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Abstract
Object-relational mapping libraries are a popular way for applica-
tions to interact with databases because they provide transparent
access to the database using the same language as the application.
Unfortunately, using such frameworks often leads to poor perfor-
mance, as modularity concerns encourage developers to implement
relational operations in application code. Such application code
does not take advantage of the optimized relational implementa-
tions that database systems provide, such as efficient implementa-
tions of joins or push down of selection predicates.

In this paper we present QBS, a system that automatically trans-
forms fragments of application logic into SQL queries. QBS dif-
fers from traditional compiler optimizations as it relies on synthe-
sis technology to generate invariants and postconditions for a code
fragment. The postconditions and invariants are expressed using a
new theory of ordered relations that allows us to reason precisely
about both the contents and order of the records produced complex
code fragments that compute joins and aggregates. The theory is
close in expressiveness to SQL, so the synthesized postconditions
can be readily translated to SQL queries. Using 75 code fragments
automatically extracted from over 120k lines of open-source code
written using the Java Hibernate ORM, we demonstrate that our
approach can convert a variety of imperative constructs into rela-
tional specifications and significantly improve application perfor-
mance asymptotically by orders of magnitude.

Categories and Subject Descriptors. D.3.2 [Programming Lan-
guages]: Processors—Compilers; I.2.2 [Artificial Intelligence]:
Automatic Programming—Program Synthesis
Keywords. program optimization; program synthesis; performance

1. Introduction
In this paper, we develop QBS (Query By Synthesis), a new code
analysis algorithm designed to make database-backed applications
more efficient. Specifically, QBS identifies places where applica-
tion logic can be pushed into the SQL queries issued by the appli-
cation, and automatically transforms the code to do this. Moving
application code into the database reduces the amount of data sent
from the database to the application, and it also allows the database
query optimizer to choose more efficient implementations of some
operations—for instance, using indices to evaluate predicates or se-
lecting efficient join algorithms.
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One specific target of QBS is programs that interact with the
database through object-relational mapping layers (ORMs) such as
Hibernate for Java. Our optimizations are particularly important
for such programs because ORM layers often lead programmers
to write code that iterates over collections of database records, per-
forming operations like filters and joins that could be better done
inside of the database. Such ORM layers are becoming increas-
ingly popular; for example, as of March, 2013, on the job board
dice.com 15% of the 17,000 Java developer jobs are for program-
mers with Hibernate experience.

We are not the first researchers to address this problem; Wieder-
mann et al. [37, 38] identified this as the query extraction problem.
However, our work is able analyze a significantly larger class of
source programs and generate a more expressive set of SQL queries
than this prior work. Specifically, to the best of our knowledge, our
work is the first that is able to identify joins and aggregates in gen-
eral purpose application logic and convert them to SQL queries.
Our analysis ensures that the generated queries are precise in that
both the contents and the order of records in the generated queries
are the same as those produced by the original code.

At a more foundational level, our paper is the first to demon-
strate the use of constraint-based synthesis technology to attack a
challenging compiler optimization problem. Our approach builds
on the observation by Iu et al. [20] that if we can express the
postcondition for an imperative code block in relational algebra,
then we can translate that code block into SQL. Our approach uses
constraint-based synthesis to automatically derive loop invariants
and postconditions, and then uses an SMT solver to check the
resulting verification conditions. In order to make synthesis and
verification tractable, we define a new theory of ordered relations
(TOR) that is close in expressiveness to SQL, while being expres-
sive enough to concisely describe the loop invariants necessary to
verify the codes of interest. The postconditions expressed in TOR
can be readily translated to SQL, allowing them to be optimized by
the database query planner and leading in some cases to orders of
magnitude performance improvements.

In summary, this paper makes the following contributions:
1. We demonstrate a new approach to compiler optimization based

on constraint-based synthesis of loop invariants and apply it to
the problem of transforming low-level loop nests into high-level
SQL queries.

2. We define a theory of ordered relations that allows us to con-
cisely represent loop invariants and postconditions for code
fragments that implement SQL queries, and to efficiently trans-
late those postconditions into SQL.

3. We define a program analysis algorithm that identifies candidate
code blocks that can potentially be transformed by QBS.

4. We demonstrate our full implementation of QBS and the candi-
date identification analysis for Java programs by automatically
identifying and transforming 75 code fragments in two large
open source projects. These transformations result in order-of-
magnitude performance improvements. Although those projects



1 List<User> getRoleUser () {
2 List<User> listUsers = new ArrayList<User>();
3 List<User> users = this.userDao.getUsers();
4 List<Role> roles = this.roleDao.getRoles();
5 for (User u : users) {
6 for (Roles r : roles) {
7 if (u.roleId().equals(r.roleId())) {
8 User userok = u;
9 listUsers.add(userok);

10 }}}
11 return listUsers;
12 }

Figure 1: Sample code that implements join operation in applica-
tion code, abridged from actual source for clarity

1 List listUsers := [ ]; int i, j = 0;
2 List users := Query(SELECT ∗ FROM users);
3 List roles = Query(SELECT ∗ FROM roles);
4 while (i < users.size()) {
5 while (j < roles.size()) {
6 if (users[i].roleId = roles[j].roleId)
7 listUsers := append(listUsers, users[i]);
8 ++j;
9 }

10 ++i;}
Figure 2: Sample code expressed in kernel language

Postcondition
listUsers = π`(./ϕ (users, roles))
where
ϕ(eusers , eroles) := eusers .roleId = eroles .roleId
` contains all the fields from the User class

Translated code
1 List<User> getRoleUser () {
2 List<User> listUsers = db.executeQuery(
3 "SELECT u
4 FROM users u, roles r
5 WHERE u.roleId == r.roleId
6 ORDER BY u.roleId, r.roleId");
7 return listUsers; }

Figure 3: Postcondition as inferred from Fig. 1 and code after query
transformation

use ORM libraries to retrieve persistent data, our analysis is not
specific to ORM libraries and is applicable to programs with
embedded SQL queries.

2. Overview
This section gives an overview of our compilation infrastructure
and the QBS algorithm to translate imperative code fragments to
SQL. We use as a running example a block of code extracted from
an open source project management application [2] written using
the Hibernate framework. The original code was distributed across
several methods which our system automatically collapsed into a
single continuous block of code as shown in Fig. 1. The code
retrieves the list of users from the database and produces a list
containing a subset of users with matching roles.

The example implements the desired functionality but performs
poorly. Semantically, the code performs a relational join and pro-
jection. Unfortunately, due to the lack of global program informa-
tion, the ORM library can only fetch all the users and roles from the
database and perform the join in application code, without utilizing
indices or efficient join algorithms the database system has access
to. QBS fixes this problem by compiling the sample code to that

c ∈ constant ::= True | False | number literal | string literal
e ∈ expression ::= c | [ ] | var | e.f | {fi = ei} | e1 op e2 | ¬ e

| Query(...) | size(e) | geter
(es)

| append(er , es) | unique(e)
c ∈ command ::= skip | var := e | if(e) then c1 else c2

| while(e) do c | c1 ; c2 | assert e
op ∈ binary op ::= ∧ | ∨ | > | =

Figure 4: Abstract syntax of the kernel language
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Figure 5: QBS architecture

shown at the bottom of Fig. 3. The nested loop is converted to an
SQL query that implements the same functionality in the database
where it can be executed more efficiently. Note that the query im-
poses an order on the retrieved records; this is because in general,
nested loops can constraint the ordering of the output records in
ways that need to be captured by the query.

In order to apply the QBS algorithm to perform the desired
conversion, our system must be able to cope with the complexities
of real-world Java code such as aliasing and method calls, which
obscure opportunities for transformations. For example, it would
not be possible to transform the code fragment in Fig. 1 without
knowing that getUsers and getRoles execute specific queries on the
database and return non-aliased lists of results, so the first step of
the system is to identify promising code fragments and translate
them into a simpler kernel language shown in Fig. 4.

The kernel language operates on three types of values: scalars,
immutable records, and immutable lists. Lists represent the collec-
tions of records and are used to model the results that are returned
from database retrieval operations. Lists store either scalar values
or records constructed with scalars, and nested lists are assumed to
be appropriately flattened. The language currently does not model
the three-valued logic of null values in SQL, and does not model
updates to the database. The semantics of the constructs in the ker-
nel language are mostly standard, with a few new ones introduced
for record retrievals. Query(...) retrieves records from the database
and the results are returned as a list. The records of a list can be
randomly accessed using get, and records can be appended to a
list using append. Finally, unique takes in a list and creates a new
list with all duplicate records removed. Fig. 2 shows the example
translated to the kernel language.

2.1 QBS Architecture
We now discuss the architecture of QBS and describe the steps in
inferring SQL queries from imperative code. The architecture of
QBS is shown in Fig. 5.

Identify code fragments to transform. Given a web application
written in Java, QBS first finds the persistent data methods in the
application, which are those that fetch persistent data via ORM li-



brary calls. It also locates all entry points to the application such
as servlet handlers. From each persistent data method that is reach-
able from the entry points, the system inlines a neighborhood of
calls, i.e. a few of the parent methods that called the persistent data
method and a few of the methods called by them. If there is ambi-
guity as to the target of a call, all potential targets are considered
up to a budget. A series of analyses is then performed on each in-
lined method body to identify a continuous code fragment that can
be potentially transformed to SQL; ruling out, for example, code
fragments with side effects. For each candidate code fragment, our
system automatically detects the program variable that will contain
the results from the inferred query (in the case of the running ex-
ample it is listUsers) — we refer this as the “result variable.” At the
end of the process, each code fragment is converted to our kernel
language as discussed.

Compute verification conditions. As the next step, the system
computes the verification conditions of the code fragment ex-
pressed in the kernel language. The verification conditions are
written using the predicate language derived from the theory of
ordered relations to be discussed in Sec. 3. The procedure used to
compute verification conditions is a fairly standard one [12, 16];
the only twist is that the verification condition must be computed
in terms of an unknown postcondition and loop invariants. The
process of computing verification conditions is discussed in more
detail in Sec. 4.1.

Synthesize loop invariants and postconditions. The definitions
of the postcondition and invariants need to be filled in and validated
before translation can proceed. QBS does this using a synthesis-
based approach that is similar to [31], where a synthesizer is used
to come up with a postcondition and invariants that satisfy the com-
puted verification conditions. The synthesizer uses a symbolic rep-
resentation of the space of candidate postconditions and invariants
and efficiently identifies candidates within the space that are correct
according to a bounded verification procedure. It then uses a the-
orem prover (Z3 [3], specifically) to check if those candidates can
be proven correct. The space of candidate invariants and postcon-
ditions is described by a template generated automatically by the
compiler. To prevent the synthesizer from generating trivial post-
conditions (such as True), the template limits the synthesizer to
only generate postconditions that can be translated to SQL as de-
fined by our theory of ordered relations, such as that shown at the
top of Fig. 3.

We observe that it is not necessary to determine the strongest (in
terms of logical implication) invariants or postconditions: we are
only interested in finding postconditions that allow us transform
the input code fragment into SQL. In the case of the running
example, we are only interested in finding a postcondition of the
form listUsers = query , where query is an expression translatable
to SQL. Similarly, we only need to discover loop invariants that
are strong enough to prove the postcondition of interest. From the
example shown in Fig. 1, our system infers the postcondition shown
at the top of Fig. 3, where π, σ, and ./ are ordered versions of
relational projection, selection, and join, respectively to be defined
in Sec. 3. The process of automatic template generation from the
input code fragment and synthesis of the postcondition from the
template are discussed in Sec. 4.

Unfortunately, determining loop invariants is undecidable for
arbitrary programs [6], so there will be programs for which the
necessary invariants fall outside the space defined by the templates.
However, our system is significantly more expressive than the state
of the art as demonstrated by our experiments in Sec. 7.

Convert to SQL. After the theorem prover verifies that the com-
puted invariants and postcondition are correct, the input code frag-

c ∈ constant ::= True | False | number literal | string literal
e ∈ expression ::= c | [ ] | program var | {fi = ei} | e1 op e2 | ¬ e

| Query(...) | size(e) | getes
(er ) | topes

(er )

| π[fi1 ,...,fiN ](e) | σϕσ (e) | ./ϕ./ (e1, e2)

| sum(e) |max(e) |min(e)
| append(er , es) | sort[fi1 ,...,fiN ](e) | unique(e)

op ∈ binary op ::= ∧ | ∨ | > | =
ϕσ ∈ select func ::= pσ1 ∧ ... ∧ pσN

pσ ∈ select pred ::= e.fi op c | e.fi op e.fj | contains(e, er )
ϕ./ ∈ join func ::= p./1 ∧ ... ∧ p./N

p./ ∈ join pred ::= e1.fi op e2.fj

Figure 6: Abstract syntax for the predicate language based on the
theory of ordered relations

ment is translated to SQL, as shown in the bottom of Fig. 3. The
predicate language defines syntax-driven rules to translate any ex-
pressions in the language into valid SQL. The details of validation
is discussed in Sec. 5 while the rules for SQL conversion are in-
troduced in Sec. 3.2. The converted SQL queries are patched back
into the original code fragments and compiled as Java code.

3. Theory of Finite Ordered Relations
QBS uses a theory of finite ordered relations to describe postcon-
ditions and invariants. The theory is defined to satisfy four main
requirements: precision, expressiveness, conciseness and ease of
translation to SQL. For precision, we want to be able to reason
about both the contents and order of records retrieved from the
database. This is important because in the presence of joins, the
order of the result list will not be arbitrary even when the origi-
nal list was arbitrary, and we do not know what assumptions the
rest of the program makes on the order of records. The theory must
also be expressive enough not just to express queries but also to
express invariants, which must often refer to partially constructed
lists. For instance, the loop invariants for the sample code fragment
in Fig. 1 must express the fact that listUsers is computed from the
first i and j records of users and roles respectively. Conciseness, e.g.,
the number of relational operators involved, is important because
the complexity of synthesis grows with the size of the synthesized
expressions, so if we can express invariants succinctly, we will be
able to synthesize them more efficiently. Finally, the inferred post-
conditions must be translatable to standard SQL.

There are many ways to model relational operations (see Sec. 8),
but we are not aware of any that fulfills all of the criteria above.
For example, relational algebra is not expressive enough to de-
scribe sufficiently precise loop invariants. Defined in terms of sets,
relational algebra cannot naturally express concepts such as “the
first i elements of the list.” First order logic (FOL), on the other
hand, is very expressive, but it would be hard to translate arbitrary
FOL expressions into SQL.

3.1 Basics
Our theory of finite ordered relations is essentially relational alge-
bra defined in terms of lists instead of sets. The theory operates on
three types of values: scalars, records, and ordered relations of fi-
nite length. Records are collections of named fields, and an ordered
relation is a finite list of records. Each record in the relation is la-
beled with an integer index that can be used to fetch the record.
Figure 6 presents the abstract syntax of the theory and shows how
to combine operators to form expressions.

The semantics of the operators in the theory are defined recur-
sively by a set of axioms; a sample of which are shown in Fig. 7. get
and top take in an ordered relation er and return the record stored
at index es or all the records from index 0 up to index es respec-



top

r = [ ]

topr (i) = [ ]

i = 0

topr (i) = [ ]

i > 0 r = h : t

topr (i) = h : topt(i − 1)

join (./)

r1 = [ ]

./ϕ (r1, r2) = [ ]

r2 = [ ]

./ϕ (r1, r2) = [ ]

r1 = h : t

./ϕ (r1, r2) = cat(./′ϕ (h, r2), ./ϕ (t, r2))

r2 = h : t ϕ(e, h) = True

./′ϕ (e, r2) = (e, h) : ./′ϕ (e, t)

r2 = h : t ϕ(e, h) = False

./′ϕ (e, r2) = ./′ϕ (e, t)

projection (π)

r = [ ]

π`(r) = [ ]

r = h : t fi ∈ ` h.fi = ei

π`(r) = {fi = ei} : π`(t)

selection (σ)

r = [ ]

σϕ(r) = [ ]

r = h : t ϕ(h) = True

σϕ(r) = h : σϕ(t)

r = h : t ϕ(h) = False

σϕ(r) = σϕ(t)

max

r = [ ]

max(r) = −∞
r = h : t h > max(t)

max(r) = h

r = h : t h ≤ max(t)

max(r) = max(t)

Figure 7: Some of the axioms that define the theory of ordered relations, Appendix C contains the full list of axioms

tively. The definitions for π, σ and ./ are modeled after relational
projection, selection, and join respectively, but they also define an
order for the records in the output relation relative to those in the
input relations. The projection operator π creates new copies of
each record, except that for each record only those fields listed in
[fi1 , ... , fiN ] are retained. Like projection in relational algebra, the
same field can be replicated multiple times. The σ operator uses a
selection function ϕσ to filter records from the input relation. ϕσ
is defined as a conjunction of predicates, where each predicate can
compare the value of a record field and a constant, the values of two
record fields, or check if the record is contained in another relation
er using contains. Records are added to the resulting relation if
the function returns True. The ./ operator iterates over each record
from the first relation and pairs it with each record from the second
relation. The two records are passed to the join function ϕ./. Join
functions are similar to selection functions, except that predicates
in join functions compare the values of the fields from the input
ordered relations. The axioms that define the aggregate operators
max, min, and sum assume that the input relation contains only
one numeric field, namely the field to aggregate upon.

The definitions of unique and sort are standard; in the case of
sort, [fi1 , ... , fiN ] contains the list of fields to sort the relation by.
QBS does not actually reason about these two operations in terms
of their definitions; instead it treats them as uninterpreted functions
with a few algebraic properties, such as

./ϕ (sort`1(r1), sort`2(r2)) = sortcat(`1,`2)(./ϕ (r1, r2)).

Because of this, there are some formulas involving sort and unique
that we cannot prove, but we have not found this to be significant
in practice (see Sec. 7 for details).

3.2 Translating to SQL
The expressions defined in the predicate grammar can be converted
into semantically equivalent SQL queries. In this section we prove
that any expression that does not use append or unique can be com-
piled into an equivalent SQL query. We prove this in three steps;
first, we define base and sorted expressions, which are formulated
based on SQL expressions without and with ORDER BY clauses
respectively. Next, we define translatable expressions and show
that any expression that does not use append or unique can be con-
verted into a translatable expression. Then we show how to produce
SQL from translatable expressions.

Definition 1 (Translatable Expressions). Any transExp as de-
fined below can be translated into SQL:

b ∈ baseExp ::= Query(...) | tope(s) | ./True (b1, b2) | agg(t)
s ∈ sortedExp ::= π`π (sort`s (σϕ(b)))

t ∈ transExp ::= s | tope(s)

where the term agg in the grammar denotes any of the aggregation
operators (min, max, sum, size).

[[Query(string)]] = ( string )

[[tope(s)]] = SELECT ∗ FROM [[s]] LIMIT [[e]]

[[./True (t1, t2)]] = SELECT ∗ FROM [[t1]], [[t2]]

[[agg(t)]] = SELECT agg(field) FROM [[t]]

[[π`1 (sort`2 (σϕσ (t)))]] = SELECT [[`1]] FROM [[t]] WHERE [[ϕσ]]

ORDER BY [[`2]], Order(t)

[[unique(t)]] = SELECT DISTINCT ∗ FROM [[t]]

ORDER BY Order(t)

[[ϕσ(e)]] = [[e]].f1 op [[e]] AND ... AND [[e]].fN op [[e]]

[[contains(e, t)]] = [[e]] IN [[t]]

[[[fi1 , ... , fiN ]]] = fi1 , ... , fiN

Figure 8: Syntactic rules to convert translatable expressions to SQL

Theorem 1 (Completeness of Translation Rules). All expres-
sions in the predicate grammar in Fig. 6, except for those that con-
tain append or unique, can be converted into translatable expres-
sions.

The theorem is proved by defining a function Trans that maps
any expression to a translatable expression and showing that the
mapping is semantics preserving. Definition of Trans is shown in
Appendix B. Semantic equivalence between the original and the
translated expression is proved using the expression equivalences
listed in Thm. 2. Using those equivalences, for example, we can
show that for s ∈ sortedExp and b ∈ baseExp:

Trans(σϕ′
σ
(s)) = Trans(σϕ′(π`π (sort`s (σϕ(b))))) [sortedExp def.]

= π`π (sort`s (σϕσ∧ϕ′
σ
(b))) [Trans def.]

= π`π (σϕ′
σ
(sort`s (σϕσ (b)))) [expression equiv.]

= σϕ′
σ
(π`π (sort`s (σϕσ (b)))) [expression equiv.]

= σϕ′
σ
(s) [sortedExp def.]

Thus the semantics of the original TOR expression is preserved.

Translatable expressions to SQL. Following the syntax-directed
rules in Fig. 8, any translatable expression can be converted into an
equivalent SQL expression. Most rules in Fig. 8 are direct transla-
tions from the operators in the theory into their SQL equivalents.

One important aspect of the translation is the way that ordering
of records is preserved. Ordering is problematic because although
the operators in the theory define the order of the output in terms
of the order of their inputs, SQL queries are not guaranteed to
preserve the order of records from nested sub-queries; e.g., the
ordering imposed by an ORDER BY clause in a nested query is not
guaranteed to be respected by an outer query that does not impose
any ordering on the records.

To solve this problem, the translation rules introduce a function
Order—defined in Fig. 9—which scans a translatable expression t
and returns a list of fields that are used to order the subexpressions



Order(Query(...)) = [record order in DB] Order(agg(e)) = [ ]

Order(topi (e)) = Order(e) Order(unique(e)) = Order(e)

Order(π`(e)) = Order(e) Order(σϕ(e)) = Order(e)

Order(./ϕ (e1, e2)) = cat(Order(e1), Order(e2))

Order(sort`(e)) = cat(`, Order(e))

Figure 9: Definition of Order

in t. The list is then used to impose an ordering on the outer SQL
query with an ORDER BY clause. One detail of the algorithm not
shown in the figure is that some projections in the inner queries
need to be modified so they do not eliminate fields that will be
needed by the outer ORDER BY clause, and that we assume
Query(...) is ordered by the order in which the records are stored
in the database (unless the query expression already includes an
ORDER BY clause).

Append and Unique. The append operation is not included in
translatable expressions because there is no simple means to com-
bine two relations in SQL that preserves the ordering of records
in the resulting relation 1. We can still translate unique, how-
ever, using the SELECT DISTINCT construct at the outermost
level, as Fig. 8 shows. Using unique in nested expressions, how-
ever, can change the semantics of the results in ways that are dif-
ficult to reason about (e.g., unique(tope(r)) is not equivalent to
tope(unique(r))). Thus, the only expressions with unique that we
translate to SQL are those that use it at the outermost level. In our
experiments, we found that omitting those two operators did not
significantly limit the expressiveness of the theory.

With the theory in mind, we now turn to the process of comput-
ing verification conditions of the input code fragments.

4. Synthesis of Invariants and Postconditions
Given an input code fragment in the kernel language, the next step
in QBS is to come up with an expression for the result variable of
the form resultVar = e, where e is a translatable expression as
defined in Sec. 3.2.

4.1 Computing Verification Conditions
In order to infer the postcondition, we compute verification condi-
tions for the input code fragment using standard techniques from
axiomatic semantics [19]. As in traditional Hoare style verifica-
tion, computing the verification condition of the while statements
involves a loop invariant. Unlike traditional computation of verifi-
cation conditions, however, both the postcondition and the loop in-
variants are unknown when the conditions are generated. This does
not pose problems for QBS as we simply treat invariants (and the
postcondition) as unknown predicates over the program variables
that are currently in scope when the loop is entered.

As an example, Fig. 11 shows the verification conditions that
are generated for the running example. In this case, the verification
conditions are split into two parts, with invariants defined for both
loops.

The first two assertions describe the behavior of the outer loop
on line 5, with the first one asserting that the outer loop invariant
must be true on entry of the loop (after applying the rule for the
assignments prior to loop entry), and the second one asserting that
the postcondition for the loop is true when the loop terminates. The
third assertion asserts that the inner loop invariant is true when it is
first entered, given that the outer loop condition and loop invariant

1 One way to preserve record ordering in list append is to use case expres-
sions in SQL, although some database systems such as SQL Server limit
the number of nested case expressions.

Verification conditions for the outer loop
(oInv = outerLoopInvariant, iInv = innerLoopInvariant, pcon = postCondition)

initialization oInv(0, users, roles, [ ])

loop exit i ≥ size(users) ∧ oInv(i , users, roles, listUsers)
→ pcon(listUsers, users, roles)

perservation (same as inner loop initialization)
Verification conditions for the inner loop

initialization i < size(users) ∧ oInv(i , users, roles, listUsers)
→ iInv(i , 0, users, roles, listUsers)

loop exit j ≥ size(roles) ∧ iInv(i , j , users, roles, listUsers)
→ oInv(i + 1, users, roles, listUsers)

preservation j < size(roles) ∧ iInv(i , j , users, roles, listUsers)
→ (geti (users).id = getj (roles).id ∧

iInv(i , j + 1, users, roles,
append(listUsers, geti (users)))) ∨

(geti (users).id 6= getj (roles).id ∧
iInv(i , j + 1, users, roles, listUsers))

Figure 11: Verification conditions for the running example
are true. The preservation assertion is the inductive argument that
the inner loop invariant is preserved after executing one iteration of
the loop body. The list listUsers is either appended with a record
from geti (users), or remains unchanged, depending on whether the
condition for the if statement, geti (users).id = getj(roles).id , is
true or not. Finally, the loop exit assertion states that the outer loop
invariant is valid when the inner loop terminates.

4.2 Constraint based synthesis
The goal of the synthesis step is to derive postcondition and loop
invariants that satisfy the verification conditions generated in the
previous step. We synthesize these predicates using the SKETCH
constraint-based synthesis system [30]. In general, SKETCH takes
as input a program with “holes” and uses a counterexample guided
synthesis algorithm (CEGIS) to efficiently search the space of all
possible completions to the holes for one that is correct according
to a bounded model checking procedure. For QBS, the program
is a simple procedure that asserts that the verification conditions
hold for all possible values of the free variables within a certain
bound. For each of the unknown predicates, the synthesizer is given
a sketch (i.e., a template) that defines a space of possible predicates
which the synthesizer will search. The sketches are automatically
generated by QBS from the kernel language representation.

4.3 Inferring the Space of Possible Invariants
Recall that each invariant is parameterized by the current program
variables that are in scope. Our system assumes that each loop
invariant is a conjunction of predicates, with each predicate having
the form lv = e, where lv is a program variable that is modified
within the loop, and e is an expression in TOR.

The space of expressions e is restricted to expressions of the
same static type as lv involving the variables that are in scope.
The system limits the size of expressions that the synthesizer can
consider, and incrementally increases this limit if the synthesizer
fails to find any candidate solutions (to be explained in Sec. 4.5).

Fig. 10 shows a stylized representation of the set of predicates
that our system considers for the outer loop in the running example.
The figure shows the potential expressions for the program variable
i and listUsers . One advantage of using the theory of ordered
relations is that invariants can be relatively concise. This has a
big impact for synthesis, because the space of expressions grows
exponentially with respect to the size of the candidate expressions.

4.4 Creating Templates for Postconditions
The mechanism used to generate possible expressions for the re-
sult variable is similar to that for invariants, but we have stronger



i op

 i | size(users) | size(roles) | size(listUsers) |
sum(π`(users) | sum(π`(roles) |max(π`(users) |
[other relational expressions that return a scalar value]

 ∧ listUsers =


listUsers | σϕ(users) |

π`(./ϕ (tope1
(users), tope2

(roles))) |
π`(./ϕ3 (σϕ1 (tope1

(users),σϕ2 (tope2
(roles))))) |

[other relational expressions that return an ordered list]


Figure 10: Space of possible invariants for the outer loop of the running example.

restrictions, since we know the postcondition must be of the form
resultVar = e in order to be translatable to SQL.

For the running example, QBS considers the following possible
set of postconditions:

listUsers =


users | σϕ(users) | tope(users) |

π`(./ϕ (tope1
(users), tope2

(roles))) |
π`(./ϕ3 (σϕ1 (tope1

(users),σϕ2 (tope2
(roles))))) |

[other relational expressions that return an ordered list]



4.5 Optimizations
The basic algorithm presented above for generating invariant and
postcondition templates is sufficient but not efficient for synthesis.
In this section we describe two optimizations that improve the
synthesis efficiency.

Incremental solving. As an optimization, the generation of tem-
plates for invariants and postconditions is done in an iterative man-
ner: QBS initially scans the input code fragment for specific pat-
terns and creates simple templates using the production rules from
the predicate grammar, such as considering expressions with only
one relational operator, and functions that contains one boolean
clause. If the synthesizer is able to generate a candidate that can
be used to prove the validity of the verification conditions, then
our job is done. Otherwise, the system repeats the template gener-
ation process, but increases the complexity of the template that is
generated by considering expressions consisting of more relational
operators, and more complicated boolean functions. Our evaluation
using real-world examples shows that most code examples require
only a few (< 3) iterations before finding a candidate solution. Ad-
ditionally, the incremental solving process can be run in parallel.

Breaking symmetries. Symmetries have been shown to be one of
sources of inefficiency in constraint solvers [11, 34]. Unfortunately,
the template generation algorithm presented above can generate
highly symmetrical expressions. For instance, it can generate the
following potential candidates for the postcondition:

σϕ2(σϕ1(users))
σϕ1(σϕ2(users))

Notice that the two expressions are semantically equivalent to
the expression σϕ1∧ϕ2(users). These are the kind of symmetries
that are known to affect solution time dramatically. The template
generation algorithm leverages known algebraic relationships be-
tween expressions to reduce the search space of possible expres-
sions. For example, our algebraic relationships tell us that it is
unnecessary to consider expressions with nested σ like the ones
above. Also, when generating templates for postconditions, we
only need to consider translatable expressions as defined in Sec. 3.2
as potential candidates. Our experiments have shown that applying
these symmetric breaking optimizations can reduce the amount of
solving time by half.

Even with these optimizations, the spaces of invariants consid-
ered are still astronomically large; on the order of 2300 possible
combinations of invariants and postconditions for some problems.
Thanks to these optimizations, however, the spaces can be searched
very efficiently by the constraint based synthesis procedure.

Type Expression inferred
outer loop i ≤ size(users) ∧
invariant listUsers = π`(./ϕ (topi (users), roles))

inner loop i < size(users) ∧ j ≤ size(roles) ∧
invariant listUsers = append(

π`(./ϕ (topi (users), roles)),
π`(./ϕ (geti (users), topj (roles)))

postcondition listUsers = π`(./ϕ (users, roles))

where ϕ(eusers , eroles) := eusers .roleId = eroles .roleId ,
` contains all the fields from the User class

Figure 12: Inferred expressions for the running example

5. Formal Validation and Source Transformation
After the synthesizer comes up with candidate invariants and post-
conditions, they need to be validated using a theorem prover,
since the synthesizer used in our prototype is only able to perform
bounded reasoning as discussed earlier. We have implemented the
theory of ordered relations in the Z3 [3] prover for this purpose.
Since the theory of lists is not decidable as it uses universal quan-
tifiers, the theory of ordered relations is not decidable as well.
However, for practical purposes we have not found that to be limit-
ing in our experiments. In fact, given the appropriate invariants and
postconditions, the prover is able to validate them within seconds
by making use of the axioms that are provided.

If the prover can establish the validity of the invariants and post-
condition candidates, the postcondition is then converted into SQL
according to the rules discussed in Sec. 3.2. For instance, for the
running example our algorithm found the invariants and postcondi-
tion as shown in Fig. 12, and the input code is transformed into the
results in Fig. 3.

If the prover is unable to establish validity of the candidates
(detected via a timeout), we ask the synthesizer to generate other
candidate invariants and postconditions after increasing the space
of possible solutions as described in Sec. 4.5. One reason that
the prover may not be able to establish validity is because the
maximum size of the relations set for the synthesizer was not large
enough. For instance, if the code returns the first 100 elements
from the relation but the synthesizer only considers relations up
to size 10, then it will incorrectly generate candidates that claim
that the code was performing a full selection of the entire relation.
In such cases our algorithm will repeat the synthesis process after
increasing the maximum relation size.

5.1 Incorporating inferred queries into original code
After verifying the transformation, the inferred queries are merged
back into the code fragment. Before replacing the original frag-
ment, we run a def-use analysis (which uses the points-to informa-
tion to be described in Sec. 6.2) starting at the beginning of the code
fragment until the end of the inlined method body. This is to ensure
that none of the variables that are defined in the code fragment to be
replaced is used in the rest of the inlined method after replacement.

6. Preprocessing of Input Programs
In order to handle real-world Java programs, QBS performs a num-
ber of initial passes to identify the code fragments to be transformed
to kernel language representation before query inference. The code



identification process makes use of several standard analysis tech-
niques, and in this section we describe them in detail.

6.1 Generating initial code fragments
As discussed in Sec. 2, code identification first involves locating
application entry point methods and data persistent methods. From
each data persistent method, our system currently inlines a neigh-
borhood of 5 callers and callees. We only inline callees that are
defined in the application, and provide models for native Java API
calls. For callers we only inline those that can be potentially in-
voked from an entry point method. The inlined method bodies are
passed to the next step of the process. Inlining improves the pre-
cision of the points-to information for our analysis. While there
are other algorithms that can be used to obtain such information
[36, 40], we chose inlining for ease of implementation and is suffi-
cient in processing the code fragments used in the experiments.

6.2 Identifying code fragments for query inference
Given a candidate inlined method for query inference, we would
like to identify the code fragment to transform to our kernel lan-
guage representation. While we can simply use the entire body
of the inlined method for this purpose, we would like to limit the
amount of code to be analyzed, since including code that does not
manipulate persistent data will increase the difficulty in synthesiz-
ing invariants and postconditions with no actual benefit. We ac-
complish this goal using a series of analyses. First, we run a flow-
sensitive pointer analysis [27] on the body of the inlined method.
The results of this analysis is a set of points-to graphs that map
each reference variable to one or more abstract memory locations
at each program point. Using the points-to information, we perform
two further analyses on the inlined method.

Location tainting. We run a dataflow analysis that conservatively
marks values that are derived from persistent data retrieved via
ORM library calls. This analysis is similar to taint analysis [35],
and the obtained information allows the system to remove regions
of code that do not manipulate persistent data and thus can be
ignored for our purpose. For instance, all reference variables and
list contents in Fig. 1 will be tainted as they are derived from
persistent data.

Value escapement. After that, we perform another dataflow anal-
ysis to check if any abstract memory locations are reachable from
references that are outside of the inlined method body. This analy-
sis is needed because if an abstract memory location m is accessible
from the external environment (e.g., via a global variable) after pro-
gram point p, then converting m might break the semantics of the
original code, as there can be external references to m that rely on
the contents of m before the conversion. This analysis is similar to
classical escape analysis [36]. Specifically, we define an abstract
memory location m as having escaped at program point p if any of
the following is true:
• It is returned from the entry point method.
• It is assigned to a global variable that persists after the entry

point method returns (in the web application context, these can be
variables that maintain session state, for instance).
• It is assigned to a Runnable object, meaning that it can be

accessed by other threads.
• It is passed in as a parameter into the entry point method.
• It can be transitively reached from an escaped location.
With that in mind, we define the beginning of the code fragment

to pass to the QBS algorithm as the program point p in the inlined
method where tainted data is first retrieved from the database, and
the end as the program point p' where tainted data first escapes,
where p' appears after p in terms of control flow. For instance, in

App # persistent data translated rejected failed
code fragments

Wilos 33 21 9 3
itracker 16 12 0 4
Total 49 33 9 7

Figure 13: Real-world code fragments experiment

Fig. 1 the return statement marks the end of the code fragment, with
the result variable being the value returned.

6.3 Compilation to kernel language
Each code fragment that is identified by the previous analysis is
compiled to our kernel language. Since the kernel language is based
on value semantics and does not model heap updates for lists, dur-
ing the compilation process we translate list references to the ab-
stract memory locations that they point to, using the results from
earlier analysis. In general, there are cases where the preprocess-
ing step fails to identify a code fragment from an inlined method
(e.g., persistent data values escape to multiple result variables un-
der different branches, code involves operations not supported by
the kernel language, etc.), and our system will simply skip such
cases. However, the number of such cases is relatively small as our
experiments show.

7. Experiments
In this section we report our experimental results. The goal of
the experiments is twofold: first, to quantify the ability of our
algorithm to convert Java code into real-world applications and
measure the performance of the converted code fragments, and
second to explore the limitations of the current implementation.

We have implemented a prototype of QBS. The source code
analysis and computation of verification conditions are imple-
mented using the Polyglot compiler framework [25]. We use Sketch
as the synthesizer for invariants and postconditions, and Z3 for val-
idating the invariants and postconditions.

7.1 Real-World Evaluation
In the first set of experiments, we evaluated QBS using real-world
examples from two large-scale open-source applications, Wilos
and itracker, written in Java. Wilos (rev. 1196) [2] is a project
management application with 62k LOC, and itracker (ver. 3.0.1)
[1] is a software issue management system with 61k LOC. Both
applications have multiple contributors with different coding styles,
and use the Hibernate ORM library for data persistence operations.
We passed in the entire source code of these applications to QBS
to identify code fragments. The preprocessor initially found 120
unique code fragments that invoke ORM operations. Of those, it
failed to convert 21 of them into the kernel language representation,
as they use data structures that are not supported by our prototype
(such as Java arrays), or access persistent objects that can escape
from multiple control flow points and hence cannot be converted.

Meanwhile, upon manual inspection, we found that those 120
code fragments correspond to 49 distinct code fragments inlined
in different contexts. For instance, if A and C both call method B,
our system automatically inlines B into the bodies of A and C, and
those become two different code fragments. But if all persistent
data manipulation happens in B, then we only count one of the
two as part of the 49 distinct code fragments. QBS successfully
translated 33 out of the 49 distinct code fragments (and those 33
distinct code fragments correspond to 75 original code fragments).
The results are summarized in Fig. 13, and the details can be found
in Appendix A.

This experiment shows that QBS can infer relational specifica-
tions from a large fraction of candidate fragments and convert them



into SQL equivalents. For the candidate fragments that are reported
as translatable by QBS, our prototype was able to synthesize post-
conditions and invariants, and also validate them using the prover.
Furthermore, the maximum time that QBS takes to process any one
code fragment is under 5 minutes (with an average of 2.1 minutes).
In the following, we broadly describe the common types of rela-
tional operations that our QBS prototype inferred from the frag-
ments, along with some limitations of the current implementation.

Projections and Selections. A number of identified fragments
perform relational projections and selections in imperative code.
Typical projections include selecting specific fields from the list of
records that are fetched from the database, and selections include
filtering a subset of objects using field values from each object (e.g.,
user ID equals to some numerical constant), and a few use criteria
that involve program variables that are passed into the method.

One special case is worth mentioning. In some cases only a sin-
gle field is projected out and loaded into a set data structure, such as
a set of integer values. One way to translate such cases is to gener-
ate SQL that fetches the field from all the records (including dupli-
cates) into a list, and eliminate the duplicates and return the set to
the user code. Our prototype, however, improves upon that scheme
by detecting the type of the result variable and inferring a postcon-
dition involving the unique operator, which is then translated to a
SELECT DISTINCT query that avoids fetching duplicate records
from the database.

Joins. Another set of code fragments involve join operations. We
summarize the join operations in the application code into two
categories. The first involves obtaining two lists of objects from
two base queries and looping through each pair of objects in a
nested for or while loop. The pairs are filtered and (typically) one
of the objects from each pair is retained. The running example in
Fig. 1 represents such a case. For these cases, QBS translates the
code fragment into a relational join of the two base queries with
the appropriate join predicate, projection list, and sort operations
that preserve the ordering of records in the results.

Another type of join also involves obtaining two lists of objects
from two base queries. Instead of a nested loop join, however, the
code iterates through each object e from the first list, and searches
if e (or one of e’s fields) is contained in the second. If true, then
e (or some of its fields) is appended to the resulting list. For these
cases QBS converts the search operation into a contains expression
in the predicate language, after which the expression is translated
into a correlated subquery in the form of SELECT * FROM r1, r2
WHERE r1 IN r2, with r1 and r2 being the base queries.

QBS handles both join idioms mentioned above. However, the
loop invariants and postconditions involved in such cases tend to
be more complex as compared to selections and projections, as
illustrated by the running example in Fig. 12. Thus, they require
more iterations of synthesis and formal validation before finding a
valid solution, with up to 5 minutes in the longest case. Here, the
majority of the time is spent in synthesis and bounded verification.
We are not aware of any prior techniques that can be used to
infer join queries from imperative code, and we believe that more
optimizations can be devised to speed up the synthesis process for
such cases.

Aggregations. Aggregations are used in fragments in a number
of ways. The most straightforward ones are those that return the
length of the list that is returned from an ORM query, which
are translated into COUNT queries. More sophisticated uses of
aggregates include iterating through all records in a list to find
the max or min values, or searching if a record exists in a list.
Aggregates such as maximum and minimum are interesting as they
introduce loop-carried dependencies [5], where the running value

of the aggregate is updated conditionally based on the value of
the current record as compared to previous ones. By using the
top operator from the theory of ordered relations, QBS is able to
generate a loop invariant of the form v = agg(topi(r)) and then
translate the postcondition into the appropriate SQL query.

As a special case, a number of fragments check for the existence
of a particular record in a relation by iterating over all records
and setting a result boolean variable to be true if it exists. In
such cases, the generated invariants are similar to other aggregate
invariants, and our prototype translates such code fragments into
SELECT COUNT(*) > 0 FROM ... WHERE e, where e is the
expression to check for existence in the relation. We rely on the
database query optimizer to further rewrite this query into the more
efficient form using EXISTS.

Limitations. We have verified that in all cases where the generated
template is expressive enough for the invariants and postconditions,
our prototype does indeed find the solution within a preset timeout
of 10 minutes. However, there are a few examples from the two
applications where our prototype either rejects the input code frag-
ment or fails to find an equivalent SQL expression from the kernel
language representation. Fragments are rejected because they in-
volve relational update operations that are not handled by TOR.
Another set of fragments include advanced use of types, such as
storing polymorphic records in the database, and performing differ-
ent operations based on the type of records retrieved. Incorporating
type information in the theory of ordered relations is an interesting
area for future work. There are also a few that QBS fails to trans-
late into SQL, even though we believe that there is an equivalent
SQL query without updates. For instance, some fragments involve
sorting the input list by Collections.sort, followed by retrieving the
last record from the sorted list, which is equivalent to max or min
depending on the sort order. Including extra axioms in the theory
would allow us to reason about such cases.

7.2 Performance Comparisons
Next, we quantify the amount of performance improvement as a
result of query inference. To do so, we took a few representa-
tive code fragments for selection, joins, and aggregation, and pop-
ulated databases with different number of persistent objects. We
then compared the performance between the original code and our
transformed versions of the code with queries inferred by QBS.
Since Hibernate can either retrieve all nested references from the
database (eager) when an object is fetched, or only retrieve the top
level references (lazy), we measured the execution times for both
modes (the original application is configured to use the lazy re-
trieval mode). The results shown in Fig. 14 compare the time taken
to completely load the webpages containing the queries between
the original and the QBS inferred versions of the code.

Selection Code Fragment. Fig. 14a and Fig. 14b show the results
from running a code fragment that includes persistent data manipu-
lations from fragment #40 in Appendix A. The fragment returns the
list of unfinished projects. Fig. 14a shows the results where 10%
of the projects stored are unfinished, and Fig. 14b shows the re-
sults with 50% unfinished projects. While the original version per-
forms the selection in Java by first retrieving all projects from the
database, QBS inferred a selection query in this case. As expected,
the query inferred by QBS outperforms the original fragments in
all cases as it only needs to retrieve a portion (specifically 10 and
50%) of all persistent objects.

Join Code Fragment. Fig. 14c shows the results from a code
fragment with contents from fragment #46 in Appendix A (which
is the same as the example from Fig. 1). The fragment returns the
projection of User objects after a join of Roles and Users in the
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Figure 14: Webpage load times comparison of representative code fragments

database on the roleId field. The original version performs the join
by retrieving all User and Role objects and joining them in a nested
loop fashion as discussed in Sec. 2. The query inferred by QBS
however, pushes the join and projection into the database. To isolate
the effect of performance improvement due to query selectivity (as
in the selection code fragment), we purposefully constructed the
dataset so that the query returns all User objects in the database
in all cases, and the results show that the query inferred by QBS
version still has much better performance than the original query.
This is due to two reasons. First, even though the number of User
objects returned in both versions are the same, the QBS version
does not need to retrieve any Role objects since the projection is
pushed into the database, unlike the the original version. Secondly,
thanks to the automatically created indices on the Role and User
tables by Hibernate, the QBS version essentially transforms the join
implementation from a nested loop join into a hash join, i.e., from
an O(n2) to an O(n) implementation, thus improving performance
asymptotically.

Aggregation Code Fragment. Finally, Fig. 14d shows the results
from running code with contents from fragment #38, which returns
the number of users who are process managers. In this case, the
original version performs the counting by bringing in all users who
are process managers from the database, and then returning the size
of the resulting list. QBS, however, inferred a COUNT query on
the selection results. This results in multiple orders of magnitude
performance improvement, since the QBS version does not need to
retrieve any objects from the database beyond the resulting count.

7.3 Advanced Idioms
In the final set of experiments, we used synthetic code fragments to
demonstrate the ability of our prototype to translate more complex
expressions into SQL. Although we did not find such examples in
either of our two real-world applications, we believe that these can
occur in real applications.

Hash Joins. Beyond the join operations that we encountered in
the applications, we wrote two synthetic test cases for joins that
join relations r and s using the predicate r.a = s.b, where a and
b are integer fields. In the first case, the join is done via hashing,
where we first iterate through records in r and build a hashtable,
whose keys are the values of the a field, and where each key maps
to a list of records from r that has that corresponding value of a. We
then loop through each record in s to find the relevant records from
r to join with, using the b field as the look up key. QBS currently
models hashtables using lists, and with that our prototype is able
recognize this process as a join operation and convert the fragment
accordingly, similar to the join code fragments mentioned above.

Sort-Merge Joins. Our second synthetic test case joins two lists
by first sorting r and s on fields a and b respectively, and then iter-
ating through both lists simultaneously. We advance the scan of r

as long as the current record from r is less than (in terms of fields
a and b) the current record from s, and similarly advance the scan
of s as long as the current s record is less than the current r record.
Records that represent the join results are created when the current
record from r equals to that from s on the respective fields. Unfor-
tunately, our current prototype fails to translate the code fragment
into SQL, as the invariants for the loop cannot be expressed using
the current the predicate language, since that involves expressing
the relationship between the current record from r and s with all the
records that have been previously processed.

Iterating over Sorted Relations. We next tested our prototype
with two usages of sorted lists. We created a relation with one
unsigned integer field id as primary key, and sorted the list using
the sort method from Java. We subsequently scanned through the
sorted list as follows:

List records = Query("SELECT id FROM t");
List results = new ArrayList();
Collections.sort(records); // sort by id
for (int i = 0; i < 10; ++i)
{ results.add(records.get(i)); }

Our prototype correctly processes this code fragment by trans-
lating it into SELECT id FROM t ORDER BY id LIMIT 10. However,
if the loop is instead written as follows:

List records = Query("SELECT id FROM t");
List results = new ArrayList();
Collections.sort(records); // sort by id
int i = 0;
while (records.get(i).id < 10)
{ results.add(records.get(i)); ++i;}

The two loops are equivalent since the id field is a primary key
of the relation, and thus there can at most be 10 records retrieved.
However, our prototype is not able to reason about the second
code fragment, as that requires an understanding of the schema of
the relation, and that iterating over id in this case is equivalent to
iterating over i in the first code fragment. Both of which require
additional axioms to be added to the theory before such cases can
be converted.

8. Related Work
Inferring relational specifications from imperative code was stud-
ied in [37, 38]. The idea is to compute the set of data access paths
that the imperative code traverses using abstract interpretation, and
replace the imperative code with SQL queries. The analysis is ap-
plicable to recursive function calls, but does not handle code with
loop-carried dependencies, or those with join or aggregation. It is
unclear how modeling relational operations as access paths can be
extended to handle such cases. Our implementation is able to infer
both join and aggregation from imperative code. We currently do



not handle recursive function calls, although we have not encoun-
tered such uses in the applications used in our experiments.

Modeling relational operations. Our ability to infer relational
specifications from imperative code relies on using the TOR to
connect the imperative and relational worlds. There are many prior
work in modeling relational operations, for instance using bags [9],
sets [22], and nested relational calculus [39]. There are also the-
oretical models that extend standard relational algebra with order,
such as [4, 24]. Our work does not aim to provide a new theoretical
model. Instead, one key insight of our work is that TOR is the right
abstraction for the query inference, as they are similar to the inter-
faces provided by the ORM libraries in the imperative code, and
allow us to design a sound and precise transformation into SQL.

To our knowledge, our work is the first to address the ordering
of records in relational transformations. Record ordering would not
be an issue if the source program only operated on orderless data
structures such as sets or did not perform any joins. Unfortunately,
most ORM libraries provide interfaces based on ordered data struc-
tures, and imperative implementations of join proves to be common
at least in the benchmarks we studied.

Finding invariants to validate transformations. Our verification-
based approach to finding a translatable postcondition is similar
to earlier work [20, 21], although they acknowledge that finding
invariants is difficult. Similar work has been done for general-
purpose language compilers [33]. Scanning the source code to gen-
erate the synthesis template is inspired by the PINS algorithm [32],
although QBS does not need user intervention. There has been ear-
lier work on automatically inferring loop invariants, such as using
predicate refinement [14] or dynamic detection [13, 18].

Constraint-based synthesis. Constraint-based program synthesis
has been an active topic of research in recent years. For instance,
there has been work on using synthesis to discover invariants [31].
Our work differs from previous approaches in that we only need
to find invariants and postconditions that are strong enough to vali-
date the transformation, and our predicate language greatly prunes
the space of invariants to those needed for common relational op-
erations. Synthesis has also been applied in other domains, such
as generating data structures [29], processor instructions [15], and
learning queries from examples [8].

Integrated query languages. Integrating application and database
query languages into has been an active research area, with projects
such as LINQ [23], Kleisli [39], Links [10], JReq [20], the func-
tional language proposed in [9], Ferry [17], and DBPL [28]. These
solutions embed database queries in imperative programs without
ORM libraries. Unfortunately, many of them do not support all rela-
tional operations, and the syntax of such languages resemble SQL,
thus developers still need to learn new programming paradigms and
rewrite existing applications.

Improving performance of database programs by code trans-
formation. There is also work in improving application perfor-
mance by transforming loops to allow query batching [26], and
pushing computations into the database [7]. Our work is orthog-
onal to this line of research. After converting portions of the source
code into SQL queries, such code transformation can be applied to
gain additional performance improvement.

9. Conclusions
In this paper, we presented QBS, a system for inferring relational
specifications from imperative code that retrieves data using ORM
libraries. Our system automatically infers loop invariants and post-
conditions associated with the source program, and converts the

validated postcondition into SQL queries. Our approach is both
sound and precise in preserving the ordering of records. We de-
veloped a theory of ordered relations that allows efficient encoding
of relational operations into a predicate language, and we demon-
strated the applicability using a set of real-world code examples.
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A. Persistent Data Code Fragment Details
In this section we describe the code fragments from real-world ex-
amples that are used in our experiments. The table below shows the
details of the 49 distinct code fragments as mentioned in Sec. 7.1.
The times reported correspond to the time required to synthesize
the invariants and postconditions. The time taken for the other ini-
tial analysis and SQL translation steps are negligible.

wilos code fragments

# Java Class Name Line Oper. Status Time (s)
17 ActivityService 401 A † –
18 ActivityService 328 A † –
19 AffectedtoDao 13 B X 72
20 ConcreteActivityDao 139 C * –
21 ConcreteActivityService 133 D † –
22 ConcreteRoleAffectationService 55 E X 310
23 ConcreteRoleDescriptorService 181 F X 290
24 ConcreteWorkBreakdownElementService 55 G † –
25 ConcreteWorkProductDescriptorService 236 F X 284
26 GuidanceService 140 A † –
27 GuidanceService 154 A † –
28 IterationService 103 A † –
29 LoginService 103 H X 125
30 LoginService 83 H X 164
31 ParticipantBean 1079 B X 31
32 ParticipantBean 681 H X 121
33 ParticipantService 146 E X 281
34 ParticipantService 119 E X 301
35 ParticipantService 266 F X 260
36 PhaseService 98 A † –
37 ProcessBean 248 H X 82
38 ProcessManagerBean 243 B X 50
39 ProjectService 266 K * –
40 ProjectService 297 A X 19
41 ProjectService 338 G † –
42 ProjectService 394 A X 21
43 ProjectService 410 A X 39
44 ProjectService 248 H X 150
45 RoleDao 15 I * –
46 RoleService 15 E X 150
47 WilosUserBean 717 B X 23
48 WorkProductsExpTableBean 990 B X 52
49 WorkProductsExpTableBean 974 J X 50

itracker code fragments

# Java Class Name Line Operation Status Time (s)
1 EditProjectFormActionUtil 219 F X 289
2 IssueServiceImpl 1437 D X 30
3 IssueServiceImpl 1456 L * –
4 IssueServiceImpl 1567 C * –
5 IssueServiceImpl 1583 M X 130
6 IssueServiceImpl 1592 M X 133
7 IssueServiceImpl 1601 M X 128
8 IssueServiceImpl 1422 D X 34
9 ListProjectsAction 77 N * –
10 MoveIssueFormAction 144 K * –
11 NotificationServiceImpl 568 O X 57
12 NotificationServiceImpl 848 A X 132
13 NotificationServiceImpl 941 H X 160
14 NotificationServiceImpl 244 O X 72
15 UserServiceImpl 155 M X 146
16 UserServiceImpl 412 A X 142

where:
A: selection of records
B: return literal based on result size
C: retrieve the max / min record by first sorting and then return-
ing the last element
D: projection / selection of records and return results as a set
E: nested-loop join followed by projection
F: join using contains
G: type-based record selection
H: check for record existence in list
I: record selection and only return the one of the records if mul-
tiple ones fulfill the selection criteria
J: record selection followed by count
K: sort records using a custom comparator
L: projection of records and return results as an array
M: return result set size
N: record selection and in-place removal of records
O: retrieve the max / min record

X indicates those that are translated by. QBS
* indicates those that QBS failed to find invariants for.
† indicates those that are rejected by QBS due to TOR / pre-
processing limitations.

B. TOR Expression Equivalences and Definition
of Trans

Before defining Trans, we first list the set of TOR expression
equivalences that are used in the definition.

Theorem 2 (Operator Equivalence). The following equivalences
hold, both in terms of the contents of the relations and also the
ordering of the records in the relations:

• σϕ(π`(r)) = π`(σϕ(r))
• σϕ2(σϕ1(r)) = σϕ′(r), where ϕ′ = ϕ2 ∧ ϕ1

• π`2(π`1(r)) = π`′(r), where `′ is the concatenation of all the
fields in `1 and `2.
• tope(π`(r)) = π`(tope(r))
• tope2

(tope1
(r)) = topmax(e1,e2)

(r)
• ./ϕ (r1, r2) = σϕ′(./True (r1, r2)), i.e., joins can be converted

into cross products with selections with proper renaming of
fields.
• ./ϕ (sort`1(r1), sort`2(r2)) = sort`1:`2(./ϕ (r1, r2))
• ./ϕ (π`1(r1),π`2(r2)) = π`′(./ϕ (r1, r2)), where `′ is the

concatenation of all the fields in `1 and `2.

Except for the equivalences involving sort, the other ones can
be proven easily from the axiomatic definitions.



B.1 Definition of Trans
Let s = π`π (sort`s (σϕ(b))). Trans is defined on expressions
whose subexpressions (if any) are in translatable form, so we have
to consider cases where the sub-expressions are either s or tope(s).
Each case is defined below.

Query(...)

Trans(Query(...))) = π`(sort[ ](σTrue(Query(...))))

where ` projects all the fields from the input relation.

π`2(t)

Trans(π`2(s)) = π`′(sort`s (σϕ(b)))

Trans(π`2(tope(s))) = tope(π`′(sort`s (σϕ(b))))

where `′ is the composition of `π and `2.

σϕ2(t)

Trans(σϕ2(s)) = π`π (sort`s (σϕ∧ϕ2(b)))

Trans(σϕ2(tope(s))) = tope(π`π (sort`s (σϕ∧ϕ2(b))))

./ϕ./ (t1, t2))

Trans(./ϕ./ (s1, s2)) = π`′π (sort`′s (σϕ′
σ
(./True (b1, b2))))

where ϕ′σ = ϕσ1 ∧ ϕσ2 ∧ ϕ./ with field names properly renamed,
`′s = cat(`s1 , `s2 ), and `′π = cat(`π1 , `π2).

Trans(./ϕ (tope(s1), tope(s2)))

= π`(sort[ ](σϕ(./True (tope(s1), tope(s2)))))

where ` contains all the fields from s1 and s2.

tope2
(t)

Trans(tope2
(s)) = tope2

(s)

Trans(tope2
(tope1

(s))) = tope′(s)

where e′ is the minimum value of e1 and e2.

agg(t)

Trans(agg(s)) = π`(sort[ ](σTrue(agg(s))))

Trans(agg(tope(s))) = π`(sort[ ](σTrue(agg(s))))

where ` contains all the fields from s .

sort`s2
(t)

Trans(sort`s2
(s)) = π`π (sort`′s (σϕ(b)))

Trans(sort`s2
(tope(s))) = tope(π`π (sort`′s (σϕ(b))))

where `′s = cat(`s , `s2).

C. TOR Axioms
Below is a listing of all the axioms currently defined in the theory
of ordered relations (TOR). cat(`1, `2) concatenates the contents of
lists `1 and `2.

size

r = [ ]

size(r) = 0
r = h : t

size(r) = 1 + size(t)

get

i = 0 r = h : t
geti (r) = h

i > 0 r = h : t

geti (r) = geti−1(t)

append

r = [ ]

append(r , t) = [t]

r = h : t

append(r , t′) = h : append(t, t′)

top

r = [ ]

topr (i) = [ ]
i = 0

topr (i) = [ ]

i > 0 r = h : t

topr (i) = h : topt(i − 1)

join (./)

r1 = [ ]

./ϕ (r1, r2) = [ ]

r2 = [ ]

./ϕ (r1, r2) = [ ]

r1 = h : t

./ϕ (r1, r2) = cat(./′ϕ (h, r2), ./ϕ (t, r2))

r2 = h : t ϕ(e, h) = True

./′ϕ (e, r2) = (e, h) : ./′ϕ (e, t)

r2 = h : t ϕ(e, h) = False

./′ϕ (e, r2) = ./′ϕ (e, t)

projection (π)

r = [ ]

π`(r) = [ ]

r = h : t fi ∈ ` h.fi = ei

π`(r) = {fi = ei} : π`(t)

selection (σ)

r = [ ]

σϕ(r) = [ ]

r = h : t ϕ(h) = True

σϕ(r) = h : σϕ(t)

r = h : t ϕ(h) = False

σϕ(r) = σϕ(t)

sum

r = [ ]

sum(r) = 0
r = h : t

sum(r) = h + sum(t)

max

r = [ ]

max(r) = −∞
r = h : t h > max(t)

max(r) = h

r = h : t h ≤ max(t)

max(r) = max(t)

min

r = [ ]

min(r) =∞
r = h : t h < min(t)

min(r) = h

r = h : t h ≥ min(t)

min(r) = min(t)

contains

r = [ ]

contains(e, r) = False

e = h r = h : t
contains(e, r) = True

e 6= h r = h : t

contains(e, r) = contains(e, t)
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