into a set data structure, such as a set of integer values. One way to translate such cases

is to generate SQL that fetches the field from all the records (including duplicates) into a list, and

eliminate the duplicates and return the set to the user code. Our prototype, however, improves upon

that scheme by detecting the type of the result variable and inferring a postcondition involving the

unique operator, which is then translated to a SELECT DISTINCT query that avoids fetching

duplicate records from the database.

Joins. Another set of code fragments involve join operations. I summarize the join operations

in the application code into two categories. The first involves obtaining two lists of objects from

two base queries and looping through each pair of objects in a nested for or while loop. The pairs

are filtered and (typically) one of the objects from each pair is retained. The running example in

Fig. 2-1 represents such a case. For these cases, QBS translates the code fragment into a relational

join of the two base queries with the appropriate join predicate, projection list, and sort operations

that preserve the ordering of records in the results.

Another type of join also involves obtaining two lists of objects from two base queries. Instead

of a nested loop join, however, the code iterates through each object e from the first list, and

searches if e (or one of e’s fields) is contained in the second. If true, then e (or some of its fields)

is appended to the resulting list. For these cases QBS converts the search operation into a contains

expression in the predicate language, after which the expression is translated into a correlated

57



subquery in the form of SELECT * FROM r1, r2 WHERE r1 IN r2, with r1 and r2 being the base

queries.

QBS handles both join idioms mentioned above. However, the loop invariants and postcondi-

tions involved in such cases tend to be more complex as compared to selections and projections, as

illustrated by the running example in Fig. 2-13. Thus, they require more iterations of synthesis and

formal validation before finding a valid solution, with up to 5 minutes in the longest case. Here,

the majority of the time is spent in synthesis and bounded verification. We are not aware of any

prior techniques that can be used to infer join queries from imperative code, and we believe that

more optimizations can be devised to speed up the synthesis process for such cases.

Aggregations. Aggregations are used in fragments in a number of ways. The most straightfor-

ward ones are those that return the length of the list that is returned from an ORM query, which are

translated into COUNT queries. More sophisticated uses of aggregates include iterating through

all records in a list to find the max or min values, or searching if a record exists in a list. Aggregates

such as maximum and minimum are interesting as they introduce loop-carried dependencies [28],

where the running value of the aggregate is updated conditionally based on the value of the current

record as compared to previous ones. By using the top operator from the theory of ordered rela-

tions, QBS is able to generate a loop invariant of the form v = agg(topi(r)), where agg represents

an aggregate operation, and then translate the postcondition into the appropriate SQL query.

As a special case, a number of fragments check for the existence of a particular record in a

relation by iterating over all records and setting a result Boolean variable to be true if it exists.

In such cases, the generated invariants are similar to other aggregate invariants, and our prototype

translates such code fragments into SELECT COUNT(*) > 0 FROM ... WHERE e, where e is

the expression to check for existence in the relation. We rely on the database query optimizer to

further rewrite this query into the more efficient form using EXISTS.

Limitations. We have verified that in all cases where the generated template is expressive enough

for the invariants and postconditions, our prototype does indeed find the solution within a preset

timeout of 10 minutes. However, there are a few examples from the two applications where our

prototype either rejects the input code fragment or fails to find an equivalent SQL expression from
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the kernel language representation. Fragments are rejected because they involve relational update

operations that are not handled by TOR. Another set of fragments include advanced use of types,

such as storing polymorphic records in the database, and performing different operations based

on the type of records retrieved. Incorporating type information in the theory of ordered relations

is an interesting area for future work. There are also a few that QBS fails to translate into SQL,

even though we believe that there is an equivalent SQL query without updates. For instance, some

fragments involve sorting the input list by Collections.sort, followed by retrieving the last record

from the sorted list, which is equivalent to max or min depending on the sort order. Including extra

axioms in the theory would allow us to reason about such cases.

2.7.2 Performance Comparisons

Next, we quantify the amount of performance improvement as a result of query inference. To do so,

we took a few representative code fragments for selection, joins, and aggregation, and populated

databases with different number of persistent objects. We then compared the performance between

the original code and our transformed versions of the code with queries inferred by QBS. Since

Hibernate can either retrieve all nested references from the database (eager) when an object is

fetched, or only retrieve the top level references (lazy), we measured the execution times for both

modes (the original application is configured to use the lazy retrieval mode). The results shown in

Fig. 2-17 compare the time taken to completely load the webpages containing the queries between

the original and the QBS inferred versions of the code.

Selection Code Fragment. Fig. 2-17a and Fig. 2-17b show the results from running a code frag-

ment that includes persistent data manipulations from fragment #40 in Fig. 2-16. The fragment

returns the list of unfinished projects. Fig. 2-17a shows the results where 10% of the projects

stored are unfinished, and Fig. 2-17b shows the results with 50% unfinished projects. While the

original version performs the selection in Java by first retrieving all projects from the database,

QBS inferred a selection query in this case. As expected, the query inferred by QBS outperforms

the original fragments in all cases as it only needs to retrieve a portion (specifically 10 and 50%)
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Figure 2-17: Webpage load times comparison of representative code fragments
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of all persistent objects from the database.

Join Code Fragment. Fig. 2-17c shows the results from a code fragment with contents from

fragment #46 in Fig. 2-16 (which is the same as the example from Fig. 2-1). The fragment returns

the projection of User objects after a join of Roles and Users in the database on the roleId field.

The original version performs the join by retrieving all User and Role objects and joining them

in a nested loop fashion as discussed in Sec. 2.2. The query inferred by QBS, however, pushes

the join and projection into the database. To isolate the effect of performance improvement due

to query selectivity (as in the selection code fragment), we purposefully constructed the dataset

so that the query returns all User objects in the database in all cases, and the results show that the

query inferred by QBS still has much better performance than the original query. This is due to

two reasons. First, even though the number of User objects returned in both versions are the same,

the QBS version does not need to retrieve any Role objects since the projection is pushed into the

database, unlike the the original version. Secondly, thanks to the automatically created indices on

the Role and User tables by Hibernate, the QBS version essentially transforms the join implemen-

tation from a nested loop join into a hash join, i.e., from an O(n2) to an O(n) implementation, thus

improving performance asymptotically.

Aggregation Code Fragment. Finally, Fig. 2-17d shows the results from running code with

contents from fragment #38, which returns the number of users who are process managers. In this

case, the original version performs the counting by bringing in all users who are process managers

from the database, and then returning the size of the resulting list. QBS, however, inferred a

COUNT query on the selection results. This results in multiple orders of magnitude performance

improvement, since the QBS version does not need to retrieve any objects from the database beyond

the resulting count.

2.7.3 Advanced Idioms

In the final set of experiments, we used synthetic code fragments to demonstrate the ability of our

prototype to translate more complex expressions into SQL. Although we did not find such examples
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in either of our two real-world applications, we believe that these can occur in real applications.

Hash Joins. Beyond the join operations that we encountered in the applications, we wrote two

synthetic test cases for joins that join relations r and s using the predicate r.a = s.b, where a and

b are integer fields. In the first case, the join is done via hashing, where we first iterate through

records in r and build a hashtable, whose keys are the values of the a field, and where each key

maps to a list of records from r that has that corresponding value of a. We then loop through

each record in s to find the relevant records from r to join with, using the b field as the look up

key. QBS currently models hashtables using lists, and with that our prototype is able recognize this

process as a join operation and convert the fragment accordingly, similar to the join code fragments

mentioned above.

Sort-Merge Joins. Our second synthetic test case joins two lists by first sorting r and s on fields

a and b respectively, and then iterating through both lists simultaneously. We advance the scan of

r as long as the current record from r is less than (in terms of fields a and b) the current record

from s, and similarly advance the scan of s as long as the current s record is less than the current

r record. Records that represent the join results are created when the current record from r equals

to that from s on the respective fields. Unfortunately, our current prototype fails to translate the

code fragment into SQL, as the invariants for the loop cannot be expressed using the current the

predicate language, since that involves expressing the relationship between the current record from

r and s with all the records that have been previously processed.

Iterating over Sorted Relations. We next tested our prototype with two usages of sorted lists.

We created a relation with one unsigned integer field id as primary key, and sorted the list using

the sort method from Java. We subsequently scanned through the sorted list as follows:

List records = Query("SELECT id FROM t");

List results = new ArrayList();

Collections.sort(records); // sort by id

for (int i = 0; i < 10; ++i) {

results.add(records.get(i));

}
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Our prototype correctly processes this code fragment by translating it into SELECT id FROM t

ORDER BY id LIMIT 10. However, if the loop is instead written as follows:

List records = Query("SELECT id FROM t");

List results = new ArrayList();

Collections.sort(records); // sort by id

int i = 0;

while (records.get(i).id < 10) {

results.add(records.get(i));

++i;

}

The two loops are equivalent since the id field is a primary key of the relation, and thus there

can at most be 10 records retrieved. However, our prototype is not able to reason about the second

code fragment, as that requires an understanding of the schema of the relation, and that iterating

over id in this case is equivalent to iterating over i in the first code fragment. Both of which require

additional axioms to be added to the theory before such cases can be converted.

2.8 Summary

In this chapter, I discussed QBS, a system for inferring relational specifications from imperative

code that retrieves data using ORM libraries. Our system automatically infers loop invariants and

postconditions associated with the source program, and converts the validated postcondition into

SQL queries. Our approach is both sound and precise in preserving the ordering of records. We

developed a theory of ordered relations that allows efficient encoding of relational operations into a

predicate language, and we demonstrated the applicability using a set of real-world code examples.

The techniques developed in this system are applicable to the general problem of inferring high-

level structure from low-level code representations, a problem I discuss that further in Ch. 6.
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Chapter 3

PYXIS: Deciding Where to Execute

In addition to determining how to a piece of computation should be represented, placing computa-

tion on the appropriate server is another factor that affects database application performance. While

the number of ways computation can be placed is limited in previous-generation database-backed

application architectures as certain software components are installed on dedicated servers (e.g.,

the database engine is available only on servers with large amount of disk storage and physical

memory), this is no longer true as most software components can now be executed on commod-

ity hardware. Thus, there are many more ways in which computation can be placed on different

servers.

While QBS attempts to convert imperative code blocks into SQL queries, there are certain cases

where QBS fails to convert even though a valid rewrite exists, as described in Sec. 2.7.1. In such

cases, it might still be beneficial to move computation from the application server to the database

server to reduce the amount of data to be transferred from the database back to the application

server. Doing so requires a system that can automatically partition a database application into

server and query components. In this chapter, I describe a new system called PYXIS that addresses

this code placement problem by making use of profile-driven code partitioning during compilation.

The goal of PYXIS is to automatically partition database applications into the server and query

components to be executed on the application and database servers, respectively. To do so, PYXIS

first profiles the application and server loads, statically analyzes the code’s dependencies, and
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produces a partitioning that minimizes the number of control transfers as well as the amount of

data sent during each transfer. Our experiments using TPC-C and TPC-W show that PYXIS is able

to generate partitions with up to 3× reduction in latency and 1.7× improvement in throughput

when compared to a traditional non-partitioned implementation and has comparable performance

to that of a custom stored procedure implementation.1

3.1 Code Partitioning Across Servers

Many database applications are extremely latency sensitive for two reasons. First, in many trans-

actional applications (e.g., database-backed websites), there is typically a hard response time limit

of a few hundred milliseconds, including the time to execute application logic, retrieve query re-

sults, and generate HTML. Saving even a few tens of milliseconds of latency per transaction can be

important in meeting these latency bounds. Second, longer-latency transactions hold locks longer,

which can severely limit maximum system throughput in highly concurrent systems.

Stored procedures are a widely used technique for improving the latency of database appli-

cations. The idea behind stored procedures is to rewrite sequences of application logic that are

interleaved with database commands (e.g., SQL queries) into parameterized blocks of code that

are stored on the database server. The application then sends commands to the database server,

typically on a separate physical machine, to invoke these blocks of code.

Stored procedures can significantly reduce transaction latency by avoiding round trips between

the application and database servers. These round trips would otherwise be necessary in order to

execute the application logic found between successive database commands. The resulting speedup

can be substantial. For example, in a Java implementation of a database application similar to TPC-

C [22] (a common benchmark suite for transactional database applications)—which has relatively

little application logic—running each TPC-C transaction as a stored procedure can offer up to a 3×

reduction in latency versus running each SQL command via a separate JDBC call. This reduction

results in a 1.7× increase in overall transaction throughput on this benchmark.

1Materials in this chapter are based on work published as Cheung, Arden, Madden, and Myers, “Automatic Parti-
tioning of Database Applications,” in PVLDB 5:11 [36].
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However, stored procedures have several disadvantages:

• Portability and maintainability: Stored procedures break a straight-line application into

two distinct and logically disjoint code bases. These code bases are usually written in dif-

ferent languages and must be maintained separately. Stored-procedure languages are often

database-vendor specific, making applications that use them less portable between databases.

Programmers are less likely to be familiar with or comfortable in low-level—even arcane—

stored procedure languages like PL/SQL or TransactSQL, and tools for debugging and test-

ing stored procedures are less advanced than those for more widely used languages.

• Conversion effort: Identifying sections of application logic that are good candidates for

conversion into stored procedures is tricky. In order to design effective stored procedures,

programmers must identify sections of code that make multiple (or large) database accesses

and can be parameterized by relatively small amounts of input. Weighing the relative merits

of different designs requires programmers to model or measure how often a stored procedure

is invoked and how much parameter data need to be transferred, both of which are nontrivial

tasks.

• Dynamic server load: Running parts of the application as stored procedures is not always

a good idea. If the database server is heavily loaded, pushing more computation into it

by calling stored procedures will hurt rather than help performance. Besides, a database

server’s load tends to change over time, depending on the workload and the utilization of the

applications it is supporting, so it is difficult for developers to predict the resources available

on the servers hosting their applications. Even with accurate predictions they have no easy

way to adapt their programs’ use of stored procedures to a dynamically changing server load.

We propose that these disadvantages of manually generated stored procedures can be avoided

by automatically identifying and extracting application code to be shipped to the database server.

We implemented this new approach in PYXIS, a system that automatically partitions a database

application into two pieces, one deployed on the application server as the server component, and

the other in the database server as the query component implemented using stored procedures.
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The two programs communicate with each other via remote procedure calls (RPCs) to implement

the semantics of the original application. In order to generate a partition, PYXIS first analyzes

application source code using static analysis and then collects dynamic information such as runtime

profile and machine loads. The collected profile data and results from the analysis are then used

to formulate a linear program whose objective is to minimize, subject to a maximum CPU load,

the overall latency due to network round trips between the application and database servers as

well as the amount of data sent during each round trip. The solved linear program then yields a

fine-grained, statement-level partitioning of the application’s source code. The partitioned code is

split into two components and executed on the application and database servers using the PYXIS

runtime.

The main benefit of our approach is that the developer does not need to manually decide which

part of her program should be executed where. PYXIS identifies good candidate code blocks for

conversion to stored procedures and automatically produces the two distinct pieces of code from the

single application codebase. When the application is modified, PYXIS can automatically regenerate

and redeploy this code. By periodically re-profiling their application, developers can generate new

partitions as load on the server or application code changes. Furthermore, the system can switch

between partitions as necessary by monitoring the current server load.

PYXIS makes several contributions:

1. We present a formulation for automatically partitioning programs into stored procedures that

minimize overall latency subject to CPU resource constraints. Our formulation leverages

a combination of static and dynamic program analysis to construct a linear optimization

problem whose solution is our desired partitioning.

2. We develop an execution model for partitioned applications where consistency of the dis-

tributed heap is maintained by automatically generating custom synchronization operations.

3. We implement a method for adapting to changes in real-time server load by dynamically

switching between pre-generated partitions created using different resource constraints.

4. We evaluate our PYXIS implementation on two popular transaction processing benchmarks,
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TPC-C and TPC-W, and compare the performance of our partitions to the original program

and versions using manually created stored procedures. Our results show PYXIS can auto-

matically partition database programs to get the best of both worlds: when CPU resources

are plentiful, PYXIS produces a partition with comparable performance to that of hand-coded

stored procedures; when resources are limited, it produces a partition comparable to simple

client-side queries.

The rest of the chapter is organized as follows. I start with an architectural overview of PYXIS

in Sec. 3.2. I describe how PYXIS programs execute and synchronize data in Section Sec. 3.3. I

present the optimization problem and describe how solutions are obtained in Sec. 3.4. Sec. 3.5

explains the generation of partitioned programs, and Sec. 3.6 describes the PYXIS runtime system.

Sec. 3.7 shows our experimental results, followed by a summary of PYXIS in Sec. 3.8.

3.2 Overview

Figure 3-1 shows the architecture of PYXIS. PYXIS starts with an application written in Java

that uses JDBC to connect to the database and performs several analyses and transformations.2

The analysis used in PYXIS is general and does not impose any restrictions on the programming

style of the application. The final result is two separate programs, one that runs on the appli-

cation server and one that runs on the database server. These two programs communicate with

each other as necessary to implement the original application’s semantics. Execution starts at the

partitioned program on the application server but periodically switches to its counterpart on the

database server, and vice versa. We refer to these switches as control transfers. Each statement in

the original program is assigned a placement in the partitioned program on either the application

server or the database server. Control transfers occur when a statement with one placement is fol-

lowed by a statement with a different placement. Following a control transfer, the calling program

blocks until the callee returns control. Hence, a single thread of control is maintained across the

two servers.
2We chose Java due to its popularity in writing database applications. Our techniques can be applied to other

languages as well.
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Figure 3-1: PYXIS architecture

Although the two partitioned programs execute in different address spaces, they share the same

logical heap and execution stack. This program state is kept in sync by transferring heap and stack

updates during each control transfer or by fetching updates on demand. The execution stack is

maintained by the PYXIS runtime, but the program heap is kept in sync by explicit heap synchro-

nization operations, generated using a conservative static program analysis.

Static dependency analysis. The goal of partitioning is to preserve the original program seman-

tics while achieving good performance. This is done by reducing the number of control transfers

and amount of data sent during transfers as much as possible. The first step is to perform an inter-

procedural static dependency analysis that determines the data and control dependencies between

program statements. The data dependencies conservatively capture all data that may be necessary

to send if a dependent statement is assigned to a different partition. The control dependencies cap-

ture the necessary sequencing of program statements, allowing the PYXIS code generator to find

the best program points for control transfers.
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The results of the dependency analysis are encoded in a graph form that we call a partition

graph. It is a program dependence graph (PDG)3 augmented with extra edges representing ad-

ditional information. A PDG-like representation is appealing because it combines both data and

control dependencies into a single representation. Unlike a PDG, a partition graph has a weight that

models the cost of satisfying the edge’s dependencies if the edge is partitioned so that its source

and destination lie on different machines. The partition graph is novel; previous automatic par-

titioning approaches have partitioned control-flow graphs [114, 42] or dataflow graphs [82, 113].

Prior work in automatic parallelization [92] has also recognized the advantages of PDGs as a basis

for program representation.

Profile data collection. Although the static dependency analysis defines the structure of depen-

dencies in the program, the system needs to know how frequently each program statement is ex-

ecuted in order to determine the optimal partition; placing a “hot” code fragment on the database

server may increase server load beyond its capacity. In order to get a more accurate picture of the

runtime behavior of the program, statements in the partition graph are weighted by an estimated

execution count. Additionally, each edge is weighted by an estimated latency cost that represents

the communication overhead for data or control transfers. Both weights are captured by dynamic

profiling of the application.

For applications that exhibit different operating modes, such as the browsing versus shopping

mix in TPC-W, each mode could be profiled separately to generate partitions suitable for it. The

PYXIS runtime includes a mechanism to dynamically switch between different partitionings based

on current CPU load.

Optimization as integer programming. Using the results from the static analysis and dynamic

profiling, the PYXIS partitioner formulates the placement of each program statement and each

data field in the original program as an integer linear programming problem. These placements

then drive the transformation of the input source into the intermediate language PyxIL (for PYXis

Intermediate Language). The PyxIL program is very similar to the input Java program except

that each statement is annotated with its placement, :APP: or :DB:, denoting the server and query

3Since it is interprocedural, it actually is closer to a system dependence graph [53, 64] than a PDG.
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components of the database application, to be executed respectively on the application or database

server. Thus, PyxIL compactly represents a distributed program in a single unified representation.

PyxIL code also includes explicit heap synchronization operations, which are needed to ensure the

consistency of the distributed heap.

In general, the partitioner generates several different partitionings of the program using multi-

ple server instruction budgets that specify upper limits on how much computation may be executed

at the database server. Generating multiple partitions with different resource constraints enables

automatic adaptation to different levels of server load.

Compilation from PyxIL to Java. For each partitioning, the PyxIL compiler translates the PyxIL

source code into two Java programs, one for each runtime. These programs are compiled using the

standard Java compiler and linked with the PYXIS runtime. The database partition program is run

in an unmodified Java Virtual Machine (JVM) colocated with the database server, and the appli-

cation partition is similarly run on the application server. While not exactly the same as running

traditional stored procedures inside a DBMS, our approach is similar to other implementations of

stored procedures that provide a foreign language interface such as PL/Java [18] and execute stored

procedures in a JVM external to the DBMS. We find that running the program outside the DBMS

does not significantly hurt performance as long as it is colocated. With more engineering effort,

the database partition program could run in the same process as the DBMS.

Executing partitioned programs. The runtimes for the application server and database server

communicate over TCP sockets using a custom remote procedure call mechanism. The RPC inter-

face includes operations for control transfer and state synchronization. The runtime also periodi-

cally measures the current CPU load on the database server to support dynamic, adaptive switching

among different partitionings of the program. The runtime is described in more detail in Sec. 3.6.

3.3 Running PyxIL Programs

Figure 3-2 shows a running example used to explain PYXIS throughout this chapter. It is meant to

resemble a fragment of the new-order transaction in TPC-C, modified to exhibit relevant features of
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class Order {
int id;
double[] realCosts;
double totalCost;

Order(int id) {
this.id = id;

}

void placeOrder(int cid, double dct) {
totalCost = 0;
computeTotalCost(dct);
updateAccount(cid, totalCost);

}

void computeTotalCost(double dct) {
int i = 0;
double[] costs = getCosts();
realCosts = new double[costs.length];

for (itemCost : costs) {
double realCost;
realCost = itemCost * dct;
totalCost += realCost;
realCosts[i++] = realCost;
insertNewLineItem(id, realCost);

}
}

}

Figure 3-2: Running example
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PYXIS. The transaction retrieves the order that a customer has placed, computes its total cost, and

deducts the total cost from the customer’s account. It begins with a call to placeOrder on behalf of a

given customer cid at a given discount dct. Then computeTotalCost extracts the costs of the items

in the order using getCosts, and iterates through each of the costs to compute a total and record

the discounted cost. Finally, control returns to placeOrder, which updates the customer’s account.

The two operations insertNewLineItem and updateAccount update the database’s contents while

getCosts retrieves data from the database. If there are N items in the order, the example code incurs

N round trips to the database from the insertNewLineItem calls, and two more from getCosts and

updateAccount.

There are multiple ways to partition the fields and statements of this program. An obvious

partitioning is to assign all fields and statements to the application server. This would produce

the same number of remote interactions as in the standard JDBC-based implementation. At the

other extreme, a partitioning might place all statements on the database server, in effect creating

a stored procedure for the entire placeOrder method. As in a traditional stored procedure, each

time placeOrder is called the values cid and dct must be serialized and sent to the remote runtime.

Other partitionings are possible. Placing only the loop in computeTotalCost on the database would

save N round trips if no additional communication were necessary to satisfy data dependencies. In

general, assigning more code to the database server can reduce latency, but it also can put additional

load on the database. PYXIS aims to choose partitionings that achieve the smallest latency possible

using the current available resources on the server.

3.3.1 A PyxIL Partitioning

Figure 3-3 shows PyxIL code for one possible partitioning of our running example. PyxIL code

makes explicit the placement of code and data, as well as the synchronization of updates to a

distributed heap, but keeps the details of control and data transfers abstract. Field declarations

and statements in PyxIL are annotated with a placement label (:APP: or :DB:). The placement

of a statement indicates where the instruction is executed. For field declarations, the placement

indicates where the authoritative value of the field resides. However, a copy of a field’s value
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may be found on the remote server. The synchronization protocols using a conservative program

analysis ensure that this copy is up to date if it might be used before the next control transfer. Thus,

each object apparent at the source level is represented by two objects, one at each server. We refer

to these as the APP and DB parts of the object.

In the example code, the field id is assigned to the application server, indicated by the :APP:

placement label, but field totalCost is assigned to the database, indicated by :DB:. The array

allocated on line 21 is placed on the application server. All statements are placed on the application

server except for the for loop in computeTotalCost. When control flows between two statements

with different placements, a control transfer occurs. For example, on line 24 in Fig. 3-3, execution

is suspended at the application server and resumes at line 26 on the database server.

Arrays are handled differently from objects. The placement of an array is defined by its allo-

cation site: that is, the placement of the statement allocating the array. This approach means the

contents of an array may be assigned to either partition, but the elements are not split between

them. Additionally, since the stack is shared by both partitions, method parameters and local vari-

able declarations do not have placement labels in PyxIL.
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class Order {
:APP: int id;
:APP: double[] realCosts;
:DB: double totalCost;

Order(int id) {
:APP: this.id = id;
:APP: sendAPP(this);

}

void placeOrder(int cid, double dct) {
:APP: totalCost = 0;
:APP: sendDB(this);
:APP: computeTotalCost(dct);
:APP: updateAccount(cid, totalCost);

}

void computeTotalCost(double dct) {
int i; double[] costs;
:APP: costs = getCosts();
:APP: realCosts = new double[costs.length];
:APP: sendAPP(this);
:APP: sendNative(realCosts,costs);
:APP: i = 0;

for (:DB: itemCost : costs) {
double realCost;
:DB: realCost = itemCost * dct;
:DB: totalCost += realCost;
:DB: sendDB(this);
:DB: realCosts[i++] = realCost;
:DB: sendNative(realCosts);
:DB: insertNewLineItem(id, realCost);

}
}

}

Figure 3-3: A PyxIL version of the Order class
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3.3.2 State Synchronization

Although all data in PyxIL has an assigned placement, remote data may be transferred to or updated

by any host. Each host maintains a local heap for fields and arrays placed at that host as well as a

remote cache for remote data. When a field or array is accessed, the current value in the local heap

or remote cache is used. Hosts synchronize their heaps using eager batched updates; modifications

are aggregated and sent on each control transfer so that accesses made by the remote host are up

to date. The host’s local heap is kept up to date whenever that host is executing code. When a

host executes statements that modify remotely partitioned data in its cache, those updates must be

transferred on the next control transfer. For the local heap, however, updates only need to be sent to

the remote host before they are accessed. If static analysis determines that no such access occurs,

then no update message is required.

In some scenarios, eagerly sending updates may be suboptimal. If the amount of latency in-

curred by transferring unused updates exceeds the cost of an extra round trip communication, it

may be better to request the data lazily as needed. In PYXIS, we only generate PyxIL programs that

send updates eagerly, but investigating hybrid update strategies is an interesting future direction.

PyxIL programs maintain the above heap invariants using explicit synchronization operations.

Recall that classes are partitioned into two partial classes, one for APP and one for DB. The sendAPP

operation sends the APP part of its argument to the remote host. In Fig. 3-3, line 8 sends the

contents of id while line 30 sends totalCost and the array reference realCosts. Since arrays are

placed dynamically based on their allocation site, a reference to an array may alias both locally and

remotely partitioned arrays. On line 23, the contents of the array realCosts allocated at line 21 are

sent to the database server using the sendNative operation.4 The sendNative operation is also used

to transfer unpartitioned native Java objects that are serializable. Like arrays, native Java objects

are assigned locations based on their allocation site.

Send operations are batched together and executed at the next control transfer. Even though

the sendDB operation on line 30 and the sendNative operation on line 32 are inside a for loop, the

4For presentation purposes, the contents of costs is also sent here. This operation would typically occur in the
body of getCosts().
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updates will only be sent when control is transferred back to the application server.

3.4 Partitioning PYXIS code

PYXIS finds a partitioning for a user program by generating partitions with respect to a repre-

sentative workload that a user wishes to optimize. The program is profiled using this workload,

generating inputs that partitioning is based upon.

3.4.1 Profiling

PYXIS profiles the application in order to be able to estimate the size of data transfers and the

number of control transfers for any particular partitioning. To this end, statements are instrumented

to collect the number of times they are executed, and assignment expressions are instrumented to

measure the average size of the assigned objects. The application is then executed for a period of

time to collect data. Data collected from profiling is used to set weights in the partition graph.

This profile need not perfectly characterize the future interactions between the database and the

application, but a grossly inaccurate profile could lead to suboptimal performance. For example,

with inaccurate profiler data, PYXIS could choose to partition the program where it expects few

control transfers, when in reality the program might exercise that piece of code very frequently.

For this reason, developers may need to re-profile their applications if the workload changes dra-

matically and have PYXIS dynamically switch among the different partitions. A future work would

be to automatically detect significant changes in workload and trigger re-profiling.

3.4.2 The Partition Graph

After profiling, the normalized source files are submitted to the partitioner to assign placements for

code and data in the program. First, the partitioner performs an object-sensitive points-to analysis

[81] using the Accrue Analysis Framework [21]. This analysis approximates the set of objects that

may be referenced by each expression in the program. Using the results of the points-to analy-

sis, an interprocedural definition-use analysis links together all assignment statements (defs) with
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expressions that may observe the value of those assignments (uses). Next, a control dependency

analysis [27] links statements that cause branches in the control flow graph (i.e., conditionals,

loops, and calls) with the statements whose execution depends on them. For instance, each state-

ment in the body of a loop has a control dependency on the loop condition and is therefore linked

to the loop condition.

The precision of these analyses can affect the quality of the partitions found by PYXIS and

therefore performance. To preserve soundness, the analysis is conservative, which means that

some dependencies identified by the analysis may not be necessary. Unnecessary dependencies

result in inaccuracies in the cost model and superfluous data transfers at run time. For this work

we used a “2full+1H” object-sensitive analysis as described in prior work [96].

Dependencies. Using these analyses, the partitioner builds the partition graph, which represents

information about the program’s dependencies. The partition graph contains nodes for each state-

ment in the program and edges for the dependencies between them.

In the partition graph, each statement and field in the program is represented by a node in

the graph. Dependencies between statements and fields are represented by edges, and edges have

weights that model the cost of satisfying those dependencies. Edges represent different kinds of

dependencies between statements:

• A control edge indicates a control dependency between two nodes in which the computation

at the source node influences whether the statement at the destination node is executed.

• A data edge indicates a data dependency in which a value assigned in the source statement

influences the computation performed at the destination statement. In this case the source

statement is a definition (or def) and the destination is a use.

• An update edge represents an update to the heap and connects field declarations to statements

that update them.

Part of the partition graph for our running example is shown in Fig. 3-4. Each node in the graph

is labeled with the corresponding line number from Fig. 3-2. Note, for example, that while lines
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for(itemCost : costs)

realCost = itemCost * dct;

totalCost += realCost; realCosts[i++] = realCost;insertNewLineItem(id, realCost);

double[] realCosts;

double totalCost;

realCosts = new double[costs.length];
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Figure 3-4: A partition graph for part of the code from Fig. 3-2

24–26 appear sequentially in the program text, the partition graph shows that these lines can be

safely executed in any order, as long as they follow line 23. The partitioner adds additional edges

(not shown) for output dependencies (write-after-write) and anti-dependencies (read-before-write),

but these edges are currently only used during code generation and do not affect the choice of node

placements. For each JDBC call that interacts with the database, we also insert control edges to

nodes representing “database code.”

Edge weights. The tradeoff between network overhead and server load is represented by weights

on nodes and edges. Each statement node assigned to the database results in additional estimated

server load in proportion to the execution count of that statement. Likewise, each dependency

that connects two statements (or a statement and a field) on separate partitions incurs estimated

network latency proportional to the number of times the dependency is satisfied. Formally, let

cnt(s) be the number of times statement s was executed in the profile. Given a control or data edge

from statement src to statement dst, we approximate the number of times the edge e was satisfied

as cnt(e) = min(cnt(src), cnt(dst)).

Furthermore, let size(def ) represent the average size of the data that is assigned by statement

def . Then, given an average network latency LAT and a bandwidth BW, the partitioner assigns

weights to edges e and nodes s as follows:
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• Control edge e: LAT · cnt(e)

• Data edge e:
size(src)

BW
· cnt(e)

• Update edge e:
size(src)

BW
· cnt(dst)

• Statement node s: cnt(s)

• Field node: 0

Note that some of these weights, such as those on control and data edges, represent times. The

partitioner’s objective is to minimize the sum of the weights of edges cut by a given partitioning.

The weight on statement nodes is used separately to enforce the constraint that the total CPU load

on the server does not exceed a given maximum value.

The formula for data edges charges for bandwidth but not latency. For all but extremely large

objects, the weights of data edges are therefore much smaller than the weights of control edges.

By setting weights this way, we leverage an important aspect of the PYXIS runtime: satisfying a

data dependency does not necessarily require separate communication with the remote host. As

described in Sec. 3.3.2, PyxIL programs maintain consistency of the heap by batching updates

and sending them on control transfers. Control dependencies between statements on different

partitions inherently require communication in order to transfer control. However, since updates

to data can be piggy-backed on a control transfer, the marginal cost to satisfy a data dependency

is proportional to the size of the data. For most networks, bandwidth delay is much smaller than

propagation delay, so reducing the number of messages a partition requires will reduce the average

latency even though the size of messages increases. Furthermore, by encoding this property of data

dependencies as weights in the partition graph, we influence the choice of partition made by the

solver; cutting control edges is usually more expensive than cutting data edges.

Our simple cost model does not always accurately estimate the cost of control transfers. For

example, a series of statements in a block may have many control dependencies to code outside

the block. Cutting all these edges could be achieved with as few as one control transfer at runtime,

but in the cost model, each cut edge contributes its weight, leading to overestimation of the total
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Minimize: Σei∈Edges ei · wi

nj − nk − ei ≤ 0

Subject to: nk − nj − ei ≤ 0

...
Σni∈Nodes ni · wi ≤ Budget

Figure 3-5: Partitioning problem

partitioning cost. Also, fluctuations in network latency and CPU utilization could also lead to

inaccurate average estimates and thus result in suboptimal partitions. We leave more accurate cost

estimates to future work.

3.4.3 Optimization Using Integer Programming

The weighted graph is then used to construct a Binary Integer Programming problem [106]. For

each node we create a binary variable n ∈ Nodes that has value 0 if it is partitioned to the applica-

tion server and 1 if it is partitioned to the database. For each edge we create a variable e ∈ Edges

that is 0 if it connects nodes assigned to the same partition and 1 if it is cut; that is, the edge con-

nects nodes on different partitions. This problem formulation seeks to minimize network latency

subject to a specified budget of instructions that may be executed on the server. In general, the

problem has the form shown in Figure 3-5. The objective function is the summation of edge vari-

ables ei multiplied by their respective weights, wi . For each edge we generate two constraints that

force the edge variable ei to equal 1 if the edge is cut. Note that for both of these constraints to

hold, if nj ̸= nk then ei = 1, and if nj = nk then ei = 0. The final constraint in Figure 3-5 ensures

that the summation of node variables ni , multiplied by their respective weights wi , is at most the

“budget” given to the partitioner. This constraint limits the load assigned to the database server.

In addition to the constraints shown in Figure 3-5, we add placement constraints that pin certain

nodes to the server or the client. For instance, the “database code” node used to model the JDBC

driver’s interaction with the database must always be assigned to the database, and similarly assign

code that prints on the user’s console to the application server.
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The placement constraints for JDBC API calls are more interesting. Since the JDBC driver

maintains unserializable native state regarding the connection, prepared statements, and result sets

used by the program, all API calls must occur on the same partition. While these calls could also

be pinned to the database, this could result in low-quality partitions if the partitioner has very

little budget. Consider an extreme case where the partitioner is given a budget of 0. Ideally, it

should create a partition equivalent to the original program where all statements are executed on

the application server. Fortunately, this behavior is easily encoded in our model by assigning the

same node variable to all statements that contain a JDBC call and subsequently solving for the

values of the node variables. This encoding forces the resulting partition to assign all such calls to

the same partition.

After instantiating the partitioning problem, PYXIS invokes the solver. If the solver returns with

a solution, PYXIS applies it to the partition graph by assigning all nodes a location and marking all

edges that are cut. Our implementation currently supports lpsolve [76] and Gurobi Optimizer[61].

Finally, the partitioner generates a PyxIL program from the partition graph. For each field and

statement, the code generator emits a placement annotation :APP: or :DB: according to the solution

returned by the solver. For each dependency edge between remote statements, the code generator

places a heap synchronization operation after the source statement to ensure the remote heap is up

to date when the destination statement is executed. Synchronization operations are always placed

after statements that update remotely partitioned fields or arrays.

3.4.4 Statement Reordering

A partition graph may generate several valid PyxIL programs that have the same cost under the

cost model since the execution order of some statements in the graph is ambiguous. To eliminate

unnecessary control transfers in the generated PyxIL program, the code generator performs a re-

ordering optimization to create larger contiguous blocks with the same placement, reducing control

transfers. Because it captures all dependencies, the partition graph is particularly well suited to this

transformation. In fact, PDGs have been applied to similar problems such as vectorizing program

statements [53]. The reordering algorithm is simple. Recall that in addition to control, data, and
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update edges, the partitioner includes additional (unweighted) edges for output dependencies (for

ordering writes) and anti-dependencies (for ordering reads before writes) in the partition graph. We

can usefully reorder the statements of each block without changing the semantics of the program

[53] by topologically sorting the partition graph while ignoring back-edges and interprocedural

edges.5

The topological sort is implemented as a breadth-first traversal over the partition graph. Whereas

a typical breadth-first traversal would use a single FIFO queue to keep track of nodes not yet visited,

the reordering algorithm uses two queues, one for :DB: statements and one for :APP: statements.

Nodes are dequeued from one queue until it is exhausted, generating a sequence of statements that

are all located in one partition. Then the algorithm switches to the other queue and starts generating

statements for the other partition. This process alternates until all nodes have been visited.

3.4.5 Insertion of Synchronization Statements

The code generator is also responsible for placing heap synchronization statements to ensure con-

sistency of the PYXIS distributed heap. Whenever a node has outgoing data edges, the code gen-

erator emits a sendAPP or sendDB depending on where the updated data is partitioned. At the next

control transfer, the data for all such objects so recorded is sent to update of the remote heap.

Heap synchronization is conservative. A data edge represents a definition that may reach a

field or array access. Eagerly synchronizing each data edge ensures that all heap locations will be

up to date when they are accessed. However, imprecision in the reaching definitions analysis is

unavoidable, since predicting future accesses is undecidable. Therefore, eager synchronization is

sometimes wasteful and may result in unnecessary latency from transferring updates that are never

used.

The PYXIS runtime system also supports lazy synchronization in which objects are fetched

from the remote heap at the point of use. If a use of an object performs an explicit fetch, data

edges to that use can be ignored when generating data synchronization. Lazy synchronization

makes sense for large objects and for uses in infrequently executed code. In the current PYXIS

5Side-effects and data dependencies due to calls are summarized at the call site.
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public class Order {
ObjectId oid;
class Order_app { int id; ObjectId realCostsId; }
class Order_db { double totalCost; }
...

}
Figure 3-6: Partitioning fields into APP and DB objects

stack locations for computeTotalCost:
stack[0] = oid
stack[1] = dct
stack[2] = object ID for costs
stack[3] = costs.length
stack[4] = i
stack[5] = loop index
stack[6] = realCost

1 computeTotalCost0:
2 pushStackFrame(stack[0]);
3 setReturnPC(computeTotalCost1);
4 return getCosts0; // call this.getCosts()
5
6 computeTotalCost1:
7 stack[2] = popStack();
8 stack[3] = APPHeap[stack[2]].length;
9 oid = stack[0];

10 APPHeap[oid].realCosts = nativeObj(new dbl[stack[3]);
11 sendAPP(oid);
12 sendNative(APPHeap[oid].realCosts, stack[2]);
13 stack[4] = 0;
14 return computeTotalCost2; // control transfer to DB

15 computeTotalCost2:
16 stack[5] = 0; // i = 0
17 return computeTotalCost3; // start the loop
18
19 computeTotalCost3:
20 if (stack[5] < stack[3]) // loop index < costs.length
21 return computeTotalCost4; // loop body
22 else return computeTotalCost5; // loop exit
23
24 computeTotalCost4:
25 itemCost = DBHeap[stack[2]][stack[5]];
26 stack[6] = itemCost * stack[1];
27 oid = stack[0];
28 DBHeap[oid].totalCost += stack[6];
29 sendDB(oid);
30 APPHeap[oid].realCosts[stack[4]++] = stack[6];
31 sendNative(APPHeap[oid].realCosts);
32 ++stack[5];
33 pushStackFrame(APPHeap[oid].id, stack[6]);
34 setReturnPC(computeTotalCost3);
35 return insertNewLineItem0; // call insertNewLineItem
36
37 computeTotalCost5:
38 return returnPC;

Figure 3-7: Running example: APP code (left) and DB code (right). For simplicity, execution
blocks are presented as a sequence of statements preceded by a label.

implementation, lazy synchronization is not used in normal circumstances. We leave a hybrid

eager/lazy synchronization scheme to future work.

3.5 PyxIL compiler

The PyxIL compiler translates PyxIL source code into two partitioned Java programs that together

implement the semantics of the original application when executed on the PYXIS runtime. To

illustrate this process, we give an abridged version of the compiled Order class from the running

example. Fig. 3-6 shows how Order objects are split into two objects of classes Order_app and

Order_db, containing the fields assigned to APP and DB respectively in Fig. 3-3. Both classes contain
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a field oid (line 2) which is used to identify the object in the PYXIS-managed heaps (denoted by

DBHeap and APPHeap). In essence, the fields in the original class are split across two embedded

classes in the compiled code, each containing the fields that are assigned to the runtime hosted on

the application server or the database. Because each object instance from the original program is

split into two, all objects on the heap are referenced with heap object IDs rather than the actual

object itself (e.g., realCostsId field on line 3).

Additionally, an entry point (see Sec. 3.5.2) is generated for those methods that have public

visibility in the PyxIL source (lines 3–8). In the following I describe the compiled constructs in

detail.

3.5.1 Representing Execution Blocks

In order to arbitrarily assign program statements to either the application or the database server,

the runtime needs to have complete control over program control flow as it transfers between the

servers. PYXIS accomplishes this by compiling each PyxIL method into a set of execution blocks,

each of which corresponds to a straight-line PyxIL code fragment. For example, Fig. 3-7 shows

the code generated for the method computeTotalCost in the class. This code includes execution

blocks for both the :APP: and :DB: partitions. Note that local variables in the PyxIL source are

translated into indices of an array stack that is explicitly maintained in the Java code and is used

to model the stack frame that the method is currently operating on.

The key to managing control flow is that each execution block ends by returning the identifier

of the next execution block. The PYXIS runtime, upon receiving the identifier of the next execution

block, will either start executing the new block if it is assigned the same partition as the runtime,

or the runtime will block and send a control transfer message to the remote runtime along with

the block identifier. This style of code generation is similar to that used by the SML/NJ com-

piler [98] to implement continuations; indeed, code generated by the PyxIL compiler is essentially

in continuation-passing style [48].

For instance, in Fig. 3-7, execution of computeTotalCost starts with block computeTotalCost0

at line 1. After creating a new stack frame and passing in the object ID of the receiver, the block

86



asks the runtime to execute getCosts0 with computeTotalCost1 recorded as the return address. The

runtime then executes the execution blocks associated with getCosts(). When getCosts() returns,

it jumps to computeTotalCost1 to continue the method, where the result of the call is popped into

stack[2].

Next, control is transferred to the database server on line 14, because block computeTotalCost1

returns the identifier of a block that is assigned to the database server (computeTotalCost2). This

implements the transition in Fig. 3-3 from (APP) line 24 to (DB) line 26. Execution then continues

with computeTotalCost3, which implements the evaluation of the loop condition in Fig. 3-3.

This example shows how the use of execution blocks gives the PYXIS partitioner complete

freedom to place each piece of code and data to the servers. Furthermore, because the runtime

regains control after every execution block, it has the ability to perform other tasks between exe-

cution blocks or while waiting for the remote server to finish its part of the computation such as

garbage collection on local heap objects.

This approach to code execution has a number of advantages. First, as I explain in Sec. 3.6,

the transfer of heap objects can be piggybacked on control transfers. Second, with explicit heap

synchronization embedded in the code, we no longer need to augment the original method to

transfer heap objects needed by remote code. Finally, because control transfer is implemented

by informing the remote runtime of next execution block ID to run and returning to the caller,

long chains of handler threads are not spawned, which avoids incurring substantial overhead in

maintaining thread pools.

3.5.2 Interoperability with Existing Modules

PYXIS does not require that the whole application be partitioned. This is useful, for instance, if the

code to be partitioned is a library used by other, non-partitioned code. Another benefit is that code

without an explicit main method can be partitioned, such as a servlet whose methods are invoked

by the application server.

To use this feature, the developer indicates the entry points within the source code to be par-

titioned, i.e., methods that the developer exposes to invocations from non-partitioned code. The
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PyxIL compiler automatically generates a wrapper for each entry point, such as the one shown in

Fig. 3-8, that does the necessary stack setup and teardown to interface with the PYXIS runtime.

Non-PyxIL code can simply invoke the generated wrappers as if they are standard Java code.

3.6 PYXIS runtime system

The PYXIS runtime executes the compiled PyxIL program. The runtime is a Java program that

runs in unmodified JVMs on each server. In this section I describe its operation and how control

transfer and heap synchronization is implemented.

3.6.1 General Operations

The PYXIS runtime maintains the program stack and distributed heap. Each execution block dis-

cussed in Sec. 3.5.1 is implemented as a Java class with a call method that implements the program

logic of the given block. When execution starts from any of the entry points, the runtime invokes

the call method on the block that was passed in from the entry point wrapper. Each call method

returns the next block for the runtime to execute next, and this process continues on the local

runtime until it encounters an execution block that is assigned to the remote runtime. When that

happens, the runtime sends a control transfer message to the remote runtime and waits until the

remote runtime returns control, informing it of the next execution block to run on its side.

Multi-threading support. PYXIS does not currently support thread instantiation or shared-memory

multithreading, but a multithreaded application can first instantiate threads outside of PYXIS and

then have PYXIS manage the code to be executed by each of the threads.

Exception handling. The current implementation supports exception handling across runtimes.

As a result of analyzing the original source code, each PYXIS execution block is annotated with

register and un-register statements for exception handlers. When a register statement is encoun-

tered during program execution, the PYXIS runtime will add to its exception table the type of

exception that is handled, and the the identifier of the execution block that corresponds to the
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start of the exception handling code. The record is removed when the corresponding un-register

statement is subsequently encountered. As in standard JVM, when an exception is thrown during

program execution, the runtime first consults its exception table to see if the exception is handled,

and if so it will jump to the execution block corresponding to the beginning of the handler. If the

exception is handled but the beginning of the execution handler block is assigned to the remote

runtime, then the runtime will send a control transfer message to the remote runtime with the ex-

ception information. Finally, if the exception is not handled (i.e., no corresponding entry found in

the exception table), then the PYXIS runtime exits and propagates the exception to the underlying

JVM.

Memory management. Since the PYXIS runtime manages its own program heap, we have im-

plemented a trace-based, generational garbage collector for its managed program heap [78]. When

the number of free slots in the heap drops below a threshold, the garbage collector will pause the

runtime’s execution and mark all live objects in the heap. However, since each object is physi-

cally partitioned between the two heaps, an object is only garbage only if both halves are labeled

as garbage by the two runtimes. Thus, actual memory reclamation is not done until both run-

times have completed tracing live objects, upon which they will compare the two lists of potential

garbage and only remove those objects that appear in both lists.

3.6.2 Program State Synchronization

When a control transfer happens, the local runtime needs to communicate with the remote runtime

about any changes to the program state (i.e., changes to the stack or program heap). Stack changes

are always sent along with the control transfer message and as such are not explicitly encoded in

the PyxIL code. However, requests to synchronize the heaps are explicitly embedded in the PyxIL

code, allowing the partitioner to make intelligent decisions about what modified objects need to be

sent and when. As mentioned in Sec. 3.4.5, PYXIS includes two heap synchronization routines:

sendDB and sendAPP, depending on which portion of the heap is to be sent. In the implementation,

the heap objects to be sent are simply piggy-backed onto the control transfer messages (just like
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stack updates) to avoid initiating more round trips. We measure the overhead of heap synchroniza-

tion and discuss the results in Sec. 3.7.3.

3.6.3 Selecting a Partitioning Dynamically

The runtime also supports dynamically choosing between partitionings with different CPU budgets

based on the current load on the database server. It uses a feedback-based approach in which the

PYXIS runtime on the database server periodically polls the CPU utilization on the server and

communicates that information to the application server’s runtime.

At each time t when a load message arrives with server load St , the application server computes

an exponentially weighted moving average (EWMA) of the load, Lt = 𝛼Lt−1 + (1 − 𝛼)St . De-

pending on the value of Lt , the application server’s runtime dynamically chooses which partition to

execute at each of the entry points. For instance, if Lt is high (i.e., the database server is currently

loaded), then the application server’s runtime will choose a partitioning that was generated using a

low CPU budget until the next load message arrives. Otherwise the runtime uses a partitioning that

was generated with a higher CPU-budget since Lt indicates that CPU resources are available on

the database server. The use of EWMA here prevents oscillations from one deployment mode to

another. In our experiments with TPC-C (Sec. 3.7.1), we used two different partitions and set the

threshold between them to be 40% (i.e., if Lt > 40 then the runtime uses a lower CPU-budget par-

tition). Load messages were sent every 10 seconds with 𝛼 set to 0.2. The values were determined

after repeat experimentation.

This simple, dynamic approach works when separate client requests are handled completely

independently at the application server, since the two instances of the program do not share any

state. This scenario is likely in many server settings; e.g., in a typical web server, each client

is handled completely independent of other clients. Generalizing this approach so that requests

sharing state can utilize this adaptation feature is future work.
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public class Order {
...
public void computeTotalCost(double dct) {
pushStackFrame(oid, dct);
execute(computeTotalCost0);
popStackFrame();
return; // no value to be returned

}
}

Figure 3-8: Wrapper for interfacing with regular Java

3.7 Experiments

In this section I report experimental results. The goals of the experiments are:

1. To evaluate PYXIS’s ability to generate partitions of an application under different server

loads and input workloads.

2. To measure the performance of those partitionings as well as the overhead of performing

control transfers between runtimes.

PYXIS is implemented in Java using the Polyglot compiler framework [85] with Gurobi and

lpsolve as the linear program solvers. The experiments used mysql 5.5.7 as the DBMS with buffer

pool size set to 1GB, hosted on a machine with 16 2.4GHz cores and 24GB of physical RAM. We

used Apache Tomcat 6.0.35 as the web server for TPC-W, hosted on a machine with eight 2.6GHz

cores and 33GB of physical RAM. The disks on both servers are standard serial ATA disks. The

two servers are physically located in the same data center and have a ping round trip time of 2ms.

All reported performance results are the average of three experimental runs.

For TPC-C and TPC-W experiments below, we implemented three different versions of each

benchmark and measured their performance as follows:

• JDBC: This is a standard implementation of each benchmark where program logic resides

completely on the application server. The program running on the application server con-

nects to the remote DBMS using JDBC and makes requests to fetch or write back data to the
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DBMS using the obtained connection. A round trip is incurred for each database operation

between the two servers.

• Manual: This is an implementation of the benchmarks where all the program logic is manu-

ally split into two halves: the “database program,” which resides on the JVM running on the

database server, and the “application program,” which resides on the application server. The

application program is simply a wrapper that issues RPC calls via the Java Remote Method

Invocation (RMI) interface to the database program for each type of transaction, passing

along with it the arguments to each transaction type. The database program executes the

actual program logic associated with each type of transaction and opens local connections

to the DBMS for the database operations. The final results are returned to the application

program. This is the exact opposite from the JDBC implementation with all program logic

residing on the database server. Here, each transaction only incurs one round trip. For TPC-C

we also implemented a version that implements each transaction as a MySQL user-defined

function rather than issuing JDBC calls from a Java program on the database server. We

found that this did not significantly impact the performance results.

• Pyxis: To obtain instruction counts, we first profiled the JDBC implementation under dif-

ferent target throughput rates for a fixed period of time. We then asked PYXIS to generate

different partitions with different CPU budgets. We deployed the two partitions on the ap-

plication and database servers using PYXIS and measured their performance.

3.7.1 TPC-C Experiments

In the first set of experiments we implemented the TPC-C workload in Java. Our implementation is

similar to an “official” TPC-C implementation but does not include client think time. The database

contains data from 20 warehouses (initial size of the database is 23GB), and for the experiments we

instantiated 20 clients issuing new order transactions simultaneously from the application server

to the database server with 10% transactions rolled back. We varied the rate at which the clients

issued the transactions and then measured the resulting system’s throughput and average latency
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Figure 3-9: TPC-C experiment results on 16-core database server

of the transactions for 10 minutes.

Full CPU Setting

In the first experiment we allowed the DBMS and JVM on the database server to use all 16 cores

on the machine and gave PYXIS a large CPU budget. Fig. 3-9(a) shows the throughput versus

latency. Fig. 3-9(b) and (c) show the CPU and network utilization under different throughputs.

The results illustrate several points. First, the Manual implementation was able to scale better

than JDBC both in terms of achieving lower latencies, and being able to process more transactions

within the measurement period (i.e., achieve a high overall throughput). The higher throughput

in the Manual implementation is expected since each transaction takes less time to process due to

fewer round trips and incurs less lock contention in the DBMS due to locks being held for less

time.

For Pyxis, the resulting partitions for all target throughputs were very similar to the Manual

implementation. Using the provided CPU budget, PYXIS assigned most of the program logic to be

executed on the database server. This is the desired result; since there are CPU resources available

on the database server, it is advantageous to push as much computation to it as possible to achieve

maximum reduction in the number of round trips between the servers. The difference in perfor-

mance between the Pyxis and Manual implementations is negligible (within the margin of error of

the experiments due to variation in the TPC-C benchmark’s randomly generated transactions).

There are some differences in the operations of the Manual and Pyxis implementations, how-
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ever. For instance, in the Manual implementation, only the method arguments and return values are

communicated between the two servers, whereas the Pyxis implementation also needs to transmit

changes to the program stack and heap. This can be seen from the network utilization measures

in Fig. 3-9(c), which show that the Pyxis implementation transmits more data compared to the

Manual implementation due to synchronization of the program stack between the runtimes. We

experimented with various ways to reduce the number of bytes sent, such as with compression and

custom serialization, but found that they used more CPU resources and increased latency. How-

ever, Pyxis sends data only during control transfers, which are fewer than database operations.

Consequently, Pyxis sends less data than the JDBC implementation.

Limited CPU Setting

Next we repeated the same experiment, but this time limited the DBMS and JVM (applicable only

to Manual and Pyxis implementations) on the database server to use a maximum of three CPUs

and gave PYXIS a small CPU budget for partitioning purposes. This experiment was designed to

emulate programs running on a highly contended database server or a database server serving load

on behalf of multiple applications or tenants. The resulting latencies are shown in Fig. 3-10(a)

with CPU and network utilization shown in Fig. 3-10(b) and (c). The Manual implementation has

lower latencies than Pyxis and JDBC when the throughput rate is low, but for higher throughput

values the JDBC and Pyxis implementations outperforms Manual. With limited CPUs, the Manual

implementation uses up all available CPUs when the target throughput is sufficiently high. In

contrast, all partitions produced by PYXIS for different target throughput values resemble the JDBC

implementation in which most of the program logic is assigned to the application server. This

configuration enables the Pyxis implementation to sustain higher target throughputs and deliver

lower latency when the database server experiences high load. The resulting network and CPU

utilization are similar to those of JDBC as well.
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Figure 3-10: TPC-C experiment results on 3-core database server

Dynamically Switching Partitions

In the final experiment we enabled the dynamic partitioning feature in the runtime as described

in Sec. 3.6.3. The two partitionings used in this case were the same as the partitionings used in

the previous two experiments (i.e., one that resembles Manual and another that resembles JDBC).

In this experiment, however, we fixed the target throughput to be 500 transactions / second for

10 minutes since all implementations were able to sustain that amount of throughput. After three

minutes elapsed we loaded up most of the CPUs on the database to simulate the effect of limited

CPUs. The average latencies were then measured during each 30-second period, as shown in

Fig. 3-11. For the Pyxis implementation, we also measured the proportion of transactions executed

using the JDBC-like partitioning within each 1-minute period. Those are plotted next to each data

point.

As expected, the Manual implementation had lower latencies when the server was not loaded.

For JDBC the latencies remain constant as it does not use all available CPUs even when the server

is loaded. When the server is unloaded, however, it had higher latency compared to the Manual

implementation. The Pyxis implementation, on the other hand, was able to take advantage of the

two implementations with automatic switching. In the ideal case, Pyxis’s latencies should be the

minimum of the other two implementations at all times. However, due to the use of EWMA, it

took a short period of time for Pyxis to adapt to load changes, although it eventually settled to

an all-application (JDBC-like) deployment as shown by the proportion numbers. This experiment

illustrates that even if the developer was not able to predict the amount of available CPU resources,
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PYXIS can generate different partitions under various budgets and automatically choose the best

one given the actual resource availability.
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Figure 3-11: TPC-C performance results with dynamic switching

3.7.2 TPC-W

In the next set of experiments, we used a TPC-W implementation written in Java. The database

contained 10,000 items (about 1GB on disk), and the implementation omitted the thinking time.

We drove the load using 20 emulated browsers under the browsing mix configuration and measured

the average latencies at different target Web Interactions Per Seconds (WIPS) over a 10-minute

period. We repeated the TPC-C experiments by first allowing the JVM and DBMS to use all 16

available cores on the database server followed by limiting to three cores only. Fig. 3-12 and

Fig. 3-13 show the latency results. The CPU and network utilization are similar to those in the

TPC-C experiments and are not shown.

Compared to the TPC-C results, we see a similar trend in latency. However, since the program

logic in TPC-W is more complicated than TPC-C, the Pyxis implementation incurs a bit more

overhead compared to the Manual implementation.

One interesting aspect of TPC-W is that unlike TPC-C, some web interactions do not involve
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database operations at all. For instance, the order inquiry interaction simply prints out a HTML

form. PYXIS decides to place the code for those interactions entirely on the application server even

when the server budget is high. This choice makes sense since executing such interactions on the

application server does not incur any round trips to the database server. Thus the optimal decision,

also found by PYXIS, is to leave the code on the application server rather than pushing it to the

database server as stored procedures.
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Figure 3-12: TPC-W latency experiment using 16 cores

3.7.3 Microbenchmark 1

In our third experiment we compared the overhead of PYXIS to native Java code. We expected

code generated by PYXIS to be slower because all heap and stack variable manipulations in PYXIS

are managed through special PYXIS objects. To quantify this overhead we implemented a linked

list and assigned all the fields and code to be on the same server. This configuration enabled a fair

comparison to a native Java implementation. The results show that the PYXIS implementation has

an average overhead of 6× compared to the Java implementation. Since the experiment did not in-

volve any control transfers, the overhead is entirely due to the time spent running execution blocks

and bookkeeping in the PYXIS managed program stack and heap. This benchmark is a worst-case
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Figure 3-13: TPC-W latency experiment using 3 cores

scenario for PYXIS since the application is not distributed at all. We expect that programmers

will ask PYXIS to partition fragments of an application that involve database operations and will

implement the rest of their program as native Java code. As noted in Sec. 3.5.2, this separation of

distributed from local code is fully supported in our implementation; programmers simply need to

mark the classes or functions they want to partition. Additionally, results in the previous sections

show that allowing PYXIS to decide on the partitioning for distributed applications offers substan-

tial benefits over native Java (e.g., the JDBC and Manual implementations) even though PYXIS

pays some local execution overhead.

The overhead of PYXIS is hurt by the mismatch between the Java Virtual Machine execution

model and PYXIS’s execution model based on execution blocks. Java is not designed to make this

style of execution fast. One concrete example of this problem is that we cannot use the Java stack

to store local variables. Targeting a lower-level language should permit lowering the overhead

substantially.
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CPU Load APP APP|DB DB
No load 7m37s 7m 6m39s

Partial load 8m55s 8m 8m11s
Full load 16m36s 17m30s 17m44s

Figure 3-14: Microbenchmark 2 results

3.7.4 Microbenchmark 2

In the final experiment, we compare the quality of the generated partitions under different CPU

budgets by using a simple microbenchmark designed to have several interesting partitionings. This

benchmark runs three tasks in order: it issues a 100k small select queries, performs a computa-

tionally intensive task (compute SHA1 digest 500k times), and issues another 100k select queries.

We gave three different CPU budget values (low, medium, high) to represent different server loads

and asked PYXIS to produce partitions. Three different partitions were generated: one that assigns

all logic to application server when a low budget was given (APP); one that assigns the query por-

tions of the program to the database server and the computationally intensive task to the application

when a middle range budget was given (APP|DB); and finally one that assigns everything to the

database server (DB). We measured the time taken to run the program under different real server

loads, and the results are shown in Fig. 3-14.

The results show that PYXIS was able to generate a partition that fits different CPU loads in

terms of completion time (highlighted in Fig. 3-14). While it might be possible for developers to

avoid using the PYXIS partitioner and manually create the two extreme partitions (APP and DB),

this experiment shows that doing so would miss the “middle” partitions (such as APP|DB) and

lead to suboptimal performance. Using PYXIS, the developer only needs to write the application

once, and PYXIS will automatically produce partitions that are optimized for different server loads.

3.8 Summary

In this chapter I presented Pyxis, a system for partitioning database applications across an appli-

cation and database server. The goal of this partitioning is to automatically determine optimal
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placement of computation across multiple servers. In this process, we are able to eliminate the

many small, latency-inducing round trips between the application and database servers by pushing

blocks of code into the database as stored procedures.

Benefits of our approach include that users are not required to manually convert their code

into the stored procedure representation, and that our system can dynamically identify the best

decomposition of the application based on variations in server load. Our key technical contribu-

tions include a cost-based profiling and analysis framework, as well as a compilation strategy for

converting the output of our analysis into valid executables. This work opens many new problems

in adapting programs to changing environments, a topic that I will discuss in Ch. 6.
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Chapter 4

SLOTH: Reducing Communication Overhead

In the previous chapter, I described the design of PYXIS, a system that automatically partitions

database applications into the server and query components. Although one of the goals of static

code partitioning is to reduce the number of network round trips between the application and

database servers, it is inevitable that the two servers will need to communicate as the application

executes. Unfortunately, these network roundtrips increase the latency of database applications

and represent a significant fraction of overall execution time for many applications.

One way to eliminate more of these round trips is to employ batching, i.e., group together SQL

statements into groups that can be executed on the database server in a single round trip. Unfor-

tunately, prior work are limited by 1) a requirement that developers manually identify batching

opportunities in the source code, or 2) the fact that they employ static analysis techniques that

cannot exploit many opportunities for batching due to imprecision of the analysis.

In this chapter, I describe SLOTH, a new system that makes use of lazy evaluation to ex-

pose query batching opportunities during application execution, even across loops, branches, and

method boundaries. By using lazy evaluation, we allow the application to dynamically decide

when and how to batch network round trips. We evaluated SLOTH using over 100 benchmarks

from two large-scale open-source applications, and achieved up to a 3× reduction in page load

time by delaying computation as much as possible.1

1Materials in this chapter are based on work published as Cheung, Madden, and Solar-Lezama, “Sloth: Being Lazy
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4.1 Introduction

As discussed in Ch. 1, the server and query components of many database applications are located

on physically separated from the servers hosting the application. Even though the two machines

tend to reside in close proximity, a typical page load spends a significant amount of time issuing

SQL queries and waiting for network round trips to complete, with a consequent impact on ap-

plication latency. The situation is exacerbated by object-relational mapping (ORM) frameworks

such as Hibernate and Django, which access the database by manipulating native objects rather

than issuing SQL queries. These frameworks automatically translate accesses to objects into SQL,

often resulting in multiple database queries (and round trips) to reconstruct a single object. For

example, even with two machines in the same data center, we found that many pages spend 50%

or more of their time waiting on network communication.

As noted in Ch. 1, latency is important for a variety of reasons. First, in web applications,

even hundreds of milliseconds of additional latency can dramatically increase the dissatisfaction

of users. For example, a 2010 study by Akamai suggested that 57% of users will abandon a web

page that takes more than three seconds to load [16]. As another example, Google reported in 2006

that an extra half second of latency reduced the overall traffic by 20% [11]. These numbers are

likely worse on modern computers where pages load faster and faster. Given that database load

times are only a fraction of total page rendering times, it is important that database query time

be minimized. Second, ORM frameworks such as Hibernate can greatly amplify load times by

performing additional round trips for each of many items found by an initial lookup, such that a

few 10’s of milliseconds per object can turn into seconds of additional latency for an entire web

page [23, 4, 13, 19]. Though some techniques (such as “eager fetching” in Hibernate) are available

to mitigate this, they are far from perfect as we discuss below. Finally, decreasing latency often

increases throughput since each request takes less time, and ties up fewer resources while waiting

for a query to complete.

There are two general approaches to cope with this problem: i) programs can hide this latency

by overlapping communication and computation, ii) programs can reduce the number of round trips

is a Virtue (When Issuing Database Queries),” in proceedings of SIGMOD 14 [38].
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by fetching more data (or issuing multiple queries) in each one, or iii) using tools such as PYXIS

to statically distribute computation between the application and database servers with the aim to

reduce the number of round trips between servers. Latency hiding is most commonly achieved by

prefetching query results so that the communication time overlaps with computation, and the data

is ready when the application really needs it. All of these techniques have been explored in prior

research. Latency hiding, which generally takes the form of asynchronously “prefetching” query

results so that they are available when needed by the program, was explored by Ramachandra et

al. [88], where they employed static analysis to identify queries that will be executed uncondi-

tionally by a piece of code. The compiler can then transform the code so that these queries are

issued as soon as their query parameters are computed, and before their results are needed. Un-

fortunately, for many web applications there is not enough computation to perform between the

point when the query parameters are available and the query results are used, which reduces the

effectiveness of the technique. Also, if the queries are executed conditionally, prefetching queries

requires speculation about program execution and can end up issuing additional useless queries.

In contrast to prefetching, most ORM frameworks provide some mechanism to reduce the

number of round trips, by allowing the user to specify “fetching strategies” that describe when an

object or members of a collection should be fetched from the database. The default strategy is

usually “lazy fetching,” where each object is fetched from the database only when it is used by

the application. This means that there is a round trip for every object, but the only object fetched

are those that are certainly used by the application. The alternative “eager” strategy causes the all

objects related to an object (e.g., that are part of the same collection, or that are referenced by a

foreign key) to be fetched as soon as the object is requested. The eager strategy reduces the number

of round trips to the database by combining the queries involved in fetching multiple entities (e.g.,

using joins). Of course, this eager strategy can sometimes result in objects being fetched that are

not needed, and, in some cases, can actually incur more round trips than lazy fetching. For this

reason, deciding when to label entities as “eager” is a non-trivial task, as evidenced by the number

of questions on online forums regarding when to use which strategy, with “it depends” being

the most common answer. In addition, for large-scale projects that involve multiple developers,
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it is difficult for the designer of the data access layer to predict how entities will be accessed

in the application and therefore which strategy should be used. Finally, approaches based on

fetching strategies are very specific to ORM frameworks and fail to address the general problem

which is also present in non-ORM applications. Finally, while code partitioning tools such as

PYXIS is effective in reducing round trips, they rely on statically approximation of the amount

of communication between the server and query components of the application, such as using

profiling. As such, their effectiveness depend on the precision of the analysis, and accuracy of

using profiling as a representative of the actual workload.

Rather than using static analysis to determine when to submit queries to the database server

(and hence when to receive the results subsequently), or partition code into server and query com-

ponents, we postpone such decision until application execution time by making use of dynamic

analysis. In this chapter, I describe this new approach for reducing the latency of database appli-

cations that combines many of the features of the two strategies described earlier. The goal is to

reduce the number of round trips to the database by batching queries issued by the application. The

key idea is to collect queries by relying on a new technique which we call extended lazy evaluation

(or simply “lazy evaluation” in the rest of the chapter.) As the application executes, queries are

batched into a query store instead of being executed right away. In addition, non-database related

computation is delayed until it is absolutely necessary. As the application continues to execute,

multiple queries are accumulated with the query store. When a value that is derived from query

results is finally needed (say, when it is displayed by the client component), then all the queries that

are registered with the query store are executed by the database in a single batch, and the results are

then used to evaluate the outcome of the computation. The technique is conceptually related to the

traditional lazy evaluation as supported by functional languages such as Haskell, Miranda, Scheme

and OCaml [70]. In traditional lazy evaluation, there are two classes of computations; those that

can be delayed, and those that force the delayed computation to take place because they must be

executed eagerly. In our extended lazy evaluation, queries constitute a third kind of computation

because even though their actual execution is delayed, they must eagerly register themselves with

the batching mechanism so they can be issued together with other queries in the batch.
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Compared to query extraction using static analysis, our approach batches queries dynamically

as the program executes, and defers computation as long as possible to maximize the opportunity

to overlap query execution with program evaluation. As a result, it is able to batch queries across

branches and even method calls, which results in larger batch sizes and fewer database round trips.

Unlike the approach based on fetching strategies, our approach is not fundamentally tied to ORM

frameworks. Moreover, we do not require developers to label entities as eager or lazy, as our

system only brings in entities from the database as they are originally requested by the application.

Note that our approach is orthogonal to other multi-query optimization approaches that optimize

batches of queries [55, 33]; we do not merge queries to improve their performance, or depend on

many concurrent users to collect large batches. Instead, we optimize applications to extract batches

from a single client, and issue those in a single round trip to the database (which still executes the

individual query statements.)

We have implemented this approach in a new system called SLOTH. The system is targeted

towards applications written in Java that use databases for persistent storage. SLOTH consists of

two components: a compiler and a number of libraries for runtime execution. Unlike traditional

compilers, SLOTH compiles the application source code to execute using lazy evaluation strategy.

In summary, SLOTH makes the following contributions:

• We devise a new mechanism to batch queries in applications that use databases for persis-

tent storage based on a combination of a new “lazy-ifying” compiler and dynamic program

analysis to generate the queries to be batched. Our transformation preserves the semantics

of the original program, including transaction boundaries.

• We propose a number of optimizations to improve the quality of the compiled lazy code.

• We built and evaluated SLOTH using real-world web applications totaling over 300k lines

of code. Our results show that SLOTH achieves a median speedup between 1.3× and 2.2×

(depending on network latency), with maximum speedups as high as 3.1×. Reducing latency

also improves maximum throughput of our applications by 1.5×.

In the following, I first describe how SLOTH works through a motivating example in Sec. 4.2.
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1 ModelAndView handleRequest(...) {
2 Map model = new HashMap<String, Object>();
3 Object o = request.getAttribute("patientId");
4 if (o != null) {
5 Integer patientId = (Integer) o;
6 if (!model.containsKey("patient")) {
7 if (hasPrivilege(VIEW_PATIENTS)) {
8 Patient p = getPatientService().getPatient(patientId);
9 model.put("patient", p);

10 ...
11 model.put("patientEncounters",
12 getEncounterService().getEncountersByPatient(p));
13 ...
14 List visits = getVisitService().getVisitsByPatient(p);
15 CollectionUtils.filter(visits, ...);
16 model.put("patientVisits", visits);
17 model.put("activeVisits", getVisitService().getActiveVisitsByPatient(p));
18 ...
19 }
20 }
21

22 return new ModelAndView(portletPath, "model", model);
23 }

Figure 4-1: Code fragment abridged from OpenMRS

Then, I conceptually explain our compilation strategy in Sec. 4.3, followed by optimizations to

improve generated code quality in Sec. 4.6. Sec. 4.7 then describes our prototype implementation

of SLOTH, and I report our experimental results using both benchmark and real-world applications

in Sec. 4.8.

4.2 Overview

In this section I give an overview of SLOTH using the code fragment shown in Fig. 4-1. The

fragment is abridged from OpenMRS [15], a real-world patient record web application written in

Java that uses Spring as the web framework and Hibernate ORM library to manage persistent data.

The application has been deployed in numerous countries worldwide since 2006.

The application is structured using the Model-View-Control (MVC) pattern, and the code frag-
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ment is part of a controller that builds a model to be displayed by the view after construction. The

controller is invoked by the web framework when a user logs-in to the application and tries to

view the dashboard for a particular patient. After logging in, the controller first creates a model (a

HashMap object), populates it with appropriate patient data based on the logged-in user’s privileges,

and returns the populated model to the web framework. The web framework then passes the par-

tially constructed model to other controllers which may add additional data, and finally to the view

creator to generate HTML output.

As written, this code fragment can issue up to four queries; the queries are issued by calls of the

form getXXX on the data access objects, i.e., the Service objects, following the web framework’s

convention. The first query in Line 8 fetches the Patient object that the user is interested in

displaying and adds it to the model. The code then issues queries on Lines 12 and 14, and Line 17

to fetch different types of data associated with the patient of interest, and adds this data to the model

as well. It is important to observe that of the four round trips that this code can incur, only the first

one is essential—without the result of that first query, the other queries cannot be constructed. In

fact, the results from the other queries are only stored in the model and not used until the view is

actually rendered. This means that in principle, the developer could have collected the last three

queries in a single batch and sent it to the database in a single round trip. The developer could have

gone even further, collecting in a single batch all the queries involved in building the model until

the data from any of the queries in the batch is really needed—either because the model needs to be

displayed, or because the data is needed to construct a new query. Manually transforming the code

in this way would have a big impact in the number of round trips incurred by the application, but

would also impose an unacceptable burden on the developer. In the rest of the section, I describe

how SLOTH automates such a transformation with only minimal changes to the original code, and

requires no extra work from the developer.

An important ingredient to automatically transform the code to batch queries is lazy evaluation.

In most traditional programming languages, the evaluation of a statement causes that statement to

execute, so any function calls made by that statement are executed before the program proceeds to

the evaluating the next statement. In lazy evaluation, by contrast, the evaluation of a statement does
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not cause the statement to execute; instead, the evaluation produces a Thunk: a place-holder that

stands for the result of that computation, and it also remembers what the computation was. The

only statements that are executed immediately upon evaluation are those that produce output (e.g.,

printing on the console), or cause an externally visible side effect (e.g., reading from files). When

such a statement executes, the thunks corresponding to all the values that flow into that statement

will be forced, meaning that the delayed computation they represented will finally be executed.

The key idea behind our approach is to modify the basic machinery of lazy evaluation so that

when a thunk is created, any queries performed by the statement represented by the thunk are added

to a query store kept by the runtime to batch queries. Because the computation has been delayed,

the results of those queries are not yet needed, so the queries can accumulate in the query store until

any thunk that requires the result of such queries is forced; at that point, the entire batch of queries

is sent to the database for processing in a single round trip. This process is illustrated in Figure 4-

2; during program execution, Line 8 issues a call to fetch the Patient object that corresponds to

patientId (Q1). Rather than executing the query, SLOTH compiles the call to register the query

with the query store instead. The query is recorded in the current batch within the store (Batch

1), and a thunk is returned to the program (represented by the gray box in Fig. 4-2). In Line

12, the program needs to access the patient object p to generate the queries to fetch the patient’s

encounters (Q2) followed by visits in Line 14 (Q3). At this point the thunk p is forced, Batch 1 is

executed, and its results (rs1) are recorded in the query cache in the store. A new non-thunk object

p’ is returned to the program upon deserialization from rs1, and p’ is memoized in order to avoid

redundant deserializations. After this query is executed, Q2 and Q3 can be generated using p’ and

are registered with the query store in a new batch (Batch 2). Unlike the patient query, however, Q2

and Q3 are not executed within handleRequest since their results are not used (thunks are stored

in the model map in Lines 12 and 16). Note that even though Line 15 uses the results of Q3 by

filtering it, our analysis determines that the operation does not have externally visible side effects

and is thus delayed, allowing Batch 2 to remain unexecuted. This leads to batching another query

in Line 17 that fetches the patient’s active visits (Q4), and the method returns.

Depending on subsequent program path, Batch 2 might be appended with further queries. Q2,
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Q3, and Q4 may be executed later when the application needs to access the database to get the

value from a registered query, or they might not be executed at all if the application has no further

need to access the database.

This example shows how SLOTH is able to perform much more batching than either the ex-

isting “lazy” fetching mode of Hibernate or prior work using static analysis [88]. Hibernate’s

lazy fetching mode would have to evaluate the results of the database-accessing statements such

as getVisitsByPatient(p) on Line 14 as its results are needed by the filtering operation, leaving

no opportunity to batch. In contrast, SLOTH places thunks into the model and delays the filtering

operation, which avoid evaluating any of the queries. This enables more queries to be batched and

executed together in a subsequent trip to the database. Static analysis also cannot perform any

batching for these queries, because it cannot determine what queries need to be evaluated at com-

pile time as the queries are parameterized (such as by the specific patient id that is fetched in Line

8), and also because they are executed conditionally only if the logged-in user has the required

privilege.

There are some languages such as Haskell that execute lazily by default, but Java (and other

languages that are routinely used for developing database applications) has no such support. Fur-

thermore, we want to have significant control over how the lazy evaluation takes place so that we

can calibrate the tradeoffs between execution overhead and the degree of batching achieved by the

system. We would not have such tight control if we were working under an existing lazy eval-

uation framework. Instead, we rely on our own SLOTH compiler to transform the code for lazy

evaluation. At runtime, the transformed code relies on the SLOTH runtime to maintain the query

store. The runtime also includes a custom JDBC driver that allows multiple queries to be issued to

the database in a single round trip, as well as extended versions of the web application framework,

ORM library, and application server that can process thunks (we currently provided extensions to

the Spring application framework, the Hibernate ORM library, and the Tomcat application server,

to be described in Sec. 4.7). For monolithic applications that directly use the JDBC driver to in-

teract with the database, developers just need to change such applications to use the SLOTH batch

JDBC driver instead. For applications hosted on application servers, developers only need to host
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Query:'getPatient(patientId)       [Q1]'
Result:'null$ Batch1'

Query:'getPatient(patientId)'''''''''''''''[Q1] 
Result:'rs1$ Batch'1'

Query:'getEncountersByPatient(p')'''''[Q2] 
Result:'null$ Batch'2'

Query:'getPatient(patientId)''''' ''''''''[Q1] 
Result:'rs1$ Batch'1'

Query:'getEncountersByPatient(p')''''[Q2] 
Result:'null$
Query:'getVisitsByPatient(p')'''''''''''''[Q3] 
Result:'null$ Batch'2'

Query:'getPatient(patientId)''''''''''''''''[Q1] 
Result:'rs1$ Batch'1'

Query:'getEncountersByPatient(p')  [Q2] 
Result:'null$
Query:'getVisitsByPatient(p')      [Q3] 
Result:'null$
Query:'getActiveVisitsByPatient(p')[Q4] 
Result:'null$ Batch'2'

8'
getPatient(..)$

getPatient(..)$

12' getEncounters(p')$

getEncounters(p')$

14' getVisits(p')$

getVisits(p')$

18'
getActiveVisits(p')$

getActiveVisits(p')$

Program'line' Contents'of'the'Query'Store' Database'

getPatient(..)$

rs1$

Batch'2'will'be'executed''
when'the'next'database'
connecEon'happens''
(not'shown)'

Batch'1’s'results'are''
cached'in'the''
query'store'

p._force()$

p'$=$deserialize(rs1)$

p._force()$

p'$

p._force()$

p'$

Figure 4-2: Operational diagram of the example code fragment
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Figure 4-3: Architecture of the SLOTH Compiler, with * marking those components used for
optimization

them on the SLOTH extended application server instead after compiling their application with the

SLOTH compiler.

4.3 Compiling to Lazy Semantics

In this section I describe the compilation process SLOTH uses to compile application source code

to be evaluated lazily. Figure 4-3 shows the overall architecture of the SLOTH compiler, the details

of which are described in this section and next.

4.3.1 Code Simplification

The SLOTH compiler is a source-to-source translator that converts code intended to be executed

under eager evaluation into lazy evaluation instead. To ease the implementation, SLOTH first per-
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v ∈ program variable

t ∈ assign target ::= v | v .f | v [v ]
a ∈ assign value ::= v | uop v | v op v | v .f | v [v ]
s ∈ statement ::= t = a; | if(v) then s1 else s2 | while{True}{s} | s1 ; s2 | throw v |

v instanceof C | return v ; | break; | continue; | synchronized(v){s}
uop ∈ unary op ::= ! | −

binop ∈ binary op ::= + | − | * | / | && | || | < | =

Figure 4-4: Concrete syntax for the simplified input language used by the SLOTH compiler

forms a number of simplification of the input source code. For example, it converts all looping

constructs to while (true), where the original loop condition is converted into branches with con-

trol flow statements in their bodies, and it breaks down assignment statements to have at most one

operation on their right-hand-side. Thus an assignment such as x = a + b + c will be translated

to t = a + b; x = t + c;, with t being a temporary variable. The compiler also eliminates type

parameters (generics) and extract inner and anonymous classes into stand-alone classes. Figure 4-4

describes the simplified input language that is used by the rest of the SLOTH compiler toolchain.

4.3.2 Thunk Conversion

After simplification, the SLOTH compiler converts each statement of the source code into extended

lazy semantics. For clarity, in the following I present the compilation through a series of examples

using concrete Java syntax. However, beyond recognizing methods that issue queries (such as

those in the JDBC API), our compilation is not Java-specific, and we formalize the compilation

process in Sec. 4.4 using an abstract kernel language.

In concrete syntax, each statement in the original program is replaced with an allocation of

an anonymous class derived from the abstract Thunk class after compilation, with the code for the

original statement placed inside a new _force class method. To “evaluate” the thunk, we invoke

this method, which executes the original program statement and returns the result (if any). For

example, the following statement:
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int x = c + d;

is compiled into lazy semantics as:

Thunk<Integer> x =

new Thunk<Integer>() {

Integer _force() { return c._force() + d._force(); }

};

There are a few points to note in the example. First, all variables are converted into Thunk

types after compilation. For instance, x has type Thunk<Integer> after compilation, and likewise

for c and d. As a consequence, all variables need to be evaluated before carrying out the actual

computation inside the body of _force. Secondly, to avoid redundant evaluations, the runtime

memoizes the return value of _force so that subsequent calls to _force will return the memoized

value instead (the details of which are not shown).

While the compilation is relatively straightforward, the mechanism presented above can incur

substantial runtime overhead, as the compiled version of each statement incurs allocation of a Thunk

object, and all computation are converted to method calls. Sec. 4.6 describes several optimizations

that we have devised to reduce the overhead. Sec. 4.8.6 quantifies the overhead of lazy semantics,

which shows that despite some overhead, it is generally much less than the savings we obtain from

reducing round trips.

4.3.3 Compiling Query Calls

Method calls that issue database queries, such as JDBC executeQuery calls, and calls to ORM

library APIs that retrieve entities from persistent storage are compiled differently from ordinary

method calls. In particular, we want to extract the query that would be executed from such calls

and record it in the query store so it can be issued when the next batch is sent to the database.

To facilitate this, the query store consists of the following components: a) a buffer that stores the

current batch of queries to be executed and associates a unique id with each query, and b) a result

store that contains the results returned from batches previously sent to the database; the result store
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is a map from the unique identifier of a query to its result set. The query store API consists of two

methods:

• QueryId registerQuery(String sql): Add the sql query to the current batch of queries

and return a unique identifier to the caller. If sql is an INSERT, UPDATE, ABORT, or COMMIT, the

current batch will be immediately sent to the database to ensure these updates to the database

are not left lingering in the query store. On the other hand, the method avoids introducing

redundant queries into the batch, so if sql matches another query already in the query buffer,

the identifier of the first query will be returned.

• ResultSet getResultSet(QueryId id): Check if the result set associated with id resides in

the result store; if so, return the cached result. Otherwise, issue the current batch of queries

in a single round trip, process the result sets by adding them to the result store, and return

the result set that corresponds to id.

To make use of the query store, method calls that issue database queries are compiled to a

thunk that passes the SQL query to be executed in the constructor. The thunk registers the query

to be executed with the query store using registerQuery in its constructor and stores the returned

QueryId as its member field. The _force method of the thunk then calls getResultSet to get

the corresponding result set. For ORM library calls, the result sets are passed to the appropriate

deserialization methods in order to convert the result set into heap objects that are returned to the

caller.

Note that when such thunks are created, it will evaluate any other thunks that are needed to

construct the SQL query to register with the query store. For example, consider Line 8 of Fig. 4-1,

which makes a call to the database to retrieve a particular patient’s data:

Patient p = getPatientService().getPatient(patientId);

In the lazy version of this fragment, patientId is converted to a thunk that is evaluated before

the SQL query can be passed to the query store:
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Thunk<Patient> p = new Thunk<Patient>(patientId) {

{ this.id = queryStore.regQuery(getQuery(patientId._force())); }

Patient _force() {

return deserialize(queryStore.getResultSet(id));

}

}

Here, getQuery calls an ORM library method to generate the SQL string and substitutes the evalu-

ated patientId in it, and deserialize reconstructs an object from a SQL result set.

4.3.4 Compiling Method Calls

In the spirit of being as lazy as possible, it would be ideal to delay executing method calls as long

as possible (in the best case, the result from the method call might never be needed and therefore

we do not need to execute the call). However, method calls might have side effects that change the

program heap, for instance changing the values of heap objects that are externally visible outside

of the application (such as a global variable). Or the target of the call might be a class external

to the application, meaning that our compiler does not have access to its source code such as a

method of the standard JDK (otherwise we call such methods “internal”). Because of that, method

calls are compiled differently according to the type of the called method as follows.

Internal methods without side effects. This is the ideal situation where we can delay the execut-

ing the method call. In this case the call is compiled to a thunk with the method call as the body of

the _force method. If there is any return value to the method then it gets assigned to the generated

thunk. For example, if int foo(Object x, Object y) is an internal method with no side effects,

then:

int r = foo(x, y);

is compiled to:

Thunk<Integer> r = new Thunk<Integer>(x, y) {

int _force() { return this.foo(x._force(), y._force()); }

};
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Internal methods with externally visible side effects. In this case, we cannot defer the execution

of the method due to its externally visible side effects. However, we can still defer the evaluation

of its arguments until necessary inside the method body. Thus, the SLOTH compiler generates a

special version of the method where its parameters are thunk values, and the original call site will

be compiled to calling the special version of the method instead. For example, if int bar(Object

x) is such a method, then:

int r = bar(x);

is compiled to:

Thunk<Integer> r = bar_thunk(x);

with the declaration of bar_thunk as Thunk<Integer> bar_thunk(Thunk<Object> x).

External methods. We cannot defer the execution of external methods unless we know that they

are side effect free. Since we do not have access to their source code, the SLOTH compiler does not

change the original method call during compilation, except for forcing the arguments and receiver

objects as needed. As an example, Line 3 in Fig. 4-1:

Object o = request.getAttribute("patientId");

is compiled to:

Thunk<Object> o = new LiteralThunk(request._force().getAttribute("patientId"));

As discussed earlier, since the types of all variables are converted to thunks, the (non-thunk)

return value of external method calls are stored in LiteralThunk objects that simply returns the

non-thunk value when _force is called, as shown in the example above.

Method labeling is done as part of the analysis passes in the SLOTH compiler, and the thunk

conversion pass makes use of this information when method calls are encountered during compi-

lation.

4.3.5 Class Definitions and Heap Operations

For classes that are defined by the application, the SLOTH compiler changes its field and method

definitions. First, the type of each member field is changed to Thunk in order to facilitate accesses
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to field values under lazy evaluation. For each publicly accessible final field, the compiler adds

an extra field with the original type, with its value set to the evaluated result of the corresponding

thunk-ified version of the field. These fields are created in case they are accessed from external

methods. Publicly accessible non-final fields cannot be made lazy.

In addition, for each method, the SLOTH compiler changes the type of each parameter to Thunk

objects in order to facilitate method call conventions discussed in Sec. 4.3.4. Like public fields,

since public methods can potentially be invoked by external code (e.g., the web framework that

hosts the application, or by JDK methods such as calling equals while searching for a key within a

HashMap object), the SLOTH compiler generates a “dummy” method that has the same declaration

(in terms of method name and parameter types) as the original method, The body of such dummy

methods simply invokes the thunk-converted version of the corresponding method. If the method

has a return value, then it is evaluated on exit. For instance, the following method:

public Foo bar (Baz b) { ... }

is compiled to two methods by the SLOTH compiler:

// to be called from internal code

public Thunk<Foo> bar_thunk (Thunk<Baz> b) { ... }

// to be called from external code

public Foo bar (Baz b) { return bar_thunk(new LiteralThunk(b))._force(); }

With that in mind, the compiler translates reads of object fields to simply return the thunk fields.

However, updates to heap objects are not delayed in order to ensure that subsequent heap reads are

consistent with the semantics of the original program. In order to carry out the write, however, the

receiver object needs to be evaluated if it is a thunk. Thus statements such as:

Foo obj = ...

obj.field = x;

are compiled to:

Thunk<Foo> obj = ...

obj._force().field = x;
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Notice that while the target of the heap write is evaluated (obj in the example), the value that

is written (x in the example) can be a thunk object, meaning that it can represent computation that

has not been evaluated yet.

4.3.6 Evaluating Thunks

In the previous sections, I discussed the basic compilation of statements into lazy semantics using

thunks. In this section I describe when thunks are evaluated, i.e., when the original computation

that they represent is actually carried out, some of which has already been discussed.

As mentioned in the last section, the target object in field reads and writes are evaluated when

encountered. However, the value of the field and the object that is written to the field can still be

thunks. The same is applied to array accesses and writes, where the target array and index are

evaluated before the operation.

In method calls where the execution is not delayed, as discussed in Sec. 4.3.4, the target object

is evaluated prior to the call if the called method is non-static. While our compiler could have

deferred the evaluation of the target object by converting all member methods into static class

methods, it is likely that the body of such methods (or further methods that are invoked inside

the body) accesses some fields of the target object and hence will evaluate the target object. Thus

there is unlikely to be significant savings in delaying such evaluation. Also, when calling external

methods all parameters are evaluated as discussed.

In the basic compiler, all branch conditions are evaluated when if statements are encountered.

Recall that all loops are canonicalized into while (true) loops with the loop condition rewritten

using branches. I present an optimization to this restriction in Sec. 4.6.2 below. Similarly, state-

ments that throw exceptions, obtain locks on objects (synchronized), and that spawn new threads

of control are not deferred, in order to preserve the control flow of the original program. Finally,

thunk evaluations can also happen when compiling statements that issue queries, as discussed in

Sec. 4.3.3.
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4.3.7 Limitations

There are two limitations that the SLOTH compiler does not currently handle. First, because of

delayed execution, exceptions that are thrown by the original program might not occur at the

same program point in the compiled version. For instance, the original program might throw

an exception in a method call, but in the SLOTH-compiled version, the call might be deferred

until later when the thunk corresponding to the call is evaluated. While the exception will still be

thrown eventually, the SLOTH-compiled program might have executed more code than the original

program before hitting the exception.

Second, since the SLOTH compiler changes the representation of member fields in each internal

class, it currently does not support custom deserializers. For instance, one of the applications

used in our experiments reads in an XML file that contains the contents of an object before the

application source code is compiled by SLOTH. As a result, the compiled application fails to re-

create the object as its representation has changed. We manually fixed the XML file to match the

expected types in our benchmark. In general, we do not expect this to be common practice, given

that Java already provides its own object serialization routines.

4.4 Formal Semantics

I now formally define the extended lazy evaluation outlined by the compilation process described

above. For the sake of presentation, I describe the semantics in terms of an abstract language

shown in Fig. 4-5. The language is simple and is based on the concrete syntax shown in Fig. 4-4,

but will help us illustrate the main principles behind extended lazy evaluation in a way that can be

easily applied not just to Java but to any other object-oriented languages.

In the abstract language, we model unstructured control flow statements such as break and

continue using Boolean variables to indicate if control flow has been altered. Such unstructured

control flow statements are then translated into Boolean variable assignments, and the statements

that can be affected by unstructured control flow (e.g., statements that follow a break statement

inside a loop) are wrapped into a conditional block guarded by the appropriate indicator Boolean
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c ∈ constant ::= True | False | literal
el ∈ assignExpr ::= x | e.f

e ∈ expr ::= c | el | {fi = ei} | e1 op e2 | ¬ e | f (e) | ea[ei ] | R(e)
c ∈ command ::= skip | el := e | if(e) then c1 else c2 |

while(True) do c | W (e) | c1 ; c2
op ∈ binary op ::= ∧ | ∨ | > | < | =

Figure 4-5: Abstract language for formalizing lazy evaluation used in SLOTH

variable(s).

In addition, the language models the return value of each method using the special variable @.

Statements such as return e are translated into two variable assignments: one that assigns to @, and

another that assigns to an indicator Boolean variable to represent the fact that control flow has been

altered. Statements that follow the original return e statement are wrapped into conditional blocks

similar to that discussed above for loops.

Other than that, the main constructs to highlight in the language are the expression R(e) which

issues a database read query derived from the value of expression e, and W (e) a statement that

issues a query that can mutate the database, such as INSERT or UPDATE.

4.4.1 Program Model

We model the execution model as a tuple ⟨D,𝜎, h⟩ for programs written in the abstract language

and executed under standard evaluation, and ⟨Q,D,𝜎, h⟩ for those to be executed under extended

lazy evaluation. to model the program state under standard and extended lazy evaluation. In

particular:

• D : e → e represents the database. It is modeled as a map that takes in an expression

representing the SQL query, and returns another expression, which is either a single value

(e.g., the value of an aggregate) or an array of expressions (e.g., a set of records stored in the

database).

120



• 𝜎 : e → e represents the environment that maps program variables to expressions. It is used

to look up variable values during program evaluation.

• h : e → e represents the program heap that maps a heap location to the expression stored at

that location. We use the notation h[e] to represent looking up value stored at location e, and

h[e1, e2] to denote looking up the value stored at heap location e1 with offset e2 (e.g., a field

dereference), and the same notation is used to denote array value lookups as well.

• Q : id → e represents the query store under extended lazy semantics. It maps unique query

identifiers (as discussed in Sec. 4.3.3) to the query expressions that were registered with the

query store when the respective identifier was initially created.

In addition, we define the auxillary function update : D × e → D to model database modifi-

cations (e.g., as a result of executing an UPDATE query). It takes in a database D and a write query

e, and returns a new database. Since the language semantics are not concerned with the details of

database modifications, we model such operations as a pure function that returns a new database

state.

4.4.2 Standard Evaluation Semantics

Given the above, we first define the semantics of standard evaluation for each of the program

constructs in the abstract language. The evaluation rules are shown below, where the ∅ symbol

below represents the null value.

Semantics of expressions:

J⟨D,𝜎, h⟩, xK → ⟨D,𝜎, h⟩,𝜎[x ] [Variable]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′⟩, v
J⟨D,𝜎, h⟩, e.f K → ⟨D ′,𝜎, h′⟩, h′[v , f ]

[Field dereference]

J⟨D,𝜎, h⟩, cK → ⟨D,𝜎, h⟩, c [Constant]
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h′ = h[v → {fi = ∅}], v is a fresh location
J⟨D,𝜎, h⟩, {fi = ei}K → ⟨D,𝜎, h′⟩, v

[Object allocation]

J⟨D,𝜎, h⟩, e1K → ⟨D ′,𝜎, h′⟩, v1 J⟨D ′,𝜎, h⟩, e2K → ⟨D ′′,𝜎, h′′⟩, v2 v1 op v2 = v

J⟨D,𝜎, h⟩, e1 op e2K → ⟨D ′′,𝜎, h′′⟩, v
[Binary]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′⟩, v1 uop v1 = v

J⟨D,𝜎, h⟩, uop eK → ⟨D ′,𝜎, h′⟩, v
[Unary]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′⟩, v J⟨D ′, [x → v ], h′⟩, sK → ⟨D ′′,𝜎′′, h′′⟩ s is the body of f (x)
J⟨D,𝜎, h⟩, f (e)K → ⟨D ′′,𝜎, h′′⟩,𝜎[@]

[Method]

J⟨D,𝜎, h⟩, eiK → ⟨D ′,𝜎, h′⟩, vi J⟨D ′,𝜎, h′⟩, eaK → ⟨D ′′,𝜎, h′′⟩, va
J⟨D,𝜎, h⟩, ea[ei ]K → ⟨D ′′,𝜎, h′′⟩, h′′[va, vi ]

[Array deference]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′⟩, v
J⟨D,𝜎, h⟩,R(e)K → ⟨D ′,𝜎, h′⟩,D ′[v ]

[Read query]

Semantics of statements:

J⟨D,𝜎, h⟩, skipK → ⟨D,𝜎, h⟩ [Skip]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′⟩, v J⟨D ′,𝜎, h′⟩, elK → ⟨D ′′,𝜎, h′′⟩, vl
J⟨D,𝜎, h⟩, el := eK → ⟨D ′′,𝜎[vl → v ], h′′⟩

[Assignment]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′, True⟩ J⟨D ′,𝜎, h′⟩, s1K → ⟨D ′′,𝜎′, h′′⟩
J⟨D,𝜎, h⟩, if(e) then s1 else s2K → ⟨D ′′,𝜎′, h′′⟩

[Conditional–true]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′, False⟩ J⟨D ′,𝜎, h′⟩, s2K → ⟨D ′′,𝜎′, h′′⟩
J⟨D,𝜎, h⟩, if(e) then s1 else s2K → ⟨D ′′,𝜎′, h′′⟩

[Conditional–false]
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J⟨D,𝜎, h⟩, sK → ⟨D ′,𝜎′, h′⟩
J⟨D,𝜎, h⟩, while(True) do sK → ⟨D ′,𝜎′, h′⟩

[Loop]

J⟨D,𝜎, h⟩, eK → ⟨D ′,𝜎, h′⟩, v update(D ′, v) = D ′′

J⟨D,𝜎, h⟩,W (e)K → ⟨D ′′,𝜎, h′⟩
[Write query]

J⟨D,𝜎, h⟩, s1K → ⟨D ′,𝜎′, h′⟩ J⟨D ′,𝜎′, h′⟩, s2K → ⟨D ′′,𝜎′′, h′′⟩
J⟨D,𝜎, h⟩, s1 ; s2K → ⟨D ′′,𝜎′′, h′′⟩

[Sequence]

Each of the evaluation rules describes the result of evaluating a program construct in the lan-

guage (shown below the line), given the intermediate steps that are taken during evaluation (shown

above the line). The rules for standard evaluation are typical of imperative languages. In general,

each of the rules for expressions returns a (possibly changed) state, along with the result of the

evaluation.

As an example, the rule to evaluate the binary expression e1 op e2 is repeated below.

⟨s, e1⟩ → ⟨s ′, v1⟩ ⟨s ′, e2⟩ → ⟨s ′′, v2⟩ v1 op v2 → v

⟨s, e1 op e2⟩ → ⟨s ′′, v⟩

The notation above the line describes how the subexpressions e1 and e2 are evaluated to values v1

and v2 respectively. The result of evaluating the overall expression is shown below the line and it

is the result of applying op to v1 and v2, together with the state as transformed by the evaluation of

the two subexpressions.

As another example, the evaluation of a read query R(e) must first evaluate the query e to a

query string v , and then return the result of consulting the database D ′ with this query string. Note

that the evaluation of e might itself modify the database, for example if e involves a function call

that internally issues an update query, so the query v must execute on the database as it is left after
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the evaluation of e:

⟨(D,𝜎, h), e⟩ → ⟨(D ′,𝜎, h′), v⟩
⟨(D,𝜎, h),R(e)⟩ → ⟨(D ′,𝜎, h′),D ′[v ]⟩

Meanwhile, the rules for evaluating statements return only a new program state and no values.

Note that to evaluate a write query W (e), we use the update function to perform the change on the

database after evaluating the query expression. The changed database is then included as part of

the modified state.

4.4.3 Semantics of Extended Lazy Evaluation

To describe lazy evaluation, we augment the state tuple s with the query store Q , which maps a

query identifier to a pair (q, rs) that represents the SQL query q and its corresponding result set

rs . rs is initially set to null (∅) when the pair is created. We model thunks using the pair (𝜎, e),

where 𝜎 represents the environment for looking up variables during thunk evaluation, and e is the

expression to evaluate. In our Java implementation the environment is implemented as fields in the

Thunk class and e is the expression in the body of the _force method.

The evaluation rules for extended lazy evaluation are shown below.

Semantics of expressions:

J⟨Q,D,𝜎, h⟩, xK → ⟨Q,D,𝜎, h⟩, ([x → 𝜎[x ]], x)
[Variable]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e) force(Q,D, (𝜎′, e)) → v

J⟨Q,D,𝜎, h⟩, e.f K → ⟨Q ′,D ′,𝜎, h′⟩, h′[v , f ]
[Field deference]

J⟨Q,D,𝜎, h⟩, cK → ⟨Q,D,𝜎, h⟩, ([ ], c) [Constant]

h′ = h[v → {fi = ∅}], v is a fresh location
J⟨Q,D,𝜎, h⟩, {fi = ei}K → ⟨Q,D,𝜎, h′⟩, ([ ], v)

[Object allocation]
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J⟨Q,D,𝜎, h⟩, e1K → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e1)

J⟨Q ′,D ′,𝜎, h′⟩, e2K → ⟨Q ′′,D ′′,𝜎, h′′⟩, (𝜎′′, e2)

J⟨Q,D,𝜎, h⟩, e1 op e2K → ⟨Q ′′,D ′′,𝜎, h′′⟩, (𝜎′ ∪ 𝜎′′, e1 op e2)
[Binary]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎, e)
J⟨Q,D,𝜎, h⟩, uop eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎, uop e)

[Unary]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e)

J⟨Q,D,𝜎, h⟩, f (e)K → ⟨Q ′,D ′,𝜎, h′⟩, ([x → (𝜎′, e)], f (x))
[Method–internal & pure]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e)

J⟨Q ′,D ′, [x → (𝜎′, e)], h′⟩, sK → ⟨Q ′′,D ′′,𝜎′′, h′′⟩

s is the body of f (x)

J⟨Q,D,𝜎, h⟩, f (e)K → ⟨Q ′′,D ′′,𝜎′′, h′′⟩,𝜎′′[@]
[Method–internal & impure]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e)

J⟨Q ′,D ′, [x → (𝜎′, e)], h′⟩, sK → ⟨Q ′′′,D ′′′,𝜎′′, h′′⟩

force(Q ′,D ′, (𝜎′, e)) → Q ′′,D ′′, v

s is the body of f (x)

J⟨Q,D,𝜎, h⟩, f (e)K → ⟨Q ′′′,D ′′′,𝜎′′, h′′⟩,𝜎′′[@]
[Method–external]

J⟨Q,D,𝜎, h⟩, eiK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, ei )

J⟨Q ′,D ′,𝜎, h′⟩, eaK → ⟨Q ′′,D ′′,𝜎, h′′⟩, (𝜎′′, ea)

force(Q ′′,D ′′, (𝜎′, ei )) → Q ′′′,D ′′′, vi

force(Q ′′′,D ′′′, (𝜎′′, ea)) → Q ′′′′,D ′′′′, va

J⟨Q,D,𝜎, h⟩, ea[ei ]K → ⟨Q ′′′′,D ′′′′,𝜎, h′′⟩, h′′[va, vi ]
[Array deference]
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J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e) Q ′′′ = Q ′′[id → (v , ∅)]

force(Q ′,D ′, (𝜎′, e)) → Q ′′,D ′′, v id is a fresh identifier

J⟨Q,D,𝜎, h⟩,R(e)K → ⟨Q ′′′,D ′′,𝜎, h′⟩, ([ ], id)
[Read query]

Semantics of statements:

J⟨Q,D,𝜎, h⟩, skipK → ⟨Q,D,𝜎, h⟩ [Skip]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e) J⟨Q ′,D ′,𝜎, h′⟩, elK → ⟨Q ′′,D ′′,𝜎, h′′⟩, vl
J⟨Q,D,𝜎, h⟩, el := eK → ⟨Q ′′,D ′′,𝜎[vl → (𝜎′, e)], h′′⟩

[Assignment]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e) force(Q ′,D ′, (𝜎′, e)) → Q ′′,D ′′, True

J⟨Q ′′,D ′′,𝜎, h′⟩, s1K → ⟨Q ′′′,D ′′,𝜎′, h′′⟩

J⟨Q,D,𝜎, h⟩, if(e) then s1 else s2K → ⟨Q ′′′,D ′′′,𝜎′, h′′⟩
[Conditional–true]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e) force(Q ′,D ′, (𝜎′, e)) → Q ′′,D ′′, False

J⟨Q ′′,D ′′,𝜎, h′⟩, s2K → ⟨Q ′′′,D ′′,𝜎′, h′′⟩

J⟨Q,D,𝜎, h⟩, if(e) then s1 else s2K → ⟨Q ′′′,D ′′′,𝜎′, h′′⟩
[Conditional–false]

J⟨Q,D,𝜎, h⟩, sK → ⟨Q ′,D ′,𝜎′, h′⟩
J⟨Q,D,𝜎, h⟩, while(True) do sK → ⟨Q ′,D ′,𝜎′, h′⟩

[Loop]

J⟨Q,D,𝜎, h⟩, eK → ⟨Q ′,D ′,𝜎, h′⟩, (𝜎′, e)

force(Q ′,D ′, (𝜎′, e)) → Q ′′,D ′′, v

update(D ′′, v) → D ′′′

∀id ∈ Q ′′ . Q ′′′[id ] =

⎧⎪⎨⎪⎩
D ′′′[Q ′′[id ].s] if Q ′′[id ].rs = ∅

Q ′′[id ].rs otherwise

J⟨Q,D,𝜎, h⟩,W (e)K → ⟨Q ′′′,D ′′′,𝜎, h′⟩
[Write query]
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J⟨Q,D,𝜎, h⟩, s1K → ⟨Q ′,D ′,𝜎′, h′⟩ J⟨Q,D ′,𝜎′, h′⟩, s2K → ⟨Q ′′,D ′′,𝜎′′, h′′⟩
J⟨Q,D,𝜎, h⟩, s1 ; s2K → ⟨Q ′′,D ′′,𝜎′′, h′′⟩

[Sequence]

As discussed in Sec. 4.3.2, to evaluate the expression e1 op e2 using lazy evaluation, we first

create thunk objects v1 and v2 for e1 and e2 respectively, and then create another thunk object that

represents the op. As shown in the above, this is formally described as:

⟨s, e1⟩ → ⟨s ′, v1⟩ ⟨s ′, e2⟩ → ⟨s ′′, v2⟩

v1 = (s ′, e ′1) v2 = (s ′′, e ′2)

v = (𝜎′ ∪ 𝜎′′, e ′1 op e ′2)

⟨s, e1 op e2⟩ → ⟨s ′′, v⟩

Note that the environment for v is the union of the environments from v1 and v2 since we might

need to look up variables stored in either of them.

On the other hand, as discussed in Sec. 4.3.3, under lazy evaluation query calls are evaluated

by first forcing the evaluation of the thunk that corresponds to the query string, and then registering

the query with the query store.

For instance, in the rule for evaluating read queries (R(e)), the force function is used to evaluate

thunks, similar to that described in the examples above using Java. force(Q,D, t) takes in the

current database D and query store Q and returns the evaluated thunk along with the modified

query store and database. When force encounters an id in a thunk, it will check the query store to

see if that id already has a result associated with it. If it does not, it will issue as a batch all the

queries in the query store that do not yet have results associated with them, and will then assign

those results once they arrive from the database.

Likewise, in the case of writes, we first evaluate the query expression thunk. Then, before

executing the actual write query, we first execute all read queries that have been delayed and not

executed in the query store due to extended lazy evaluation. This is shown in the evaluation rule

by issuing queries to the database for all the query identifiers that have not been executed, and
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changing the contents of the query store as a result. After that, we execute the write query on the

database, and use the update function to change to the database contents as in standard evaluation.

As discussed in Sec. 4.3.4, method calls are evaluated using three different rules based on the

kind of method that is invoked. For methods that are internal and pure, we first evaluate the actual

parameters of the call (by creating thunks to wrap each of the actuals), and then create another

thunk with the delayed expression being the call itself. Meanwhile, since we cannot delay calls

to external methods or methods that have side-effects, we evaluate such calls by first evaluating

the parameters and then either calling the specialized method that takes thunk parameters (if the

method is internal), or evaluating the parameter thunks and calling the external method directly.

Next, we define the force function that is used to evaluate thunks:

force(Q,D, ([x → 𝜎[x ]], x)) → Q,D,𝜎[x ]
[Variable]

force(Q,D, (𝜎, c)) → Q,D, c
[Constant]

force(Q,D, (𝜎, e1)) → Q ′,D ′, v1 force(Q ′,D ′, (𝜎, e2)) → Q ′′,D ′′, v2 v1 op v2 = v

force(Q,D, (𝜎, e1 op e2)) → Q ′′,D ′′, v
[Binary]

force(Q,D, (𝜎, e)) → Q ′,D ′, v1 uop v1 → v

force(Q,D, (𝜎, uop e)) → Q ′,D ′, v
[Unary]

force(Q,D, (𝜎, e)) → Q ′,D ′, v

J⟨Q ′,D ′, [x → v ], h⟩, sK → ⟨Q ′′,D ′′,𝜎′, h⟩

s is the body of f (x)

force(Q,D, ([x → (𝜎, e)], f (x)) → Q ′′,D ′′,𝜎′[@]
[Method–internal & pure]

Q[id ].rs ̸= ∅
force(Q,D, (𝜎, id)) → Q,D,Q[id ].rs

[Issued query]

128



Q[id ].rs = ∅ ∀id ∈ Q . Q ′[id ] =

⎧⎪⎨⎪⎩
D[Q[id ].s] if Q[id ].rs = ∅

Q[id ].rs otherwise

force(Q,D, ([ ], id)) → Q ′,D,Q ′[id ].rs
[Unissued query]

The evaluation rules above show what happens when thunks are evaluated. The rules are de-

fined based on the on the type of expression that is delayed. For instance, to evaluate a thunk with

a variable expression, we simply look up the value of the variable from the environment that is

embedded in the thunk. For thunks that contain method calls, we first use force to evaluate each

of the parameters, then evaluate the method body itself as in standard evaluation. Note that since

we only create thunks for pure method calls, the heap remains unchanged after the method returns.

Finally, for read queries, force either returns the result set that is stored in the query store if the

corresponding query has already been executed (as described in the rule [Issued query]), or issues

all the unissued queries in the store as a batch before returning the results (as described in the rule

[Unissued query]).

4.5 Soundness of Extended Lazy Evaluation

Given the formal language described above, we now show that extended lazy semantics preserves

the semantics of the original program that is executed under standard evaluation, except for the lim-

itations such as exceptions that are described in Sec. 4.3.7. We show that fact using the following

theorem:

Theorem 3 (Semantic Correspondence). Given a program p and initial states Q0,D0,𝜎0 and h0.

If

J⟨D0,𝜎0, h0⟩, pK → ⟨DS ,𝜎S , hS⟩ under standard semantics, and

J⟨Q0,D0,𝜎0, h0⟩, pK → ⟨QE ,DE ,𝜎E , hE ⟩ under extended lazy semantics, then

∀x ∈ 𝜎S . 𝜎S [x ] = force(QE ,DE ,𝜎E [x ]) and ∀x ∈ hS . hS [x ] = force(QE ,DE , hE [x ]) .
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For presentation purposes, we use P(SS , SL) to denote that the state SS = ⟨DS ,𝜎S , hS⟩ under

standard evaluation and the state SL = ⟨QL,DL,𝜎L, hL⟩ under extended lazy evaluation satisfy the

correspondence property above. We use structural induction on the input language to prove the

theorem. Since most of the proof is mechanical, we do not include the entire proof. Instead we

highlight a few representative cases below.

Constants. The rules for evaluating constants do not change the state under both standard and

extended lazy evaluation. Thus, the the correspondence property is satisfied.

Variables. Using the evaluation rules, suppose JSS , xK → S ′
S ,𝜎[x ], and JSL, xK → S ′

L, ([x →

𝜎[x ]], x). From the induction hypothesis, assume that P(SS , SL) and P(S ′
S , S

′
L) are true. Given

that, we need to show that P(S ′
S , S

′′
L ) is true, where S ′′

L is the state that results from evaluating

the thunk ([x → 𝜎[x ]], x). This is obvious since the extended lazy evaulation rule for variables

change neither the database, environment, or the heap. Furthermore, the definition of force shows

that evaluating the thunk ([x → 𝜎[x ]], x) returns 𝜎[x ] as in standard evalation, hence proving the

validity of P(S ′
S , S

′′
L ).

Unary expressions. Like the case above, suppose JSS , uop eK → S ′
S , vS under standard evaluation,

and JSL, uop eK → S ′
L, (𝜎, uop e) under extended lazy evaluation. Let S ′′

L be the state that results

from evaluating the thunk (𝜎, uop e). From the induction hypothesis, we assume that P(SS , SL)

and P(S ′
S , S

′
L) are true. We need to show that P(S ′

S , S
′′
L ) is true. First, from the definition of force,

we know that evaluating the thunk (𝜎, uop e) results in the same value as vS . Next, we need to show

that D ′′
L = D ′

S as a result of evaluating the thunk. Note that there are three possible scenarios that

can happen as a result of evaluating (𝜎, uop e). First, if e does not contain a query then obviously

D ′′
L = D ′

S . Next, if e contains a query, then it is either a write query or a read query. If it is a write

query, then the query is executed immediately as in standard evaluation, thus D ′′
L = D ′

S . Otherwise,

it is a read query. Since read queries do not change the state of the database, hence D ′′
L = D ′

S as

well.

Binary expressions. Binary expressions of the form e1 op e2 are similar to unary expressions,

except that we need to consider the case when both expressions contain queries and the effects
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on the state of the database when they are evaluated (otherwise it is the same situation as unary

expressions). For binary expressions, the extended lazy evaluation rule and the definition of force

prescribe that e1 is first evaluated prior to e2. If e1 contains a write query, then it would already

been executed during lazy evaluation, since write queries are not deferred. e2 will be evaluated

using the database as a result of evaluating e1, and thus evaluated the same way as in standard

evaluation. The situation is similar if e1 contains a read query and e2 contains a write query. On

the other hand, if both e1 and e2 contain only read queries, then evaluating them do not change the

state of the database, and the correspondence property is satisfied.

Read queries. If the query has previously been evaluated, then the cached result is returned and

no change is induced on the program state, and the property is satisfied. Otherwise, it is a new read

query and a new query identifier is created as a result of extended lazy evaluation. Evaluating the

query identifier using force will execute the read query against the database. Since the database

state is not changed as a result of read queries, the correspondence property is preserved.

Method calls. Calls to methods that are either external or internal with side-effects are not deferred

under extended lazy evaluation and are thus equivalent to standard evaluation. For the pure function

calls that are deferred, the definition of force for evaluating such thunks is exactly the same as

those for evaluating method calls under standard evaluation (except for the evaluation of thunk

parameters), and thus does not alter program semantics.

Field accesses, array dereferences, and object allocations. Since extended lazy evaluation does

not defer evaluation of these kinds of expressions, the correspondence property is satisfied.

Statements. Since evaluation of statements are not deferred under extended lazy evaluation, the

correspondence property for statements is satisfied as it follows from the proof for expressions.

4.6 Being Even Lazier

In the previous sections, I described how SLOTH compiles source code into lazy semantics. How-

ever, as noted in Sec. 4.3.2, there can be substantial overhead if we follow the compilation pro-
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cedure naively. In this section, I describe three optimizations we developed. The goal of these

optimizations is to generate more efficient code and to further defer computation. As discussed

in Sec. 4.2, deferring computation delays thunk evaluations, which in turn increases the chances of

achieving larger query batch sizes during execution time. Like the previous section, I describe the

optimizations using concrete Java syntax for clarity, although they can all be formalized using the

language described in Fig. 4-5.

4.6.1 Selective Compilation

The goal of compiling to lazy semantics is to enable query batching dynamically as the application

executes. Obviously the benefits are observable only for the parts of the application that actually is-

sue queries, and simply adds runtime overhead for the remaining parts of the application. Thus, the

SLOTH compiler analyzes each method to determine whether it can possibly access the database.

The analysis is a conservative one that labels a method as using persistent data if it:

• Issues a query in its method body.

• Calls another method that uses persistent data. Because of dynamic dispatch, if the called

method is overridden by any of its subclasses, SLOTH checks if any of the overridden versions is

persistent, and if so it labels the call to be persistent.

• Accesses object fields that are stored persistently. This is done by examining the static object

types that are used in each method, and checking whether it uses an object whose type is persis-

tently stored. The latter is determined by checking for classes that are populated by query result

sets in its constructor (in the case of JDBC), or by examining the object mapping configuration

files for ORM frameworks.

The analysis is implemented as an inter-procedural, flow-insensitive dataflow analysis [72]. It

first identifies the set of methods m containing statements that perform any of the above. Then,

any method that calls m is labeled as persistent. This process continues until all methods that

can possibly be persistent are labeled. For methods that are not labeled as persistent, the SLOTH

compiler does not convert their bodies into lazy semantics — they are compiled as is. For the two

applications used in our experiments, our results show about 17% and 21% of the methods do not
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use persistent data, and those are mainly methods that handle application configuration and output

page formatting (see Sec. 4.8.5 for details).

4.6.2 Deferring Control Flow Evaluations

In the naive compiler, all branch conditions are evaluated when an if statement is encountered, as

discussed in Sec. 4.3.6. The rationale is that the outcome of the branch affects subsequent program

path. We can do better, however, based on the intuition that if neither branch of the condition

creates any changes to the program state that are externally visible outside of the application, then

the entire branch statement can be deferred as a thunk like other simple statements. Formally, if

none of the statements within the branch contains: i) calls that issue queries; or ii) thunk evaluations

as discussed in Sec. 4.3.6 (recall that thunks need to be evaluated when their values are needed in

operations that cannot be deferred, such as making changes to the program state that are externally

visible), then the entire branch statement can be deferred. For instance, in the following code

fragment:

if (c) {

a = b;

}

else {

a = d;

}

The naive compiler would compile the code fragment into:

if (c._force()) {

a = new Thunk0(b) { ... };

}

else {

a = new Thunk1(d) { ... };

}
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which could result in queries being executed as a result of evaluating c. However, since the bod-

ies of the branch statements do not make any externally visible state changes, the whole branch

statement can be deferred as:
ThunkBlock tb = new ThunkBlock2(b, d) {

void _force () {

if (c._force()) { a = b._force(); }

else { a = d._force(); }

}

};

Thunk<int> a = tb.a();

where the evaluation of c is further delayed. The ThunkBlock class is similar to the Thunk class

except that it defines methods (not shown above) that return thunk variables defined within the

block, such as a in the example. Calling _force on any of the thunk outputs from a thunk block

will evaluate the entire block, along with all other output objects that are associated with that thunk

block. In sum, this optimization allows us to delay thunk evaluations, which in turn might increase

query batches sizes.

To implement this optimization, the SLOTH compiler first iterates through the body of the if

statement to determine if any thunk evaluation takes place, and all branches that are deferrable

are labeled. During thunk generation, deferrable branches are translated to thunk objects, with

the original statements inside the branches constituting the body of the _force methods. Variables

defined inside the branch are assigned to output thunks as described above. The same optimization

is applied to defer loops as well. Recall from Sec. 4.3.1 that all loops are converted into while

(true) loops with embedded control flow statements (break and continue) inside their bodies.

Using similar logic, a loop can be deferred if all statements inside the loop body can be deferred.

4.6.3 Coalescing Thunks

The compilation approach described in Sec. 4.3.2 results in new Thunk objects being created for

each computation that is delayed. Due to the temporary variables that are introduced as a result

of code simplification, the number of operations (and thus the number of Thunk objects) can be
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much larger than the number of lines of Java code. This can substantially slow down the compiled

application due to object creation and garbage collection. As an optimization, the thunk coalescing

pass merges consecutive statements into thunk blocks to avoid allocation of thunks. The idea is

that if there are two consecutive statements s1 and s2, and that s1 defines a variable v that is used

in s2 and not anywhere after in the program, then we can combine s1 and s2 into a thunk block

with s1 and s2 inside its _force method (provided that both statements can be deferred as discussed

in Sec. 4.3). This way, SLOTH avoids creating the thunk object for v that would be created under

basic compilation. As an illustrative example, consider the following code fragment:

int foo (int a, int b, int c, int d) {

int e = a + b;

int f = e + c;

int g = f + d;

return g;

}

Using the compilation procedure discussed earlier, the code fragment will compile to:

1 Thunk<int> foo (Thunk<int> a, b, c, d) {

2 Thunk<int> e = new Thunk0(a, b) { ... }

3 Thunk<int> f = new Thunk1(e, c) { ... }

4 Thunk<int> g = new Thunk2(f, d) { ... }

5 return g;

6 }

Notice that three thunk objects are created, with the additions in the original code performed in the

_force methods inside the definitions of classes Thunk0, Thunk1 and Thunk2, respectively. However,

in this case the variables e and f are not used anywhere, i.e., they are no longer live, after Line 4.

Thus SLOTH can combine the first three statements into a single thunk, resulting in the following:
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Thunk<int> foo (Thunk<int> a, b, c, d) {

ThunkBlock tb = new ThunkBlock3(a, b, c, d) { ... }

Thunk<int> g = tb.g();

return g;

}

The optimized version reduces the number of object allocations from 3 to 2: one allocation for

ThunkBlock3 and another one for the Thunk object representing g that is created within the thunk

block. In this case, the _force method inside the ThunkBlock3 class consists of statements that

perform the addition in the original code. As described earlier, the thunk block keeps track of all

thunk values that need to be output, in this case the variable g.

This optimization is implemented in multiple steps in the SLOTH compiler. First, SLOTH

identifies variables that are live at each program statement. Live variables are computed using

a dataflow analysis that iterates through program statements in a backwards manner to determine

the variables that are used at each program statement (and therefore must be live).

After thunks are generated, the compiler then iterates through each method and attempts to

combine consecutive statements into thunk blocks. The process continues until no statements can

be further combined within each method. After that, the compiler examines the _force method of

each thunk block and records the set of variables that are defined. For each such variable v, the

compiler checks to see if all statements that use of v are also included in the same thunk block by

making use of the liveness information. If that is the case, then it does not need to create a thunk

object for v. This optimization significantly reduces the number of thunk objects that need to be

allocated and thus improves the efficiency of the generated code as shown in Sec. 4.8.5.

4.7 Implementation

We have implemented a prototype of SLOTH. The SLOTH compiler is built using Polyglot [84]. We

have implemented a query store for the thunk objects to register and retrieve query results. To issue

the batched queries in a single round trip, we extended the MySQL JDBC driver to allow executing
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multiple queries in one executeQuery call, and the query store uses the batch query driver to issue

queries to the database. Once received by the database, our extended driver executes all read

queries in parallel. In addition, we have also made the following changes to the application hosting

framework to enable them process thunk objects that are returned by the hosted application. Our

extensions are not language specific and can be applied to other ORM and web hosting frameworks

as well.

JPA Extensions. We extended the Java Persistence API (JPA) [8] to allow returning thunk ob-

jects from calls that retrieve objects from the database. For example, the JPA defines a method

Object find(Class, id) that fetches the persistently stored object of type Class with id as its ob-

ject identifier. We extended the API with a new method Thunk<Object> find_thunk(Class, id)

that performs the same functionality except that it returns a thunk rather than the requested object.

We implemented this method in the Hibernate ORM library. The implementation first generates a

SQL query that would be issued to fetch the object from the database, registers the query with the

query store, and returns a thunk object to the caller. Invoking the _force method on the returned

thunk object forces the query to be executed, and Hibernate will then deserialize the result into an

object of the requested type before returning to the caller. Similar extensions are made to other

JPA methods. Note that our extensions are targeted to the JPA not Hibernate — we decided to im-

plement them within the Hibernate ORM framework as it is a popular open-source implementation

of JPA and is also used by the applications in our experiments.

Spring Extensions. We extended the Spring web application framework to allow thunk objects

be stored and returned during model construction within the MVC pattern, as OpenMRS is hosted

with Spring and implements the MVC pattern. This is a minor change the consists of about 100

lines of code.

JSP API Extensions. We extended the JavaServer Pages (JSP) API [7] to enable thunk oper-

ations. In particular, we allow thunk objects to be returned while evaluating the JSP Expression

Language on the model that is constructed by the web application framework. We also extended the

JspWriter class from the JSP API that generates the output HTML page when a JSP is requested.
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The class provides methods to write different types of objects to the output stream. We extended

the class with a writeThunk method that writes thunk objects to the output stream. writeThunk

stores the thunk to be written in a buffer, and thunks in the buffer are not evaluated until the writer

is flushed by the web server (which typically happens when the entire HTML page is generated).

We have implemented our JSP API extensions in Tomcat, which is a popular open-source imple-

mentation of the JSP API. This is also a minor change that consists of about 200 lines of code.

4.8 Experiments

In this section I report our experimental results. The goals of these experiments are: i) evaluate

the effectiveness of SLOTH at batching queries, ii) quantify the change in application load times,

and iii) measure the overhead of running applications using lazy evaluation. All experiments were

performed using Hibernate 3.6.5, Spring 3.0.7, and Tomcat 6 with the extensions mentioned above.

The web server and applications were hosted on a machine with 8GB of RAM and 2.8GHz proces-

sor, and data was stored in an unmodified MySQL 5.5 database with 47GB of RAM and 12 2.4GHz

processors. Unless stated there was a 0.5ms round trip delay between the two machines (this is the

latency of the group cluster machines). We used the following applications for our experiments:

• itracker version 3.1.5 [5]: itracker is an open-source software issue management system.

The system consists of a Java web application built on top of the Apache Struts framework

and uses Hibernate to manage storage. The project has 10 contributors with 814 Java source

files with a total of 99k lines of Java code.

• OpenMRS version 1.9.1 [15]: OpenMRS is an open-source medical record system that has

been deployed in numerous countries. The system consists of a Java web application built

on top of the Spring web framework and uses Hibernate to manage storage. The project

has over 70 contributors. The version used consists of 1326 Java source files with a total of

226k lines of Java code. The system has been in active development since 2004 and the code

illustrates various coding styles for interacting with the ORM.
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We created benchmarks from the two applications by first manually examining the source code

to locate all web page files (html and jsp files). Next, we analyzed the application to find the URLs

that load each of the web pages. This resulted in 38 benchmarks for itracker, and 112 benchmarks

for OpenMRS. Each benchmark was run by loading the extracted URL from the application server

via a client that resides on the same machine as the application server.

We also tested with TPC-C and TPC-W coded in Java [22]. Because the implementations

display the query results immediately after issuing them, there is no opportunity for batching. We

only use them to measure the runtime overhead of lazy evaluation as described below.

4.8.1 Page Load Experiments

In the first set of experiments, we compared the time taken to load each benchmark from the

original and the SLOTH compiled versions of the applications. For each benchmark, we started the

web and database servers and measured the time taken to load the entire page. Each measurement

was the average of 5 runs. For benchmarks that require user inputs (e.g., patient ID for the patient

dashboard, project ID for the list of issues to be displayed), we filled the forms with valid values

from the database. We restarted the database and web servers after each measurement to clear

all cached objects. For OpenMRS, we used the sample database (2GB in size) provided by the

application. For itracker, we created an artificial database (0.7GB in size) consisting of 10 projects

and 20 users. Each project has 50 tracked issues, and none of the issues has attachments. We did

not define custom scripts or components for the projects that we created. We also created larger

versions of these databases (up to 25 GB) and report their performance on selected benchmarks

in Sec. 4.8.4, showing that our gains continue to be achievable with much larger database sizes.

We loaded all benchmarks with the applications hosted on the unmodified web framework

and application server, and repeated with the SLOTH compiled applications hosted on the SLOTH

extended web framework using the ORM library and web server discussed in Sec. 4.7. For all

benchmarks, we computed the speedup ratios as:

load time of the original application
load time of the SLOTH compiled application
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Figure 4-6: itracker benchmark experiment results
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Figure 4-7: OpenMRS benchmark experiment results
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Benchmark

Original application SLOTH compiled application

Time (ms) # round Time (ms) # round Max # Total

trips trips queries queries

in batches issued

module-reports/list_reports.jsp 22199 74 15929 24 9 38

self_register.jsp 22776 59 16741 23 5 41

portalhome.jsp 22435 59 14888 25 10 56
module-searchissues/

search_issues_form.jsp
22608 59 16938 21 6 44

forgot_password.jsp 22968 59 15927 24 6 33

error.jsp 21492 59 15752 22 5 40

unauthorized.jsp 21266 59 17588 21 8 28

module-projects/move_issue.jsp 21655 59 18994 32 5 57

module-projects/list_projects.jsp 22390 59 15588 26 4 38
module-projects/

view_issue_activity.jsp
23001 76 17240 33 11 47

module-projects/view_issue.jsp 22676 85 10892 39 20 62

module-projects/edit_issue.jsp 22868 129 11181 34 5 52

module-projects/create_issue.jsp 22606 76 18898 23 14 40

module-projects/list_issues.jsp 22424 59 19492 25 4 40
module-admin/admin_report/

list_reports.jsp
21880 59 19481 23 5 35

module-admin/admin_report/

edit_report.jsp
21178 59 18354 22 6 46

module-admin/admin_configuration/

import_data_verify.jsp
22150 59 17163 22 4 38

module-admin/admin_configuration/

edit_configuration.jsp
22242 59 18486 24 3 28

module-admin/admin_configuration/

import_data.jsp
21719 59 16977 23 15 37

module-admin/admin_configuration/

list_configuration.jsp
21807 59 19100 25 16 53

module-admin/admin_workflow/

list_workflow.jsp
22140 59 19510 23 4 34

module-admin/admin_workflow/

edit_workflowscript.jsp
22221 59 18453 22 3 29

module-admin/admin_user/

edit_user.jsp
25297 59 23043 24 4 36
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module-admin/admin_user/

list_users.jsp
23181 59 15245 24 10 53

module-admin/unauthorized.jsp 22619 59 16964 23 5 39
module-admin/admin_project/

edit_project.jsp
23934 59 17057 21 5 44

module-admin/admin_project/

edit_projectscript.jsp
22467 59 20480 26 6 35

module-admin/admin_project/

edit_component.jsp
21966 59 16596 21 7 45

module-admin/admin_project/

edit_version.jsp
22577 59 15666 23 6 35

module-admin/admin_project/

list_projects.jsp
23222 63 17445 22 4 39

module-admin/admin_attachment/

list_attachments.jsp
22370 63 18109 24 8 41

module-admin/admin_scheduler/

list_tasks.jsp
22282 61 16231 24 6 35

module-admin/adminhome.jsp 22138 73 11423 27 4 42
module-admin/admin_language/

list_languages.jsp
22585 77 19597 22 6 39

module-admin/admin_language/

create_language_key.jsp
22217 77 19174 23 5 39

module-admin/admin_language/

edit_language.jsp
23347 66 20747 21 5 30

module-preferences/

edit_preferences.jsp
22891 77 20845 22 4 39

module-help/show_help.jsp 22985 60 18598 22 6 40

Figure 4-8: iTracker benchmark timings
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Benchmark

Original application SLOTH compiled application

Time (ms) # round Time (ms) # round Max # Total

trips trips queries queries

in batches issued

dictionary/conceptForm.jsp 2811 183 2439 36 3 38

dictionary/conceptStatsForm.jsp 5418 100 5213 82 16 112

dictionary/concept.jsp 1778 92 1626 36 3 38

optionsForm.jsp 1882 93 1196 19 5 30

help.jsp 1326 67 1089 21 2 27
admin/provider/

providerAttributeTypeList.jsp
1988 102 1792 15 6 28

admin/provider/

providerAttributeTypeForm.jsp
2000 88 1826 14 6 27

admin/provider/index.jsp 1845 99 1523 17 6 27

admin/provider/providerForm.jsp 1925 124 1893 11 5 25
admin/concepts/

conceptSetDerivedForm.jsp
2055 89 1958 13 3 28

admin/concepts/conceptClassForm.jsp 2038 89 1724 12 4 28
admin/concepts/

conceptReferenceTermForm.jsp
2252 120 2202 26 4 33

admin/concepts/conceptDatatypeList.jsp 2109 91 2071 24 3 29

admin/concepts/conceptMapTypeList.jsp 1997 119 1918 21 3 28

admin/concepts/conceptDatatypeForm.jsp 2178 148 1930 26 2 32

admin/concepts/conceptIndexForm.jsp 2072 119 1867 14 3 28

admin/concepts/conceptProposalList.jsp 2033 115 1920 16 3 29

admin/concepts/conceptDrugList.jsp 1933 102 1823 21 3 29

admin/concepts/proposeConceptForm.jsp 2406 89 1940 18 3 28

admin/concepts/conceptClassList.jsp 2072 91 1860 17 4 29

admin/concepts/conceptDrugForm.jsp 2535 133 2056 21 4 36
admin/concepts/

conceptStopWordForm.jsp
1989 89 1803 18 5 28

admin/concepts/conceptProposalForm.jsp 2651 89 2103 18 6 28

admin/concepts/conceptSourceList.jsp 1897 94 1838 17 5 30

admin/concepts/conceptSourceForm.jsp 2215 92 2103 15 5 29
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admin/concepts/

conceptReferenceTerms.jsp
2565 143 2030 16 6 28

admin/concepts/conceptStopWordList.jsp 2560 92 1939 19 6 29

admin/visits/visitTypeList.jsp 2220 89 1356 18 6 28

admin/visits/visitAttributeTypeForm.jsp 1865 88 1125 22 5 27

admin/visits/visitTypeForm.jsp 2304 88 1141 22 5 27

admin/visits/configureVisits.jsp 2214 100 1716 21 5 25

admin/visits/visitForm.jsp 2043 140 1805 18 6 28

admin/visits/visitAttributeTypeList.jsp 2125 109 1523 15 6 28

admin/patients/shortPatientForm.jsp 2552 136 1742 33 9 54

admin/patients/patientForm.jsp 4402 222 2641 34 10 54

admin/patients/mergePatientsForm.jsp 2845 149 2457 21 20 47
admin/patients/

patientIdentifierTypeForm.jsp
2269 118 1859 21 11 33

admin/patients/

patientIdentifierTypeList.jsp
1847 91 1773 18 8 29

admin/modules/

modulePropertiesForm.jsp
2033 89 1550 18 6 28

admin/modules/moduleList.jsp 2488 87 1819 15 5 27

admin/hl7/hl7SourceList.jsp 2599 89 1681 15 5 27

admin/hl7/hl7OnHoldList.jsp 2485 101 1829 14 5 27

admin/hl7/hl7InQueueList.jsp 2365 93 1779 15 5 27

admin/hl7/hl7InArchiveList.jsp 2273 93 1761 15 5 27

admin/hl7/hl7SourceForm.jsp 2053 87 1697 15 4 27

admin/hl7/hl7InArchiveMigration.jsp 2250 90 1698 15 5 25

admin/hl7/hl7InErrorList.jsp 2272 100 1894 17 4 27

admin/forms/addFormResource.jsp 1386 50 1065 18 8 58

admin/forms/formList.jsp 2167 89 1761 16 6 28

admin/forms/formResources.jsp 1320 50 1300 17 7 29

admin/forms/formEditForm.jsp 2966 219 1855 16 7 31

admin/forms/fieldTypeList.jsp 2082 89 1743 15 6 28

admin/forms/fieldTypeForm.jsp 1978 87 1894 17 7 27

admin/forms/fieldForm.jsp 2495 115 1845 18 10 33

admin/index.jsp 2782 91 2429 19 4 29
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admin/orders/orderForm.jsp 2578 89 1919 21 4 28

admin/orders/orderList.jsp 2246 99 1966 21 4 33

admin/orders/orderTypeList.jsp 2077 89 1995 16 5 28

admin/orders/orderDrugList.jsp 1970 116 1233 15 8 34

admin/orders/orderTypeForm.jsp 1962 87 1774 17 6 27

admin/orders/orderDrugForm.jsp 2713 124 2296 21 6 30

admin/programs/programList.jsp 2013 89 1977 15 5 28

admin/programs/programForm.jsp 2248 121 1757 20 7 27

admin/programs/conversionForm.jsp 2318 89 1817 21 7 29

admin/programs/conversionList.jsp 1786 89 1689 13 11 28

admin/encounters/encounterRoleList.jsp 2034 97 2013 15 8 25

admin/encounters/encounterForm.jsp 2449 172 1587 19 30 52

admin/encounters/encounterTypeForm.jsp 2128 89 1855 16 5 27
admin/encounters/

encounterTypeList.jsp
1954 107 1803 20 5 28

admin/encounters/

encounterRoleForm.jsp
2076 87 1811 17 8 25

admin/observations/obsForm.jsp 2399 131 2397 28 11 49

admin/observations/personObsForm.jsp 3911 230 3126 86 25 137

admin/locations/hierarchy.jsp 2319 172 2121 43 11 64
admin/locations/

locationAttributeType.jsp
2344 88 1758 16 6 27

admin/locations/

locationAttributeTypes.jsp
1821 90 1766 18 6 28

admin/locations/addressTemplate.jsp 1939 90 1672 15 5 28

admin/locations/locationForm.jsp 2423 138 2129 36 5 52

admin/locations/locationTagEdit.jsp 2497 166 2274 41 5 51

admin/locations/locationList.jsp 2170 127 1924 41 6 47

admin/locations/locationTag.jsp 2152 139 1726 21 5 31

admin/scheduler/schedulerForm.jsp 1902 95 1710 18 5 27

admin/scheduler/schedulerList.jsp 2224 106 1989 18 6 28
admin/maintenance/

implementationIdForm.jsp
1979 124 1912 18 4 28

admin/maintenance/serverLog.jsp 1884 104 1628 17 4 27

admin/maintenance/localesAndThemes.jsp 2085 93 2033 17 4 30
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admin/maintenance/currentUsers.jsp 1990 87 1799 16 5 27

admin/maintenance/settings.jsp 2179 92 2161 20 5 29

admin/maintenance/systemInfo.jsp 1902 90 1762 20 5 28

admin/maintenance/quickReport.jsp 2109 101 2021 17 3 28

admin/maintenance/globalPropsForm.jsp 3406 89 3042 17 4 28
admin/maintenance/

databaseChangesInfo.jsp
12555 88 6732 15 8 27

admin/person/addPerson.jsp 1870 89 1843 18 5 28

admin/person/relationshipTypeList.jsp 2170 89 1806 10 5 28

admin/person/relationshipTypeForm.jsp 2222 121 1808 11 5 27
admin/person/

relationshipTypeViewForm.jsp
1953 113 1825 11 7 28

admin/person/personForm.jsp 3154 149 1883 21 8 32
admin/person/

personAttributeTypeForm.jsp
1854 89 1834 18 6 27

admin/person/

personAttributeTypeList.jsp
2149 104 2021 19 6 33

admin/users/roleList.jsp 1892 113 1567 20 7 27

admin/users/privilegeList.jsp 2974 89 2051 18 8 27

admin/users/userForm.jsp 2443 126 1821 15 12 31

admin/users/users.jsp 2003 113 1921 15 11 27

admin/users/roleForm.jsp 2523 115 2060 11 13 27

admin/users/changePasswordForm.jsp 1481 105 1325 17 6 31

admin/users/alertForm.jsp 2595 113 1826 12 12 27

admin/users/privilegeForm.jsp 1905 87 1824 10 5 27

admin/users/alertList.jsp 12413 1705 9621 623 16 824

patientDashboardForm.jsp 7617 494 3610 95 15 190

encounters/encounterDisplay.jsp 9648 878 8242 260 68 406

forgotPasswordForm.jsp 1439 96 1128 12 12 27

feedback.jsp 1399 97 1121 11 5 27

personDashboardForm.jsp 2390 145 1965 17 3 32

Figure 4-9: OpenMRS benchmark timings
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Figure 4-6(a) and Fig. 4-7(a) show the CDF of the results where we sorted the benchmarks

according to their speedups for presentation purposes (and similarly for other experiments). The

actual timings are shown in Fig. 4-8 and Fig. 4-9.

The results show that the SLOTH compiled applications loaded the benchmarks faster compared

to the original applications, achieving up to 2.08× (median 1.27×) faster load times for itracker

and 2.1× (median 1.15×) faster load times for OpenMRS. Figure 4-6(b) and Fig. 4-7(b) show the

ratio of the number of round trips to the database, computed as:

# of database round trips in original application
# database round trips in SLOTH version of the application

For itracker, the minimum number of round trip reductions was 27 (out of 59 round trips) while

the maximum reduction was 95 (out of 124 original round trips). For OpenMRS, the minimum

number of reductions was 18 (out of 100 round trips) and the maximum number was 1082 (out

of 1705 round trips). For both applications, SLOTH reduced the number of round trips required

to load each of the benchmarks. Although these may seem like large numbers of round trips for

a single web page, issues such as the 1 + N issue in Hibernate [23] make it quite common for

developers to write apps that issue hundreds of queries to generate a web page in widely used

ORM frameworks.

Finally, Fig. 4-6(c) and Fig. 4-7(c) show the CDF of the ratio of the total number of queries

issued for the two applications. In OpenMRS, the SLOTH compiled application batched as many

as 68 queries into a single batch. SLOTH was able to batch multiple queries in all benchmarks,

even though the original applications already make extensive use of the eager and lazy fetching

strategies provided by Hibernate. This illustrates the effectiveness of applying lazy evaluation in

improving performance. Examining the generated query batches, we attribute the performance

speedup to the following:

Avoiding unnecessary queries. For all benchmarks, the SLOTH compiled applications issued

fewer total number of queries as compared to the original. The reduction is due to the developers’

use of eager fetching to load entities in the original applications. Eager fetching incurs extra round
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1 if (Context.isAuthenticated()) {
2 FormService fs = Context.getFormService();
3 for (Obs o : encounter.getObsAtTopLevel(true)) {
4 FormField ff = fs.getFormField(form, o.getConcept(),..);
5 ...
6 obsMapToReturn.put(ff, list);
7 }
8 }
9 map.put("obsMap", obsMapToReturn);

10 return map;

Figure 4-10: Code used to load patient observations

trips to the database to fetch the entities and increases query execution time, and is wasteful if

the fetched entities were not ultimately used as our results show. As noted in Sec. 4.1, it is very

difficult for developers to decide when to load objects eagerly during development. Using SLOTH,

on the other hand, frees the developer from making such decisions while improving application

performance.

Batching queries. The SLOTH compiled applications batched a significant number of queries

together. For example, one of the OpenMRS benchmarks (encounterDisplay.jsp) loads obser-

vations about a patient’s visit. Observations include height, blood pressure, etc, and there were

about 50 observations on average fetched for each patient. Loading is done as shown in the code

in Fig. 4-10: i) all observations are first retrieved from the database (Line 3); ii) each observation

is iterated over and its corresponding Concept object (i.e., the textual explanation of the observed

value) is fetched and stored into a FormField object (Line 4). The FormField object is then put

into the model (Line 9) similar to that shown in Fig. 4-1. The model is returned at the end of the

method and the fetched concepts are displayed in the view.

In the original application, the concept entities are lazily fetched by the ORM during view

generation, and each fetch incurs a round trip to the database. It is difficult to statically analyze the

code to extract the queries that would be executed in presence of the authentication check on Line

1, and traditional query batching techniques are inapplicable as the application does not issue

subsequent queries until the results from the outstanding query are returned. On the other hand,
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since the fetched concepts are not used in the method, the SLOTH compiled application batches all

the concept queries and issues them in a single batch along with others. This results in a dramatic

reduction in the number of round trips and an overall reduction of 1.17× in page load time.

Finally, there are a few benchmarks where the SLOTH compiled application issued more queries

than the original, as shown in Fig. 4-7(c) This is because the SLOTH compiled application regis-

ters queries to the query store whenever they are encountered during execution, and all registered

queries are executed when a thunk that requires data to be fetched is subsequently evaluated. How-

ever, not all fetched data are used. The original application, with its use of lazy fetching, avoided

issuing those queries and that results in fewer queries executed. In sum, while the SLOTH compiled

application does not necessarily issue the minimal number of queries required to load each page,

our results show that the benefits in reducing database round trips outweigh the costs of executing

a few extra queries.

4.8.2 Throughput Experiments

Next, we compared the throughput of the SLOTH compiled applications and the original. We fixed

the number of browser clients, and each client repeatedly loaded pages from OpenMRS for 10

minutes (clients wait til the previous load completes, and then load a new page.) As we did not

have a workload, the pages were chosen at random from the list of benchmarks described earlier.

We changed the number of clients in each run, and measured the resulting total throughput across

all clients. The results (averaged across 5 runs) are shown in Fig. 4-11.

The results show that the application compiled with SLOTH has better throughput than the

original, reaching about 1.5× the peak throughput of the original application. This is expected as

the SLOTH version takes less time to load each page. Interestingly, the SLOTH version achieves its

peak throughput at a lower number of clients compared to the original. This is because given our

experiment setup, both the database and the web server were under-utilized when the number of

clients is low and throughput is bound by network latency. Hence, reducing the number of round

trips improves application throughput, despite the overhead incurred on the web server from lazy

evaluation. However, as the number of clients increases, the web server becomes CPU-bound and
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Figure 4-11: Throughput experiment results

throughput decreases. Since the original application does not incur any CPU overhead, it reaches

the throughput at a higher number of clients, although the overall peak is lower due to network

round trips.

4.8.3 Time Breakdown Comparisons

Reducing the total number of queries issued by the application reduces one source of load time.

However, there are other of sources of latency. To understand the issues, we measured the amount

of time spent in the different processing steps of the benchmarks: application server processing,

database query execution, and network communication. We first measured the overall load time

for loading the entire page. Then, we instrumented the application server to record the amount

of time spent in processing, and modified our batch JDBC driver to measure the amount of time

spent in query processing on the database server. We attribute the remaining time as time spent

in network communication. We ran the experiment across all benchmarks and measured where

time was spent while loading each benchmark, and computed the sum of time spent in each phase

across all benchmarks. The results for the two applications are shown in Fig. 4-12.

For the SLOTH compiled applications, the results show that the aggregate amount of time spent

in network communication was significantly lower, reducing from 226k to 105k ms for itracker,
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Figure 4-12: Time breakdown of benchmark loading experiments

and 43k to 24k ms for OpenMRS. This is due to the reduction in network round trips. In addition,

the amount of time spent in executing queries also decreased. We attribute that to the reduction in

the number of queries executed, and to the parallel processing of batched queries on the database

by our batch driver. However, the portion of time spent in the application server was higher for the

SLOTH compiled versions due to the overhead of lazy evaluation, as expected.

4.8.4 Scaling Experiments

In the next set of experiments, we study the effects of round trip reduction on page load times.

We ran the same experiments as in Sec. 4.8.1, but varied network delay from 0.5ms between the

application and database servers (typical value for machines within the same data center), to 10ms

(typical for machines connected via a wide area network and applications hosted on the cloud).

Figure 4-13 shows the results for the two applications.

While the number of round trips and queries executed remained the same as before, the results

show that the amount of speedup dramatically increases as the network round trip time increases

(more than 3× for both applications with round trip time of 10ms). This indicates that reducing

the number of network round trips is a significant factor in reducing overall load times of the

benchmarks, in addition to reducing the number of queries executed.

Next, we measured the impact of database size on benchmark load times. In this experiment,

we varied the database size (up to 25 GB) and measured the benchmark load times. Although
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Figure 4-14: Database scaling experiment results

the database still fits into the memory of the machine, we believe this is representative of the way

that modern transactional systems are actually deployed, since if the database working set does

not fit into RAM, system performance drops rapidly as the system becomes I/O bound. We chose

two benchmarks that display lists of entities retrieved from the database. For itracker, we chose

a benchmark that displays the list of user projects (list_projects.jsp) and varied the number of

projects stored in the database; for OpenMRS, we chose a benchmark that shows the observations

about a patient (encounterDisplay.jsp), a fragment of which was discussed in Sec. 4.8.1, and

varied the number of observations stored. The results are shown in Fig. 4-14(a) and (b) respectively.

The SLOTH version of the applications achieved lower page load times in all cases, and they

also scaled better as the number of entities increases. This is mostly due to query batching. For
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Application # persistent methods # non-persistent methods
OpenMRS 7616 2097

itracker 2031 421

Figure 4-15: Number of persistent methods identified

instance, the OpenMRS benchmark batched a maximum of 68, 88, 480, 980, and 1880 queries

as the number of database entities increased. Examining the query logs reveals that queries were

batched in the manner discussed in Sec. 4.8.1. While the numbers of queries issued by two versions

of the application are the same proportionally as the number of entities increases, the experiment

shows that batching reduces the overall load time significantly, both because of the fewer round

trips to the database, and the parallel processing of the batched queries. The itracker benchmark

exhibits similar behavior.

4.8.5 Optimization Experiments

In this experiment we measured the effects of the optimizations presented in Sec. 4.6. First, we

study the effectiveness of selective compilation. Figure 4-15 shows the number of methods that are

identified as persistent in the two applications. As discussed in Sec. 4.6.1, non-persistent methods

are not compiled to lazy semantics.

Next, we quantify the effects of optimizations by comparing the amount of time taken to load

the benchmarks. We first measured the time taken to load all benchmarks from the SLOTH com-

piled applications with no optimizations. Next, we turned each of the optimizations on one at a

time: selective compilation (SC), thunk coalescing (TC), and branch deferral (BD), in that order.

We recompiled each time and Fig. 4-16 shows the resulting load time for all benchmarks as each

optimization was turned on.

In both applications, branch deferral is the most effective in improving performance. This

makes sense as both applications have few statements with externally visible side-effects, which

increases the applicability of branch deferral. In addition, as discussed in Sec. 4.6.2, deferring

control flow statements further delays the evaluation of thunks, which allows more query batching

to take place.
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Figure 4-16: Performance of SLOTH on two benchmarks as optimizations are enabled.
[SC=Selective computation, TC=Thunk Coalescing, BD=Branch Deferral.]

Overall, there was more than a 2× difference in load time between having none and all the

optimizations for both applications. Without the optimizations, we would have lost all the benefits

from database round trip reductions, i.e., the actual load times of the SLOTH compiled applications

would have been slower than the original, due to the overhead of lazy evaluation.

4.8.6 Overhead Experiments

In the final experiment, we measured the overhead of lazy evaluation. We use TPC-C and TPC-W

for this purpose. We chose implementations that use JDBC directly for database operations and

do not cache query results. The TPC-W implementation is a standalone web application hosted

on Tomcat. Since each transaction has very few queries, and the query results are used almost

immediately after they are issued (e.g., printed out on the console in the case of TPC-C, and

converted to HTML in the case of TPC-W), there are essentially no opportunities for SLOTH to

improve performance, making these experiments a pure measure of overhead of executing under

lazy semantics.

For the TPC-C experiment, we used a 20 warehouse database (initial size of the database is

23GB). We used 10 clients, with each client executing 10k transactions, and measured the time

taken to finish all transactions. For the TPC-W experiment, the database contained 10,000 items
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Transaction type Original time (s) SLOTH time (s) Overhead
TPC-C

New order 930 955 15.8%
Order status 752 836 11.2%
Stock level 420 459 9.4%
Payment 789 869 10.2%
Delivery 626 665 6.2%

TPC-W
Browsing mix 1075 1138 5.9%
Shopping mix 1223 1326 8.5%
Ordering mix 1423 1600 12.4%

Figure 4-17: Overhead experiment results

(about 1 GB on disk), and the implementation omitted the think time. We used 10 emulated

browsers executing 10k transactions each. The experiments were executed on the same machines

as in the previous experiments, and all SLOTH optimizations were turned on. Figure 4-17 show the

results.

As expected, the SLOTH compiled versions were 5-15% slower than the original, due to lazy

semantics. However, given that the Java virtual machine is not designed for lazy evaluation, we

believe that these overheads are reasonable, especially given the significant performance gains

observed in real applications.

4.9 Summary

In this chapter I presented SLOTH, a new compiler and runtime framework that speeds up database

applications by reducing the number of round trips between the application and query components

in database applications. In constrast to prior work that uses purely static program analysis to

rewrite the application source code, SLOTH instead makes use of a combination of static and dy-

namic techniques to reduce the number of round trips incurred during application execution. We

showed that by delaying computation using lazy semantics, our system is able to reduce database

round trips substantially by batching together multiple queries from the application and issuing

them in a single batch. Along with a number of optimization techniques, we evaluated our frame-
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work on a variety of real-world applications. Our results show that our technique outperforms

existing approaches in query batching using static analysis, and delivers substantial reduction (up

to 3×) in application execution time with modest worst-case runtime overheads.
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Chapter 5

Bringing it Together: A Framework for Op-

timizing and Hosting Database Applications

As discussed in Ch. 1, due to the way that most database applications are developed, there is a

separation between application logic and data access logic. As mentioned, the separation can be

physical as well, as the application and database components of database applications are often

hosted on separate servers. The hard separation between the application and the database makes

development difficult and often results in applications that lack the desired performance, as have

been demonstrated in previous chapters.

Not only that, reliability and security are also affected by the logical separation between the

database and application. For example, the coexistence of application data structures and their

persistent relational representations can make it difficult to reason about consistency and therefore

ensure the integrity of transactions. Security, in turn, can be compromised by any inconsistency

between application-level authorization mechanisms and the corresponding database-level access

controls. The developer may have an end-to-end security policy in mind, but its piecemeal imple-

mentation can be complex and limiting.

There have been many efforts to create a programming environment that unifies the database

and application views of data and removes the “impedance mismatch” [46] arising from the logical

and physical separation between the two. This was a goal of the object-oriented database (OODB)
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movement [29, 49], which has seen a resurgence in recent years due to the widely used ORM

frameworks such as Hibernate for Java and Django for Python. Many modern database-backed ap-

plications are developed using these frameworks rather than embedded SQL queries. As discussed

in Ch. 2, a straightforward translation of operations on persistent objects into SQL queries can use

the database inefficiently, and programmers may implement relational operations in imperative

code due to a lack of understanding. All of these lead to inefficient applications.

In the previous chapters, I have described a number of technologies that can help to alleviate

different aspects of the problems mentioned above. In this chapter, I proposal STATUSQUO,1 a new

programming system that utilizes the technologies described in this thesis in a platform for opti-

mizing and hosting database applications. In contrast to traditional ORM frameworks and OODBs,

STATUSQUO explicitly avoids forcing developers to use any one programming style. Instead, STA-

TUSQUO allow developers to use the programming style—imperative, declarative, or mixed—that

most naturally and concisely describes the intended computations. In addition, programmers are

not required to think about how computation over data will be mapped onto the physical machines.

Instead, STATUSQUO automatically decides where computation and data should be placed, and

optimizes the entire application by employing various program and query optimization techniques.

STATUSQUO also adaptively alters the placement of code and data in response to changes in the

environment in which the application runs, such as machine load. Because STATUSQUO sees the

whole system with information collected during execution time, it can do a better job of optimiz-

ing performance and of enforcing other end-to-end properties of the application, as compared to

a system that only has partial program information during compile time, such as traditional ORM

frameworks.

To do this, STATUSQUO must be able to move data and computation between the application

server and the database server, and translate logic between the declarative and imperative program-

ming models. The translation is done transparently by the compiler and runtime system—without

requiring the programmer to rewrite their programs. This is made possible through techniques de-

scribed in the earlier chapters for program analysis and transformation which ensure that programs

1Thus named as the system preserves the way that programmers currently use to develop database applications, yet
delivers substantial performance gain over similar frameworks that are in use.
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Figure 5-1: STATUSQUO system design

continue to function correctly even as they are substantially transformed.

Implementing STATUSQUO is beyond the scope of this thesis. In this chapter, I focus on the de-

sign of STATUSQUO and how the components in the framework make use of previously described

technologies. The overall proposed design of STATUSQUO is shown in Fig. 5-1, consisting of a

compiler and a runtime component installed on the application and database servers respectively.

In the following I discuss each of them in detail.2

5.1 Compiling Database Applications

The STATUSQUO compiler is responsible for compiling database application source code to be ex-

ecuted by the STATUSQUO runtime components. Compilation takes place in two steps: collecting

2The basic design of the framework is published earlier as Cheung, Arden, Madden, Solar-Lezama, and Myers,
“StatusQuo: Making Familiar Abstractions Perform Using Program Analysis,” in proceedings of CIDR 13 [37].
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profile information, and lifting portions of the input imperative code into declarative SQL queries

to be executed by the database server.

As mentioned, STATUSQUO allows developers to write their applications using imperative

(e.g., Java or Python), declarative (e.g., SQL), or a mix of the two different paradigms. In addition,

they are free to implement their data access logic using different interfaces, such as database drivers

(e.g., JDBC [9], ODBC [14]) if they prefer to express data accesses as explicitly SQL queries, in-

terfaces provided by ORM frameworks (e.g., JPA [10], Rails [20]), and query-embedded languages

(e.g., LINQ [79]). Given the application source code, the STATUSQUO compiler instruments it and

deploys the instrumented version on the application and database servers to be executed for a short

period of time (not shown in the figure). Inspired by PYXIS, the goal of instrumentation is to collect

a workload profile that captures information such as execution frequency for methods and loops.

After such information has been collected, the code is passed to the SQL Extractor component,

which uses the QBS algorithm to convert specific blocks of imperative code into declarative SQL

queries. As discussed in Ch. 2, converting code into declarative form gives the system flexibil-

ity regarding how and where to implement the given functionality, and frees the developer from

making such choices during implementation.

After converting portions of the input code to SQL queries, the source is given to the Parti-

tioner component based on PYXIS. The partitioner uses the workload data collected during the

profile run to split the source code into two programs: one to be executed on the database server

as stored procedures, and another to be executed on the application server. As in PYXIS, the goal

of partitioning is to reduce the amount of data transferred and the number of round trips between

the two servers based on the collected profile. For declarative code fragments, the partitioner may

decide to execute such fragments as queries on the database server or convert them (back) into (po-

tentially optimized) imperative code. Another option would be to directly execute the declarative

code on the application server using a declarative runtime engine, as shown with the dotted lines

in Fig. 5-1. In addition to splitting program logic, the partitioner also adds the necessary house-

keeping code such as heap synchronizations in order to preserve the semantics of the application

when it is subsequently executed in a distributed manner. During compilation, the partitioner gen-
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erates several different partitions under a range of load conditions, with the partitions differing in

the amount of program logic allocated to each server.

At the end of the compilation process, the STATUSQUO compiler converts each of the gener-

ated partitions into binaries and sends them to the runtime components on the two servers to be

executed.

5.2 Runtime for Database Applications

Unlike traditional application runtime systems, the STATUSQUO runtime executes code using

continuation-passing style and lazy evaluation for database queries, as inspired by PYXIS and

SLOTH. Each of the components in the runtime is described below.

The STATUSQUO runtime module consists of multiple components for hosting database appli-

cations. First, the Partition Cache holds the generated binaries received from the STATUSQUO

compiler. As the application executes, the controller component in the runtime selects a partition

from the set of available partitions based on the current server load.

The Code Executor component is responsible for running each partition. It uses extended

lazy evaluation to execute each of the partitions (the partitioner is aware of this execution model

when generating partitions). Similar to SLOTH, for queries that are issued by partitions allocated

to the application server, they are first collected into the Query Buffer in the STATUSQUO runtime

installed on the application server, as shown in Fig. 5-1. As the program executes, the executors

periodically communicate with each other to transfer the control flow of the program (called control

transfers), exchange heap data, and forward the buffered queries and result sets between the two

servers. Upon receiving the batched queries, the Query Executor component on the database

server runtime sends the queries to the DBMS to be executed, and the results are stored on the

database server runtime to be forwarded to the application server runtime on the next control

transfer.

Meanwhile, the Monitor component measures various aspects of the servers during application

execution: the amount of resources (CPU and memory) available, the network bandwidth, and the
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number of control transfers, including the actual amount of the data transmitted and the number

of queries buffered. This is performed so that if any of the servers exceed or otherwise deviate

from the workload that the partition in use was designed for during initial profiling (e.g., caused

by other applications that are hosted on the same machine or changes in the input workload), the

executor informs the controller to dynamically switch to another partition that is better suited to

the new load.

Finally, the Controller checks to see if such a partition requested by the runtime exists in the

partition cache. If it is not, the controller contacts the code transformer module in the STATUSQUO

compiler to generate a new partition. Making use of the data collected by the monitor component,

the controller decides if the collected data show significant deviations from which the code parti-

tions were generated. If so, it clears the partition cache, generates new partitions, and forwards the

partitions to the STATUSQUO runtime as described. This adaptive optimization process continues

until the application finishes execution.

5.3 Summary

In this chapter I described STATUSQUO, a novel end-to-end framework for hosting database ap-

plications. Unlike traditional application hosting frameworks, STATUSQUO makes use of various

program analysis, program synthesis, and program monitoring techniques described in this thesis

to continuously optimize database applications. As a result, STATUSQUO frees developers from re-

stricting themselves to express application logic only to the formalism provided by the application

hosting framework. Furthermore, rather than requiring developers to anticipate potential changes

to the hosting environment and manually devise changes to applications to ensure that they are per-

formant, STATUSQUO is designed to make the database server and the hosting platform aware of

application semantics. In doing so, STATUSQUO enables automatic transformation, deployment,

and adaptive maintenance of database applications for optimal performance.
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Chapter 6

Future Work

In the earlier chapters, I described a number of projects that improve the performance of database

applications. The various techniques used in these projects open up new areas of research and

further opportunities in applying programming languages techniques in understanding database

applications. In this chapter I discuss a few such opportunities.

6.1 Flexible Data Placement

The techniques discussed in Ch. 2 and Ch. 3 allow data and computation to be pushed from the

application server into the database server, either as queries or as imperative code. This can help

move computation closer to the data it uses. However, with some workloads, the best performance

may be obtained by moving code and data in the other direction. For example, if the database

server is under heavy load, it may be better to move computation to the application server. Data

needed by this computation can be forwarded by the database server and cached at the application

server instead.

Although web caches such as Memcached [12] have similar goals, they are generic object

stores that require manual customization to implement application-specific caching policies. By

contrast, program analysis and transformation techniques like those used in QBS will make it

possible to automatically and adaptively migrate database operations and associated data to the
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application server, exploiting application semantics to implement an application-specific cache in

which cached data is automatically synchronized during program execution. Techniques from

data-shipping distributed object stores such as Thor [74] and Fabric [75] are likely to be useful, but

challenges remain. First, work is needed on partitioning declarative queries and on optimizing the

part of such partitioned queries that is moved to the application server. Since declarative queries

do not have side effects, the partitioning problem, at least, is easier than with imperative code.

Second, since application and database servers have different recovery models, it is difficult to

move computation automatically while seamlessly preserving consistency guarantees. However, I

believe that program analysis can be used to automatically identify exception-triggered imperative

recovery code and to integrate its actions with transactional rollback mechanisms.

6.2 Support Multiple Application Servers and Back Ends

Applications that access multiple types of back-end database servers (such as NoSQL and graph

stores) already exist and seem likely to become more common with the diversity of available data

storage platforms and an increasing demand for data integration. Additionally, applications can be

supported by multiple communicating application servers. While PYXIS has thus far been in the

context of a single application server connecting to a single back-end DBMS, the general approach

appears to extend to these more complex systems, facilitating optimization of programs across

many diverse systems. Programming such systems in the higher-level way described in Ch. 5

poses interesting problems in how to express and constrain concurrency both among the application

servers and among the back-end databases.

6.3 Information Security

To protect the confidentiality and integrity of persistent information, databases are equipped with

access controls that mediate how applications may read and write information. This functionality

can be useful when different applications share the same database as a way of exposing information
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in a limited way to applications that are not fully trusted to enforce security, or simply as a way to

implement the principle of least privilege.

Many applications also rely on mechanisms to restrict access to data to various users or groups

(for example, §17 of [8], [86]). The mismatch between these mechanisms and database access con-

trols already makes security enforcement awkward and error-prone. Since PYXIS views database

applications as a unified system, there is an opportunity to offer a clear and consistent security

model.

The challenge is how to state and enforce information security policies in a system in which

code and data placement is not fixed and even adapts dynamically. If code is moved into the DBMS,

its accesses must be checked as if they were made by the application. Dynamically generated code

and queries, commonly used by modern web applications, may need to be restricted even further.

Moving code and data in the other direction, as discussed in Sec. 6.1, is even more problematic.

Data must not be moved to an application server that is not trusted to enforce its confidentiality.

Conversely, updates caused by transactions partitioned between the application and database may

need to be controlled to prevent an untrustworthy application server from corrupting written data.

A common problem underlies all these difficulties: access control mechanisms are fundamen-

tally not compositional. They do not permit code to be moved and decomposed freely while

enforcing the same security guarantees. However, information flow controls do offer a composi-

tional way to state and enforce information security requirements, and recent work has explored

compositional information flow controls on persistent data in a distributed system [75, 41, 35]. In

particular, the approach taken in the Fabric system might be applicable to PYXIS. Fabric supports

secure computation over persistent data at both application server and persistent stores; it checks

whether the (manual) partitioning of code and data protects confidentiality and integrity. (Fabric

does not, however, support declarative queries or automatic partitioning.)
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6.4 Rethink the software stack

Recently, custom data storage engines and architectures such as column stores and flash memory

have outperformed traditional DBMSs running on spinning disks in specific domains. The cross-

layer techniques discussed in this thesis can be leveraged to automatically design the entire soft-

ware stack from the ground up, creating application-specific storage engines. For instance, query

optimization focuses on finding the query plan with the minimal execution time. This is currently

done by a combination of dynamic programming and rewrite heuristics, e.g., merging queries with

nested select statements into a single flattened query. Such heuristics allow the DBMS to consider

multiple selection predicates simultaneously, possibly enabling further optimization opportunities

such as executing the most selective predicate first. Unfortunately, it is very difficult for developers

to come up with such heuristics manually, as they need to ensure that the heuristics reduce query

execution cost while preserving semantics. We can automatically synthesize such rewrite rules in

an application-specific manner. One idea is to take the queries issued by the application, provide a

few basic relational query equivalences and a cost model to the synthesizer (in terms of CPU and

I/O cost for each type of query operator like selection and join), and ask the synthesizer to find new

equivalences that reduce query execution time. Such approach has been used in recent work [73].

We can be even more ambitious, however, and ask the synthesizer to derive the equivalences from

definitions of relational algebra operators, using techniques similar to those used in QBS.

We can also optimize across the DBMS and the architecture layer to search for the storage for-

mat that the DBMS should use (e.g., row or column major, and spinning disks or flash memory).

We first define an “I/O algebra” that can be used to describe different storage formats and archi-

tectures, and then use synthesis to discover the equivalences among them. We can then search for

the optimal disk layout, i.e., a realization of I/O algebra expressions on disks, that minimizes exe-

cution time on a given workload. Unlike prior work on automatic disk layout, we are not limited

to storing all data using a uniform format–we can implement a storage system that implements I/O

algebra expressions and adapts to changes during application execution.
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6.5 Contextual query processing

Having accurate workload information is essential to efficient query processing. As many queries

are now programmatically generated by applications rather than entered free-form by users, an-

alyzing the application will give us insights about the issued queries. For example, as shown

in Sec. 4.2, many database applications frequently issue many queries during execution (e.g., as a

page is rendered). Such programmatically-issued queries have highly deterministic structure, for

instance query parameters are derived from program variables. Analyzing the application source

allows us to create application contexts. Each context represents a program path in the code and

describes the queries that are issued. It also includes the application code that manipulates the

query results, the relationship among the query parameters, the frequencies of each query (which

can be approximated from the code or query logs), and the actions that trigger each query such as

a button click.

Application contexts are useful in many scenarios that I outline below. First, the DBMS can

use application contexts to combine queries and prefetch a subset of the results. Moreover, the cor-

relations among the query parameters allow the DBMS to improve the generated query plans. For

instance, if the context indicates that the same program variable is passed into two different queries

as parameters, then once the value of the program variable is known, the DBMS can estimate the

selectivity of both queries accurately. In addition, the DBMS can make use of context information

to determine when to evict query results from the buffer pool when they are no longer needed.

6.5.1 Infer functional dependencies

Besides optimizing read queries, application contexts can be used to learn functional dependen-

cies. For instance, after a user puts in a city name in a form, the application issues a query to

fetch the given city’s current population from the DBMS. After that, the application computes a

prediction of the city’s future population, shows it to the user for validation, and stores the (city

name, predicted population) pair in another table. There is an obvious correlation between the

current and predicted populations stored in the DBMS. Discovering such correlation from the logs
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is difficult as it involves application code, and the log might include queries issued by multiple

concurrent users. We can instead use the application context for this purpose. For instance, in this

case the context will inform us that predicted populations are derived from another table that stores

the current values.

In general, we can use contexts to learn rich functional dependencies of the form X → f (Y ),

where some part of f might be implemented in the application code. Such dependencies are very

difficult to infer using statistical techniques, especially those that involve continuous data values,

such as converting between different measurement units, and computing interest rate given credit

score. One idea is to use program synthesis (as discussed in Ch. 2) to derive a succinct represen-

tation of f from the source code. Once f is derived, we can retrieve statistics about X from the

DBMS and propagate through f to estimate the distribution of Y .

6.5.2 Improve query optimization

Classical query optimization focuses on finding efficient implementations of each operator in the

query tree. Given application contexts, we can treat each contextual query as a user defined func-

tion (UDF) that includes both queries and application code that processes the results. We can then

specialize the optimizer to find efficient implementations of each UDF given the physical design.

This insight raises new research opportunities. Since UDFs are traditionally treated as black

boxes in query optimization, it will be interesting to optimize UDFs using classical program opti-

mization techniques [77]. One challenge is to extend such techniques to be I/O cost-aware in ad-

dition to the traditional goal of minimizing the number of instructions, and consider implementing

DBMS functionalities in hardware functional units such as flash controllers and FPGAs. Address-

ing these challenges will advance both data management and programming systems research.

6.6 Improve user interaction with databases

While SQL is the de facto language for interacting with relational databases, writing SQL queries

is often a tedious task. The inductive program synthesis techniques discussed in Ch. 2 can be used
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to help non-expert SQL users write queries easily. For instance, we can define a synthesizer-backed

visual language similar to Query By Example [116]. Using such language, users “write” queries

by providing sample output values in a spreadsheet. Similar to earlier work [39], the system treats

the provided values as a partial specification and generates a SQL query that outputs the same (or a

superset of) values. When there are multiple such queries, the system will solicit help from the user.

Listing all the potential queries and asking the user to choose is difficult given the user’s lack of

SQL expertise. Instead, the system generates a small “differential database” that returns different

outputs for each of the generated queries, and asks the user to choose the output of interest given

the differential database. Such a language is innovative in a number of ways. First, it extends tools

such as Data Wrangler [71] to generate complex SQL queries for users with no exposure to SQL.

Moreover, generating minimal differential databases raises new challenges in synthesis technology

as current techniques do not focus on minimality.
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Chapter 7

Related Work

This thesis presents new techniques to optimize applications that interact with databases. In this

chapter I discuss related work that our techniques are based on, along with other approaches to

address related problems.

7.1 Transforming Code Representations

While one of the goals of traditional compilers is to convert code representation from the source

language to the target language, converting from an imperative language (such as Java) to a declara-

tive one (such as SQL) presents additional challenges as discussed in Sec. 2.1. This has been previ-

ously studied as the problem of inferring relational specifications from imperative code [109, 110].

The idea described in the prior work is to compute the set of data access paths that the imperative

code traverses using abstract interpretation, and replace the imperative code with SQL queries. The

analysis is applicable to recursive function calls, but does not handle code with loop-carried de-

pendencies, or those with join or aggregation. It is also unclear how modeling relational operations

as access paths can be extended to handle such cases. In contrast, our tool, QBS, is able to infer

both join and aggregation from imperative code. While QBS currently does not handle recursive

function calls as compared to prior work, we have not encountered such uses in the applications

used in our experiments.
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Modeling relational operations. The ability to infer relational specifications from imperative

code in QBS relies on using the theory of ordered relations (TOR) to bridge the imperative and

relational worlds. There are many prior work in modeling relational operations, for instance using

bags [45], sets [69], and nested relational calculus [111]. There are also theoretical models that

extend standard relational algebra with order, such as [83, 25]. QBS does not aim to provide a new

theoretical model. Instead, one key insight of our work is that TOR is the appropriate abstraction

for the query inference, as they are similar to the interfaces provided by the ORM libraries in the

imperative code, and it also allows us to design a sound and precise transformation into SQL.

To our knowledge, QBS is the first to address the ordering of records in relational transforma-

tions. Record ordering would not be an issue if the source program only operated on orderless data

structures such as sets, or only perform operations that preserve the order of records as stored in the

DBMS such as selections and projections. Unfortunately, most ORM libraries provide interfaces

based on ordered data structures, such as lists and arrays, and most operations alter or produce new

ordering based on the input records, such as joins. And imperative implementations of join proves

to be common at least in the benchmarks we studied.

Finding invariants to validate transformations. QBS’s verification-based approach to finding

a translatable postcondition is similar to earlier work [67, 68], although they acknowledge that

finding invariants is difficult. Similar work has been done for general-purpose language compil-

ers [102]. Scanning the source code to generate the synthesis template is inspired by the PINS

algorithm [101], although QBS does not require user intervention. There has been earlier work

on automatically inferring loop invariants, such as using predicate refinement [54] or dynamic

detection [52, 59].

Constraint-based synthesis. Constraint-based program synthesis has been an active topic of re-

search in recent years. For instance, there has been work on using synthesis to discover invari-

ants [100]. QBS differs from previous approaches in that we only need to find invariants and

postconditions that are logically strong enough to validate the transformation, and our predicate

language greatly prunes the space of invariants to those needed for common relational operations.

Synthesis has also been applied in other domains, such as generating data structures [95], processor
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instructions [56], and learning queries from examples [39].

Integrated query languages. Integrating application and database query languages into has been

an active research area, with projects such as LINQ [79], Kleisli [111], Links [44], JReq [67],

the functional language proposed in Cooper [45], Ferry [58], and DBPL [93]. These solutions

embed database queries in imperative programs without ORM libraries. Unfortunately, many of

them do not support all relational operations, and the syntax of such languages resemble SQL, thus

developers still need to learn new programming paradigms and rewrite existing applications.

7.2 Placing Computation Across Servers

There has been prior work on automatically partitioning applications across distributed systems.

However, PYXIS is the first system that partitions general database applications between an ap-

plication server and a database server. PYXIS also contributes new techniques for reducing data

transfers between host nodes.

Partitioning general-purpose programs. Program partitioning has been an active research topic

for the past decade. Most of these approaches require programs to be decomposed into coarse-

grained modules or functions that simplify and make a program’s dependencies explicit. Imposing

this structure reduces the complexity of the partitioning problem and has been usefully applied to

several tasks: constructing pages in web applications with Hilda [113], processing data streams in

sensor networks with Wishbone [82], and optimizing COM applications with Coign [65].

Using automatic partitioning to offload computation from handheld devices has featured in

many recent projects. Odessa [87] dynamically partitions computation intensive mobile applica-

tions but requires programs to be structured as pipelined processing components. Other projects

such as MAUI [47] and CloneCloud [43] support more general programs, but only partition at

method boundaries. Chroma [30] and Spectra [30] also partition at method boundaries but im-

prove partition selection using code annotations called tactics to describe possible partitionings.

Prior work on secure program partitioning such as Swift [42] and Jif/split [114, 115] focuses

more on security than performance. For instance, Swift minimizes control transfers but does not
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try to optimize data transfers.

PYXIS supports a more general programming model compared to these approaches. Our imple-

mentation targets Java programs and the JDBC API, but our technique is applicable to other gen-

eral purpose programming languages. PYXIS does not require special structuring of the program

nor does it require developer annotations. Furthermore, by considering program dependencies at

a fine-grained level, PYXIS can automatically create code and data partitions that would require

program refactoring or design changes to affect in other systems.

Data partitioning and query rewriting. Besides program partitioning, another method to speed

up database applications is to rewrite or batch queries embedded in the application. One technique

for automatically restructuring database workloads is to issue queries asynchronously, using pro-

gram analysis to determine when concurrent queries do not depend on each other [34], or using

data dependency information to batch queries together [60]. Automatic partitioning has advantages

over this approach: it works even in cases where successive queries do depend on each other, and

it can reduce data transfers between the hosts.

Data partitioning has been widely studied in the database research community [26, 90], but

the techniques are very different. These systems focus on distributed query workloads and only

partition data among different database servers, whereas PYXIS partitions both data and program

logic between the database server and its client.

Custom language runtimes. Sprint [89] speculatively executes branches of a program to predict

future accesses of remote data and reduce overall latency by prefetching. The Sprint system is

targeted at read-only workloads and performs no static analysis of the program to predict data

dependencies. PYXIS targets a more general set of applications and does not require speculative

execution to conservatively send data between hosts before the data is required.

Executable program slicing [31] extracts the program fragment that a particular program point

depends on using the a system dependence graph. Like program slicing, PYXIS uses a control

and data dependencies to extract semantics-preserving fragments of programs. The code blocks

generated by PYXIS, however, are finer-grained fragments of the original program than a program

slice, and dependencies are satisfied by automatically inserting explicit synchronization operations.
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7.3 Batching queries to reduce network round trips

SLOTH uses extended lazy evaluation to dynamically batch database queries together to reduce

network communication between the application and database servers. Lazy evaluation was first

introduced for lambda calculus [62]. Lazy evaluation aims to increase the expressiveness of the

language by allowing programmers to define infinite data structures. Lazy evaluation is often

implemented using thunks in languages that do not readily support it [66, 107]. In contrast, the

extended lazy evaluation proposed in this chapter is fundamentally different: rather than increas-

ing language expressiveness, SLOTH uses lazy evaluation to improve application performance by

batching queries, and SLOTH is the first system to do so to our knowledge.

Batching query plans and sharing query results are well-known techniques in query optimiza-

tion [55, 94]. However, they aim to combine queries issued by multiple concurrent clients, whereas

SLOTH batches queries that are issued by the same client over time, although we can make use of

such techniques to merge SLOTH-generated query batches from multiple clients for further perfor-

mance improvement. Meanwhile, there has been work on demonstrating application speedups if

transactions can be restructured to perform reads prior to writes [103], and work on using static

analysis to expose batching opportunities [60, 34]. However, branches in code make static anal-

ysis imprecise in identifying queries that can be batched. Because branch outcomes are unknown

at compile time, the analysis has to either assume that queries that are guarded by branches are

not executed, which reduces batching efficiency; or it has to speculatively assume that branches

are executed. Speculation can result in executing more queries than the original application would

have and hurt performance. Dynamic dispatch of method calls exhibit the same issue.

In contrast, SLOTH uses lazy evaluation as a mechanism to expose query batching opportu-

nities during application execution. Lazy evaluation allows us to avoid deciding on the batches

during compile time. Instead, query batches are constructed dynamically when the application ex-

ecutes. Because of that, batches can be constructed across both branches and procedure calls, and

our experiments show reduction in execution time that would not be achievable using pure static

analysis.

As discussed in Sec. 4.1, data prefetching is another means to reduce database round trips.
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Prefetching has been studied theoretically [97] and implemented in open source systems [1, 3, 17],

although they all require programmer annotations to indicate what and when to prefetch. Finally,

there is work on moving application code to execute in the database as stored procedures to reduce

the number of round trips (such as PYXIS), which is similar to our goals. In comparison, SLOTH

does not require program state to be distributed.
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Chapter 8

Conclusion

In this thesis I described the challenges associated with developing database applications, and

argued that the narrow query interface between the application and the DBMS is insufficient for

the needs of modern database applications. While such a narrow API allows developers to cleanly

separate their applications into the database and server components, the hard separation between

the application and the database makes development difficult and often results in applications that

lack the desired performance.

Through a series of projects, I show that by leveraging program analysis, program synthesis,

and automated verification techniques, we can alleviate many of the problems that plague database

application developers. In Ch. 2, we investigated the problem of how a piece of computation from

the database application should be implemented. For instance, whether it should be implemented

as imperative code to be executed on the application server, or as declarative queries to be exe-

cuted by the DBMS. In response, we devised new techniques that can automatically convert code

representations from one to another in a tool called QBS, which automatically infers relational

specifications from imperative code such that the code can be converted into SQL queries. We

have evaluated QBS using 75 code fragments automatically extracted from real-world database

applications, and showed that QBS can improve application performance asymptotically by orders

of magnitude.

Once it is decided which part of the application will be executed on the application and database
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servers, the two servers will inevitably need to communicate with each other in order to forward

queries and result sets, and such communication slows down the application. In Ch. 3, I described

algorithms for automatic code partitioning between multiple servers to reduce the amount of net-

work communication between the application and database servers, and implemented such algo-

rithms in PYXIS. Using TPC-C and TPC-W as benchmarks, PYXIS achieved up to 3× reduction

in latency and 1.7× improvement in throughput as compared to a non-partitioned implementation.

Finally, in Ch. 4, I discussed SLOTH, which proposes another approach to reduce communica-

tion overhead through the use of extended lazy evaluation and query buffering during application

execution. Using real-world applications, we demonstrated SLOTH’s ability to reduce application

execution time by up to 3× as compared to the original implementation.

All of these projects illustrate the power of how understanding different layers of the software

stack can lead to co-optimization of both the runtime system and the DBMS at the same time. I

believe that the techniques presented are complementary to each other. As such, in Ch. 5 I proposed

STATUSQUO, a framework for compiling, hosting, and executing database applications that makes

use of the techniques discussed in this thesis. Furthermore, in Ch. 6 I described future directions

in programming systems and database research that are enabled by the techniques discussed in

this thesis. In sum, the techniques discussed in this thesis represents initial steps towards helping

programmers develop database applications, and the lessons learned will be applicable to other

application domains as well.
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