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ABSTRACT

Database-backed applications are nearly ubiquitous in our daily

lives. Applications that make many small accesses to the database

create two challenges for developers: increased latency and wasted

resources from numerous network round trips. A well-known tech-

nique to improve transactional database application performance is

to convert part of the application into stored procedures that are

executed on the database server. Unfortunately, this conversion is

often difficult. In this paper we describe Pyxis, a system that takes

database-backed applications and automatically partitions their code

into two pieces, one of which is executed on the application server

and the other on the database server. Pyxis profiles the applica-

tion and server loads, statically analyzes the code’s dependencies,

and produces a partitioning that minimizes the number of control

transfers as well as the amount of data sent during each trans-

fer. Our experiments using TPC-C and TPC-W show that Pyxis

is able to generate partitions with up to 3× reduction in latency and

1.7× improvement in throughput when compared to a traditional

non-partitioned implementation and has comparable performance

to that of a custom stored procedure implementation.

1. INTRODUCTION
Transactional database applications are extremely latency sensi-

tive for two reasons. First, in many transactional applications (e.g.,

database-backed websites), there is typically a hard response time

limit of a few hundred milliseconds, including the time to execute

application logic, retrieve query results, and generate HTML . Sav-

ing even a few tens of milliseconds of latency per transaction can be

important in meeting these latency bounds. Second, longer-latency

transactions hold locks longer, which can severely limit maximum

system throughput in highly concurrent systems.

Stored procedures are a widely used technique for improving the

latency of database applications. The idea behind stored procedures

is to rewrite sequences of application logic that are interleaved with

database commands (e.g., SQL queries) into parameterized blocks

of code that are stored on the database server. The application
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then sends commands to the database server, typically on a sep-

arate physical machine, to invoke these blocks of code.

Stored procedures can significantly reduce transaction latency by

avoiding round trips between the application and database servers.

These round trips would otherwise be necessary in order to exe-

cute the application logic found between successive database com-

mands. The resulting speedup can be substantial. For example, in a

Java implementation of a TPC-C-like benchmark—which has rel-

atively little application logic—running each TPC-C transaction as

a stored procedure can offer up to a 3× reduction in latency versus

running each SQL command via a separate JDBC call. This reduc-

tion results in a 1.7× increase in overall transaction throughput on

this benchmark.

However, stored procedures have several disadvantages:

• Portability and maintainability: Stored procedures break a

straight-line application into two distinct and logically disjoint code

bases. These code bases are usually written in different languages

and must be maintained separately. Stored-procedure languages are

often database-vendor specific, making applications that use them

less portable between databases. Programmers are less likely to

be familiar with or comfortable in low-level—even arcane—stored

procedure languages like PL/SQL or TransactSQL, and tools for

debugging and testing stored procedures are less advanced than

those for more widely used languages.

• Conversion effort: Identifying sections of application logic

that are good candidates for conversion into stored procedures is

tricky. In order to design effective stored procedures, program-

mers must identify sections of code that make multiple (or large)

database accesses and can be parameterized by relatively small

amounts of input. Weighing the relative merits of different designs

requires programmers to model or measure how often a stored pro-

cedure is invoked and how much parameter data need to be trans-

ferred, both of which are nontrivial tasks.

• Dynamic server load: Running parts of the application as

stored procedures is not always a good idea. If the database server

is heavily loaded, pushing more computation into it by calling stored

procedures will hurt rather than help performance. A database

server’s load tends to change over time, depending on the work-

load and the utilization of the applications it is supporting, so it

is difficult for developers to predict the resources available on the

servers hosting their applications. Even with accurate predictions

they have no easy way to adapt their programs’ use of stored pro-

cedures to a dynamically changing server load.

We propose that these disadvantages of manually generated stored

procedures can be avoided by automatically identifying and ex-

tracting application code to be shipped to the database server. We

implemented this new approach in Pyxis, a system that automat-

ically partitions a database application into two pieces, one de-
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ployed on the application server and the other in the database server

as stored procedures. The two programs communicate with each

other via remote procedure calls (RPCs) to implement the seman-

tics of the original application. In order to generate a partition,

Pyxis first analyzes application source code using static analysis

and then collects dynamic information such as runtime profile and

machine loads. The collected profile data and results from the anal-

ysis are then used to formulate a linear program whose objective is

to minimize, subject to a maximum CPU load, the overall latency

due to network round trips between the application and database

servers as well as the amount of data sent during each round trip.

The solved linear program then yields a fine-grained, statement-

level partitioning of the application’s source code. The partitioned

code is split into two halves and executed on the application and

database servers using the Pyxis runtime.

The main benefit of our approach is that the developer does not

need to manually decide which part of her program should be exe-

cuted where. Pyxis identifies good candidate code blocks for con-

version to stored procedures and automatically produces the two

distinct pieces of code from the single application codebase. When

the application is modified, Pyxis can automatically regenerate and

redeploy this code. By periodically re-profiling their application,

developers can generate new partitions as load on the server or ap-

plication code changes. Furthermore, the system can switch be-

tween partitions as necessary by monitoring the current server load.

Pyxis makes several contributions:

1. We present a formulation for automatically partitioning pro-

grams into stored procedures that minimize overall latency subject

to CPU resource constraints. Our formulation leverages a combi-

nation of static and dynamic program analysis to construct a linear

optimization problem whose solution is our desired partitioning.

2. We develop an execution model for partitioned applications

where consistency of the distributed heap is maintained by auto-

matically generating custom synchronization operations.

3. We implement a method for adapting to changes in real-time

server load by dynamically switching between pre-generated parti-

tions created using different resource constraints.

4. We evaluate our Pyxis implementation on two popular trans-

action processing benchmarks, TPC-C and TPC-W, and compare

the performance of our partitions to the original program and ver-

sions using manually created stored procedures. Our results show

Pyxis can automatically partition database programs to get the best

of both worlds: when CPU resources are plentiful, Pyxis produces a

partition with comparable performance to that of hand-coded stored

procedures; when resources are limited, it produces a partition com-

parable to simple client-side queries.

The rest of the paper is organized as follows. We start with an ar-

chitectural overview of Pyxis in Sec. 2. We describe how Pyxis pro-

grams execute and synchronize data in Section Sec. 3. We present

the optimization problem and describe how solutions are obtained

in Sec. 4. Sec. 5 explains the generation of partitioned programs,

and Sec. 6 describes the Pyxis runtime system. Sec. 7 shows our

experimental results, followed by related work and conclusions in

Sec. 8 and Sec. 9.

2. OVERVIEW
Figure 1 shows the architecture of the Pyxis system. Pyxis starts

with an application written in Java that uses JDBC to connect to

the database and performs several analyses and transformations.1

The analysis used in Pyxis is general and does not impose any re-

strictions on the programming style of the application. The final

1We chose Java due to its popularity in writing database applica-
tions. Our techniques can be applied to other languages as well.
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Figure 1: Pyxis architecture

result is two separate programs, one that runs on the application

server and one that runs on the database server. These two pro-

grams communicate with each other as necessary to implement the

original application’s semantics. Execution starts at the partitioned

program on the application server but periodically switches to its

counterpart on the database server, and vice versa. We refer to

these switches as control transfers. Each statement in the original

program is assigned a placement in the partitioned program on ei-

ther the application server or the database server. Control transfers

occur when a statement with one placement is followed by a state-

ment with a different placement. Following a control transfer, the

calling program blocks until the callee returns control. Hence, a

single thread of control is maintained across the two servers.

Although the two partitioned programs execute in different ad-

dress spaces, they share the same logical heap and execution stack.

This program state is kept in sync by transferring heap and stack

updates during each control transfer or by fetching updates on de-

mand. The execution stack is maintained by the Pyxis runtime, but

the program heap is kept in sync by explicit heap synchronization

operations, generated using a conservative static program analysis.

Static dependency analysis. The goal of partitioning is to pre-

serve the original program semantics while achieving good perfor-

mance. This is done by reducing the number of control transfers

and amount of data sent during transfers as much as possible. The

first step is to perform an interprocedural static dependency analy-

sis that determines the data and control dependencies between pro-

gram statements. The data dependencies conservatively capture all

data that may be necessary to send if a dependent statement is as-

signed to a different partition. The control dependencies capture the

necessary sequencing of program statements, allowing the Pyxis

code generator to find the best program points for control transfers.

The results of the dependency analysis are encoded in a graph

form that we call a partition graph. It is a program dependence

graph (PDG)2 augmented with extra edges representing additional

information. A PDG-like representation is appealing because it

2Since it is interprocedural, it actually is closer to a system depen-
dence graph [14, 17] than a PDG.
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combines both data and control dependencies into a single repre-

sentation. Unlike a PDG, a partition graph has a weight that models

the cost of satisfying the edge’s dependencies if the edge is parti-

tioned so that its source and destination lie on different machines.

The partition graph is novel; previous automatic partitioning ap-

proaches have partitioned control-flow graphs [34, 8] or dataflow

graphs [23, 33]. Prior work in automatic parallelization [28] has

also recognized the advantages of PDGs as a basis for program

representation.

Profile data collection. Although the static dependency analysis

defines the structure of dependencies in the program, the system

needs to know how frequently each program statement is executed

in order to determine the optimal partition; placing a “hot” code

fragment on the database server may increase server load beyond

its capacity. In order to get a more accurate picture of the run-

time behavior of the program, statements in the partition graph are

weighted by an estimated execution count. Additionally, each edge

is weighted by an estimated latency cost that represents the com-

munication overhead for data or control transfers. Both weights are

captured by dynamic profiling of the application.

For applications that exhibit different operating modes, such as

the browsing versus shopping mix in TPC-W, each mode could be

profiled separately to generate partitions suitable for it. The Pyxis

runtime includes a mechanism to dynamically switch between dif-

ferent partitionings based on current CPU load.

Optimization as integer programming. Using the results from

the static analysis and dynamic profiling, the Pyxis partitioner for-

mulates the placement of each program statement and each data

field in the original program as an integer linear programming prob-

lem. These placements then drive the transformation of the input

source into the intermediate language PyxIL (for PYXis Intermedi-

ate Language). The PyxIL program is very similar to the input Java

program except that each statement is annotated with its placement,

:APP: or :DB:, denoting execution on the application or database

server. Thus, PyxIL compactly represents a distributed program in

a single unified representation. PyxIL code also includes explicit

heap synchronization operations, which are needed to ensure the

consistency of the distributed heap.

In general, the partitioner generates several different partition-

ings of the program using multiple server instruction budgets that

specify upper limits on how much computation may be executed

at the database server. Generating multiple partitions with differ-

ent resource constraints enables automatic adaptation to different

levels of server load.

Compilation from PyxIL to Java. For each partitioning, the PyxIL

compiler translates the PyxIL source code into two Java programs,

one for each runtime. These programs are compiled using the stan-

dard Java compiler and linked with the Pyxis runtime. The database

partition program is run in an unmodified JVM colocated with the

database server, and the application partition is similarly run on the

application server. While not exactly the same as running tradi-

tional stored procedures inside a DBMS, our approach is similar to

other implementations of stored procedures that provide a foreign

language interface such as PL/Java [1] and execute stored proce-

dures in a JVM external to the DBMS. We find that running the pro-

gram outside the DBMS does not significantly hurt performance as

long as it is colocated. With more engineering effort, the database

partition program could run in the same process as the DBMS.

Executing partitioned programs. The runtimes for the applica-

tion server and database server communicate over TCP sockets us-

1 class Order {

2 int id;

3 double[] realCosts;

4 double totalCost;

5 Order(int id) {

6 this.id = id;

7 }

8 void placeOrder(int cid, double dct) {

9 totalCost = 0;

10 computeTotalCost(dct);

11 updateAccount(cid, totalCost);

12 }

13 void computeTotalCost(double dct) {

14 int i = 0;

15 double[] costs = getCosts();

16 realCosts = new double[costs.length];

17 for (itemCost : costs) {

18 double realCost;

19 realCost = itemCost * dct;

20 totalCost += realCost;

21 realCosts[i++] = realCost;

22 insertNewLineItem(id, realCost);

23 }

24 }

25 }

Figure 2: Running example

ing a custom remote procedure call mechanism. The RPC interface

includes operations for control transfer and state synchronization.

The runtime also periodically measures the current CPU load on

the database server to support dynamic, adaptive switching among

different partitionings of the program. The runtime is described in

more detail in Sec. 6.

3. RUNNING PYXIS PROGRAMS
Figure 2 shows a running example used to explain Pyxis through-

out the paper. It is meant to resemble a fragment of the new-

order transaction in TPC-C, modified to exhibit relevant features

of Pyxis. The transaction retrieves the order that a customer has

placed, computes its total cost, and deducts the total cost from

the customer’s account. It begins with a call to placeOrder on

behalf of a given customer cid at a given discount dct. Then

computeTotalCost extracts the costs of the items in the order

using getCosts, and iterates through each of the costs to com-

pute a total and record the discounted cost. Finally, control re-

turns to placeOrder, which updates the customer’s account. The

two operations insertNewLineItem and updateAccount update

the database’s contents while getCosts retrieves data from the

database. If there are N items in the order, the example code incurs

N round trips to the database from the insertNewLineItem calls,

and two more from getCosts and updateAccount.

There are multiple ways to partition the fields and statements of

this program. An obvious partitioning is to assign all fields and

statements to the application server. This would produce the same

number of remote interactions as in the standard JDBC-based im-

plementation. At the other extreme, a partitioning might place all

statements on the database server, in effect creating a stored proce-

dure for the entire placeOrder method. As in a traditional stored

procedure, each time placeOrder is called the values cid and dct

must be serialized and sent to the remote runtime. Other partition-

ings are possible. Placing only the loop in computeTotalCost on

the database would save N round trips if no additional communi-

cation were necessary to satisfy data dependencies. In general, as-

signing more code to the database server can reduce latency, but it

also can put additional load on the database. Pyxis aims to choose

partitionings that achieve the smallest latency possible using the

current available resources on the server.
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1 class Order {

2 :APP: int id;

3 :APP: double[] realCosts;

4 :DB: double totalCost;

5 Order(int id) {

6 :APP: this.id = id;

7 :APP: sendAPP(this);

8 }

9 void placeOrder(int cid, double dct) {

10 :APP: totalCost = 0;

11 :APP: sendDB(this);

12 :APP: computeTotalCost(dct);

13 :APP: updateAccount(cid, totalCost);

14 }

15 void computeTotalCost(double dct) {

16 int i; double[] costs;

17 :APP: costs = getCosts();

18 :APP: realCosts = new double[costs.length];

19 :APP: sendAPP(this);

20 :APP: sendNative(realCosts,costs);

21 :APP: i = 0;

22 for (:DB: itemCost : costs) {

23 double realCost;

24 :DB: realCost = itemCost * dct;

25 :DB: totalCost += realCost;

26 :DB: sendDB(this);

27 :DB: realCosts[i++] = realCost;

28 :DB: sendNative(realCosts);

29 :DB: insertNewLineItem(id, realCost);

30 }

31 }

32 }

Figure 3: A PyxIL version of the Order class

3.1 A PyxIL Partitioning
Figure 3 shows PyxIL code for one possible partitioning of our

running example. PyxIL code makes explicit the placement of code

and data, as well as the synchronization of updates to a distributed

heap, but keeps the details of control and data transfers abstract.

Field declarations and statements in PyxIL are annotated with a

placement label (:APP: or :DB:). The placement of a statement

indicates where the instruction is executed. For field declarations,

the placement indicates where the authoritative value of the field

resides. However, a copy of a field’s value may be found on the

remote server. The synchronization protocols using a conservative

program analysis ensure that this copy is up to date if it might be

used before the next control transfer. Thus, each object apparent at

the source level is represented by two objects, one at each server.

We refer to these as the APP and DB parts of the object.

In the example code, the field id is assigned to the application

server, indicated by the :APP: placement label, but field totalCost

is assigned to the database, indicated by :DB:. The array allo-

cated on line 18 is placed on the application server. All statements

are placed on the application server except for the for loop in

computeTotalCost. When control flows between two statements

with different placements, a control transfer occurs. For example,

on line 21 in Fig. 3, execution is suspended at the application server

and resumes at line 22 on the database server.

Arrays are handled differently from objects. The placement of an

array is defined by its allocation site: that is, the placement of the

statement allocating the array. This approach means the contents

of an array may be assigned to either partition, but the elements are

not split between them. Additionally, since the stack is shared by

both partitions, method parameters and local variable declarations

do not have placement labels in PyxIL.

3.2 State Synchronization
Although all data in PyxIL has an assigned placement, remote

data may be transferred to or updated by any host. Each host main-

tains a local heap for fields and arrays placed at that host as well

as a remote cache for remote data. When a field or array is ac-

cessed, the current value in the local heap or remote cache is used.

Hosts synchronize their heaps using eager batched updates; mod-

ifications are aggregated and sent on each control transfer so that

accesses made by the remote host are up to date. The host’s lo-

cal heap is kept up to date whenever that host is executing code.

When a host executes statements that modify remotely partitioned

data in its cache, those updates must be transferred on the next con-

trol transfer. For the local heap, however, updates only need to be

sent to the remote host before they are accessed. If static analysis

determines no such access occurs, no update message is required.

In some scenarios, eagerly sending updates may be suboptimal.

If the amount of latency incurred by transferring unused updates

exceeds the cost of an extra round trip communication, it may be

better to request the data lazily as needed. In this work, we only

generate PyxIL programs that send updates eagerly, but investigat-

ing hybrid update strategies is an interesting future direction.

PyxIL programs maintain the above heap invariants using ex-

plicit synchronization operations. Recall that classes are partitioned

into two partial classes, one for APP and one for DB. The sendAPP

operation sends the APP part of its argument to the remote host. In

Fig. 3, line 7 sends the contents of idwhile line 26 sends totalCost

and the array reference realCosts. Since arrays are placed dy-

namically based on their allocation site, a reference to an array

may alias both locally and remotely partitioned arrays. On line

20, the contents of the array realCosts allocated at line 18 are

sent to the database server using the sendNative operation3. The

sendNative operation is also used to transfer unpartitioned native

Java objects that are serializable. Like arrays, native Java objects

are assigned locations based on their allocation site.

Send operations are batched together and executed at the next

control transfer. Even though the sendDB operation on line 26 and

the sendNative operation on line 28 are inside a for loop, the

updates will only be sent when control is transferred back to the

application server.

4. PARTITIONING PYXIS CODE
Pyxis finds a partitioning for a user program by generating parti-

tions with respect to a representative workload that a user wishes to

optimize. The program is profiled using this workload, generating

inputs that partitioning is based upon.

4.1 Profiling
Pyxis profiles the application in order to be able to estimate the

size of data transfers and the number of control transfers for any

particular partitioning. To this end, statements are instrumented

to collect the number of times they are executed, and assignment

expressions are instrumented to measure the average size of the

assigned objects. The application is then executed for a period of

time to collect data. Data collected from profiling is used to set

weights in the partition graph.

This profile need not perfectly characterize the future interac-

tions between the database and the application, but a grossly inac-

curate profile could lead to suboptimal performance. For example,

with inaccurate profiler data, Pyxis could choose to partition the

program where it expects few control transfers, when in reality the

3For presentation purposes, the contents of costs is also sent here.
This operation would typically occur in the body of getCosts().
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program might exercise that piece of code very frequently. For this

reason, developers may need to re-profile their applications if the

workload changes dramatically and have Pyxis dynamically switch

among the different partitions.

4.2 The Partition Graph
After profiling, the normalized source files are submitted to the

partitioner to assign placements for code and data in the program.

First, the partitioner performs an object-sensitive points-to analy-

sis [22] using the Accrue Analysis Framework [7]. This analysis

approximates the set of objects that may be referenced by each ex-

pression in the program. Using the results of the points-to analysis,

an interprocedural def/use analysis links together all assignment

statements (defs) with expressions that may observe the value of

those assignments (uses). Next, a control dependency analysis [3]

links statements that cause branches in the control flow graph (i.e.,

ifs, loops, and calls) with the statements whose execution depends

on them. For instance, each statement in the body of a loop has a

control dependency on the loop condition and is therefore linked to

the loop condition.

The precision of these analyses can affect the quality of the par-

titions found by Pyxis and therefore performance. To preserve

soundness, the analysis is conservative, which means that some

dependencies identified by the analysis may not be necessary. Un-

necessary dependencies result in inaccuracies in the cost model and

superfluous data transfers at run time. For this work we used a

“2full+1H” object-sensitive analysis as described in [29].

Dependencies. Using these analyses, the partitioner builds the par-

tition graph, which represents information about the program’s de-

pendencies. The partition graph contains nodes for each statement

in the program and edges for the dependencies between them.

In the partition graph, each statement and field in the program is

represented by a node in the graph. Dependencies between state-

ments and fields are represented by edges, and edges have weights

that model the cost of satisfying those dependencies. Edges repre-

sent different kinds of dependencies between statements:

• A control edge indicates a control dependency between two

nodes in which the computation at the source node influences

whether the statement at the destination node is executed.

• A data edge indicates a data dependency in which a value

assigned in the source statement influences the computation per-

formed at the destination statement. In this case the source state-

ment is a definition (or def) and the destination is a use.

• An update edge represents an update to the heap and connects

field declarations to statements that update them.

Part of the partition graph for our running example is shown in

Fig. 4. Each node in the graph is labeled with the corresponding

line number from Fig. 2. Note, for example, that while lines 20–22

appear sequentially in the program text, the partition graph shows

that these lines can be safely executed in any order, as long as they

follow line 19. The partitioner adds additional edges (not shown)

for output dependencies (write-after-write) and anti-dependencies

(read-before-write), but these edges are currently only used during

code generation and do not affect the choice of node placements.

For each JDBC call that interacts with the database, we also insert

control edges to nodes representing “database code.”

Edge weights. The tradeoff between network overhead and server

load is represented by weights on nodes and edges. Each statement

node assigned to the database results in additional estimated server

load in proportion to the execution count of that statement. Like-

wise, each dependency that connects two statements (or a statement

and a field) on separate partitions incurs estimated network latency

for(itemCost : costs)

realCost = itemCost * dct;

totalCost += realCost; realCosts[i++] = realCost;insertNewLineItem(id, realCost);

double[] realCosts;

double totalCost;

realCosts = new double[costs.length];

realCosts

elements

totalCost
realCost

realCost

realCosts

itemCost

realCosts

realCost

Control

Data

Update

19

20 22 21

16

17

3

4

Figure 4: A partition graph for part of the code from Fig. 2

proportional to the number of times the dependency is satisfied. Let

cnt(s) be the number of times statement s was executed in the pro-

file. Given a control or data edge from statement src to statement

dst , we approximate the number of times the edge e was satisfied

as cnt(e) = min(cnt(src), cnt(dst)).
Let size(def ) represent the average size of the data that is as-

signed by statement def . Then, given an average network latency

LAT and a bandwidth BW, the partitioner assigns weights to edges

e and nodes s as follows:

• Control edge e: LAT · cnt(e)

• Data edge e:
size(src)

BW
· cnt(e)

• Update edge e:
size(src)

BW
· cnt(dst)

• Statement node s: cnt(s)

• Field node: 0

Note that some of these weights, such as those on control and data

edges, represent times. The partitioner’s objective is to minimize

the sum of the weights of edges cut by a given partitioning. The

weight on statement nodes is used separately to enforce the con-

straint that the total CPU load on the server does not exceed a given

maximum value.

The formula for data edges charges for bandwidth but not la-

tency. For all but extremely large objects, the weights of data edges

are therefore much smaller than the weights of control edges. By

setting weights this way, we leverage an important aspect of the

Pyxis runtime: satisfying a data dependency does not necessar-

ily require separate communication with the remote host. As de-

scribed in Sec. 3.2, PyxIL programs maintain consistency of the

heap by batching updates and sending them on control transfers.

Control dependencies between statements on different partitions in-

herently require communication in order to transfer control. How-

ever, since updates to data can be piggy-backed on a control trans-

fer, the marginal cost to satisfy a data dependency is proportional

to the size of the data. For most networks, bandwidth delay is

much smaller than propagation delay, so reducing the number of

messages a partition requires will reduce the average latency even

though the size of messages increases. Furthermore, by encoding

this property of data dependencies as weights in the partition graph,

we influence the choice of partition made by the solver; cutting

control edges is usually more expensive than cutting data edges.

Our simple cost model does not always accurately estimate the

cost of control transfers. For example, a series of statements in

a block may have many control dependencies to code outside the

block. Cutting all these edges could be achieved with as few as

one control transfer at runtime, but in the cost model, each cut edge
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Minimize:
∑

ei∈Edges

ei · wi

nj − nk − ei ≤ 0

Subject to: nk − nj − ei ≤ 0

...
∑

ni∈Nodes

ni · wi ≤ Budget

Figure 5: Partitioning problem

contributes its weight, leading to overestimation of the total parti-

tioning cost. Also, fluctuations in network latency and CPU utiliza-

tion could also lead to inaccurate average estimates and thus result

in suboptimal partitions. We leave more accurate cost estimates to

future work.

4.3 Optimization Using Integer Programming
The weighted graph is then used to construct a Binary Integer

Programming problem [31]. For each node we create a binary vari-

able n ∈ Nodes that has value 0 if it is partitioned to the application

server and 1 if it is partitioned to the database. For each edge we

create a variable e ∈ Edges that is 0 if it connects nodes assigned

to the same partition and 1 if it is cut; that is, the edge connects

nodes on different partitions. This problem formulation seeks to

minimize network latency subject to a specified budget of instruc-

tions that may be executed on the server. In general, the problem

has the form shown in Figure 5. The objective function is the sum-

mation of edge variables ei multiplied by their respective weights,

wi. For each edge we generate two constraints that force the edge

variable ei to equal 1 if the edge is cut. Note that for both of these

constraints to hold, if nj 6= nk then ei = 1, and if nj = nk then

ei = 0. The final constraint in Figure 5 ensures that the summation

of node variables ni, multiplied by their respective weights wi, is

at most the “budget” given to the partitioner. This constraint limits

the load assigned to the database server.

In addition to the constraints shown in Figure 5, we add place-

ment constraints that pin certain nodes to the server or the client.

For instance, the “database code” node used to model the JDBC

driver’s interaction with the database must always be assigned to

the database, and similarly assign code that prints on the user’s

console to the application server.

The placement constraints for JDBC API calls are more inter-

esting. Since the JDBC driver maintains unserializable native state

regarding the connection, prepared statements, and result sets used

by the program, all API calls must occur on the same partition.

While these calls could also be pinned to the database, this could re-

sult in low-quality partitions if the partitioner has very little budget.

Consider an extreme case where the partitioner is given a budget

of 0. Ideally, it should create a partition equivalent to the origi-

nal program where all statements are executed on the application

server. Fortunately, this behavior is easily encoded in our model

by assigning the same node variable to all statements that contain

a JDBC call and subsequently solving for the values of the node

variables. This encoding forces the resulting partition to assign all

such calls to the same partition.

After instantiating the partitioning problem, we invoke the solver.

If the solver returns with a solution, we apply it to the partition

graph by assigning all nodes a location and marking all edges that

are cut. Our implementation currently supports lpsolve [20] and

Gurobi Optimizer[16].

Finally, the partitioner generates a PyxIL program from the par-

tition graph. For each field and statement, the code generator emits

a placement annotation :APP: or :DB: according to the solution

returned by the solver. For each dependency edge between remote

statements, the code generator places a heap synchronization oper-

ation after the source statement to ensure the remote heap is up to

date when the destination statement is executed. Synchronization

operations are always placed after statements that update remotely

partitioned fields or arrays.

4.4 Statement Reordering
A partition graph may generate several valid PyxIL programs

that have the same cost under the cost model since the execution

order of some statements in the graph is ambiguous. To eliminate

unnecessary control transfers in the generated PyxIL program, the

code generator performs a reordering optimization to create larger

contiguous blocks with the same placement, reducing control trans-

fers. Because it captures all dependencies, the partition graph is

particularly well suited to this transformation. In fact, PDGs have

been applied to similar problems such as vectorizing program state-

ments [14]. The reordering algorithm is simple. Recall that in addi-

tion to control, data, and update edges, the partitioner includes ad-

ditional (unweighted) edges for output dependencies (for ordering

writes) and anti-dependencies (for ordering reads before writes) in

the partition graph. We can usefully reorder the statements of each

block without changing the semantics of the program [14] by topo-

logically sorting the partition graph while ignoring back-edges and

interprocedural edges4.

The topological sort is implemented as a breadth-first traversal

over the partition graph. Whereas a typical breadth-first traversal

would use a single FIFO queue to keep track of nodes not yet vis-

ited, the reordering algorithm uses two queues, one for DB state-

ments and one for APP statements. Nodes are dequeued from one

queue until it is exhausted, generating a sequence of statements that

are all located in one partition. Then the algorithm switches to the

other queue and starts generating statements for the other partition.

This process alternates until all nodes have been visited.

4.5 Insertion of Synchronization Statements
The code generator is also responsible for placing heap synchro-

nization statements to ensure consistency of the Pyxis distributed

heap. Whenever a node has outgoing data edges, the code gener-

ator emits a sendAPP or sendDB depending on where the updated

data is partitioned. At the next control transfer, the data for all such

objects so recorded is sent to update of the remote heap.

Heap synchronization is conservative. A data edge represents

a definition that may reach a field or array access. Eagerly syn-

chronizing each data edge ensures that all heap locations will be

up to date when they are accessed. However, imprecision in the

reaching definitions analysis is unavoidable, since predicting fu-

ture accesses is undecidable. Therefore, eager synchronization is

sometimes wasteful and may result in unnecessary latency from

transferring updates that are never used.

The Pyxis runtime system also supports lazy synchronization in

which objects are fetched from the remote heap at the point of use.

If a use of an object performs an explicit fetch, data edges to that

use can be ignored when generating data synchronization. Lazy

synchronization makes sense for large objects and for uses in infre-

quently executed code. In the current Pyxis implementation, lazy

synchronization is not used in normal circumstances. We leave a

hybrid eager/lazy synchronization scheme to future work.

4Side-effects and data dependencies due to calls are summarized at
the call site.
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1 public class Order {

2 ObjectId oid;

3 class Order_app { int id; ObjectId realCostsId; }

4 class Order_db { double totalCost; }

5 ...

6 }

Figure 6: Partitioning fields into APP and DB objects

5. PYXIL COMPILER
The PyxIL compiler translates PyxIL source code into two par-

titioned Java programs that together implement the semantics of

the original application when executed on the Pyxis runtime. To

illustrate this process, we give an abridged version of the com-

piled Order class from the running example. Fig. 6 shows how

Order objects are split into two objects of classes Order app and

Order db, containing the fields assigned to APP and DB respec-

tively in Fig. 3. Both classes contain a field oid (line 2) which is

used to identify the object in the Pyxis-managed heaps (denoted by

DBHeap and APPHeap).

5.1 Representing Execution Blocks
In order to arbitrarily assign program statements to either the

application or the database server, the runtime needs to have com-

plete control over program control flow as it transfers between the

servers. Pyxis accomplishes this by compiling each PyxIL method

into a set of execution blocks, each of which corresponds to a straight-

line PyxIL code fragment. For example, Fig. 7 shows the code gen-

erated for the method computeTotalCost in the class. This code

includes execution blocks for both the APP and DB partitions. Note

that local variables in the PyxIL source are translated into indices

of an array stack that is explicitly maintained in the Java code

and is used to model the stack frame that the method is currently

operating on.

The key to managing control flow is that each execution block

ends by returning the identifier of the next execution block. This

style of code generation is similar to that used by the SML/NJ com-

piler [30] to implement continuations; indeed, code generated by

the PyxIL compiler is essentially in continuation-passing style [13].

For instance, in Fig. 7, execution of computeTotalCost starts

with block computeTotalCost0 at line 1. After creating a new

stack frame and passing in the object ID of the receiver, the block

asks the runtime to execute getCosts0with computeTotalCost1

recorded as the return address. The runtime then executes the ex-

ecution blocks associated with getCosts(). When getCosts()

returns, it jumps to computeTotalCost1 to continue the method,

where the result of the call is popped into stack[2].

Next, control is transferred to the database server on line 14, be-

cause block computeTotalCost1 returns the identifier of a block

that is assigned to the database server (computeTotalCost2). This

implements the transition in Fig. 3 from (APP) line 21 to (DB)

line 22. Execution then continues with computeTotalCost3, which

implements the evaluation of the loop condition in Fig. 3.

This example shows how the use of execution blocks gives the

Pyxis partitioner complete freedom to place each piece of code and

data to the servers. Furthermore, because the runtime regains con-

trol after every execution block, it has the ability to perform other

tasks between execution blocks or while waiting for the remote

server to finish its part of the computation such as garbage col-

lection on local heap objects.

5.2 Interoperability with Existing Modules
Pyxis does not require that the whole application be partitioned.

This is useful, for instance, if the code to be partitioned is a li-

brary used by other, non-partitioned code. Another benefit is that

code without an explicit main method can be partitioned, such as a

servlet whose methods are invoked by the application server.

To use this feature, the developer indicates the entry points within

the source code to be partitioned, i.e., methods that the developer

exposes to invocations from non-partitioned code. The PyxIL com-

piler automatically generates a wrapper for each entry point, such

as the one shown in Fig. 8, that does the necessary stack setup and

teardown to interface with the Pyxis runtime.

6. PYXIS RUNTIME SYSTEM
The Pyxis runtime executes the compiled PyxIL program. The

runtime is a Java program that runs in unmodified JVMs on each

server. In this section we describe its operation and how control

transfer and heap synchronization is implemented.

6.1 General Operations
The runtime maintains the program stack and distributed heap.

Each execution block discussed in Sec. 5.1 is implemented as a Java

class with a call method that implements the program logic of the

given block. When execution starts from any of the entry points, the

runtime invokes the call method on the block that was passed in

from the entry point wrapper. Each call method returns the next

block for the runtime to execute next, and this process continues

on the local runtime until it encounters an execution block that is

assigned to the remote runtime. When that happens, the runtime

sends a control transfer message to the remote runtime and waits

until the remote runtime returns control, informing it of the next

execution block to run on its side.

Pyxis does not currently support thread instantiation or shared-

memory multithreading, but a multithreaded application can first

instantiate threads outside of Pyxis and then have Pyxis manage the

code to be executed by each of the threads. Additionally, the cur-

rent implementation does not support exception propagation across

servers, but extending support in the future should not require sub-

stantial engineering effort.

6.2 Program State Synchronization
When a control transfer happens, the local runtime needs to com-

municate with the remote runtime about any changes to the pro-

gram state (i.e., changes to the stack or program heap). Stack

changes are always sent along with the control transfer message

and as such are not explicitly encoded in the PyxIL code. How-

ever, requests to synchronize the heaps are explicitly embedded in

the PyxIL code, allowing the partitioner to make intelligent deci-

sions about what modified objects need to be sent and when. As

mentioned in Sec. 4.5, Pyxis includes two heap synchronization

routines: sendDB and sendAPP, depending on which portion of the

heap is to be sent. In the implementation, the heap objects to be

sent are simply piggy-backed onto the control transfer messages

(just like stack updates) to avoid initiating more round trips. We

measure the overhead of heap synchronization and discuss the re-

sults in Sec. 7.3.

6.3 Selecting a Partitioning Dynamically
The runtime also supports dynamically choosing between parti-

tionings with different CPU budgets based on the current load on

the database server. It uses a feedback-based approach in which

the Pyxis runtime on the database server periodically polls the CPU

utilization on the server and communicates that information to the

application server’s runtime.

At each time t when a load message arrives with server load

St, the application server computes a weighted moving average

(EWMA) of the load, Lt = αLt−1 + (1 − α)St. Depending
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stack locations for computeTotalCost:

stack[0] = oid

stack[1] = dct

stack[2] = object ID for costs

stack[3] = costs.length

stack[4] = i

stack[5] = loop index

stack[6] = realCost

1 computeTotalCost0:

2 pushStackFrame(stack[0]);

3 setReturnPC(computeTotalCost1);

4 return getCosts0; // call this.getCosts()

5

6 computeTotalCost1:

7 stack[2] = popStack();

8 stack[3] = APPHeap[stack[2]].length;

9 oid = stack[0];

10 APPHeap[oid].realCosts = nativeObj(new dbl[stack[3]);

11 sendAPP(oid);

12 sendNative(APPHeap[oid].realCosts, stack[2]);

13 stack[4] = 0;

14 return computeTotalCost2; // control transfer to DB

15 computeTotalCost2:

16 stack[5] = 0; // i = 0

17 return computeTotalCost3; // start the loop

18

19 computeTotalCost3:

20 if (stack[5] < stack[3]) // loop index < costs.length

21 return computeTotalCost4; // loop body

22 else return computeTotalCost5; // loop exit

23

24 computeTotalCost4:

25 itemCost = DBHeap[stack[2]][stack[5]];

26 stack[6] = itemCost * stack[1];

27 oid = stack[0];

28 DBHeap[oid].totalCost += stack[6];

29 sendDB(oid);

30 APPHeap[oid].realCosts[stack[4]++] = stack[6];

31 sendNative(APPHeap[oid].realCosts);

32 ++stack[5];

33 pushStackFrame(APPHeap[oid].id, stack[6]);

34 setReturnPC(computeTotalCost3);

35 return insertNewLineItem0; // call insertNewLineItem

36

37 computeTotalCost5:

38 return returnPC;

Figure 7: Running example: APP code (left) and DB code (right). For simplicity, execution blocks are presented as a sequence of

statements preceded by a label.

public class Order {

...

public void computeTotalCost(double dct) {

pushStackFrame(oid, dct);

execute(computeTotalCost0);

popStackFrame();

return; // no return value

}

}

Figure 8: Wrapper for interfacing with regular Java

on the value of Lt, the application server’s runtime dynamically

chooses which partition to execute at each of the entry points. For

instance, if Lt is high (i.e., the database server is currently loaded),

then the application server’s runtime will choose a partitioning that

was generated using a low CPU budget until the next load mes-

sage arrives. Otherwise the runtime uses a partitioning that was

generated with a higher CPU-budget since Lt indicates that CPU

resources are available on the database server. The use of EWMA

here prevents oscillations from one deployment mode to another.

In our experiments with TPC-C (Sec. 7.1.3), we used two differ-

ent partitions and set the threshold between them to be 40% (i.e.,

if Lt > 40 then the runtime uses a lower CPU-budget partition).

Load messages were sent every 10 seconds with α set to 0.2. The

values were determined after repeat experimentation.

This simple, dynamic approach works when separate client re-

quests are handled completely independently at the application server,

since the two instances of the program do not share any state. This

scenario is likely in many server settings; e.g., in a typical web

server, each client is completely independent of other clients. Gen-

eralizing this approach so that requests sharing state can utilize this

adaptation feature is future work.

7. EXPERIMENTS
In this section we report experimental results. The goals of the

experiments are: to evaluate Pyxis’s ability to generate partitions

of an application under different server loads and input workloads;

and to measure the performance of those partitionings as well as the

overhead of performing control transfers between runtimes. Pyxis

is implemented in Java using the Polyglot compiler framework [24]

with Gurobi and lpsolve as the linear program solvers. The exper-

iments used mysql 5.5.7 as the DBMS with buffer pool size set

to 1GB, hosted on a machine with 16 2.4GHz cores and 24GB of

physical RAM. We used Apache Tomcat 6.0.35 as the web server

for TPC-W, hosted on a machine with eight 2.6GHz cores and

33GB of physical RAM. The disks on both servers are standard se-

rial ATA disks. The two servers are physically located in the same

data center and have a ping round trip time of 2ms. All reported

performance results are the average of three experimental runs.

For TPC-C and TPC-W experiments below, we implemented

three different versions of each benchmark and measured their per-

formance as follows:

• JDBC: This is a standard implementation of each benchmark

where program logic resides completely on the application server.

The program running on the application server connects to the re-

mote DBMS using JDBC and makes requests to fetch or write back

data to the DBMS using the obtained connection. A round trip is

incurred for each database operation between the two servers.

• Manual: This is an implementation of the benchmarks where

all the program logic is manually split into two halves: the “database

program,” which resides on the JVM running on the database server,

and the “application program,” which resides on the application

server. The application program is simply a wrapper that issues

RPC calls via Java RMI to the database program for each type of

transaction, passing along with it the arguments to each transaction

type. The database program executes the actual program logic as-

sociated with each type of transaction and opens local connections

to the DBMS for the database operations. The final results are re-

turned to the application program. This is the exact opposite from

the JDBC implementation with all program logic residing on the

database server. Here, each transaction only incurs one round trip.

For TPC-C we also implemented a version that implements each

transaction as a MySQL user-defined function rather than issuing

JDBC calls from a Java program on the database server. We found

that this did not significantly impact the performance results.

• Pyxis: To obtain instruction counts, we first profiled the JDBC

implementation under different target throughput rates for a fixed

period of time. We then asked Pyxis to generate different partitions

with different CPU budgets. We deployed the two partitions on the
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application and database servers using Pyxis and measured their

performance.

7.1 TPC­C Experiments
In the first set of experiments we implemented the TPC-C work-

load in Java. Our implementation is similar to an “official” TPC-C

implementation but does not include client think time. The database

contains data from 20 warehouses (initial size of the database is

23GB), and for the experiments we instantiated 20 clients issuing

new order transactions simultaneously from the application server

to the database server with 10% transactions rolled back. We varied

the rate at which the clients issued the transactions and then mea-

sured the resulting system’s throughput and average latency of the

transactions for 10 minutes.

7.1.1 Full CPU Setting

In the first experiment we allowed the DBMS and JVM on the

database server to use all 16 cores on the machine and gave Pyxis

a large CPU budget. Fig. 9(a) shows the throughput versus latency.

Fig. 9(b) and (c) show the CPU and network utilization under dif-

ferent throughputs.

The results illustrate several points. First, the Manual implemen-

tation was able to scale better than JDBC both in terms of achieving

lower latencies, and being able to process more transactions within

the measurement period (i.e., achieve a high overall throughput).

The higher throughput in the Manual implementation is expected

since each transaction takes less time to process due to fewer round

trips and incurs less lock contention in the DBMS due to locks be-

ing held for less time.

For Pyxis, the resulting partitions for all target throughputs were

very similar to the Manual implementation. Using the provided

CPU budget, Pyxis assigned most of the program logic to be exe-

cuted on the database server. This is the desired result; since there

are CPU resources available on the database server, it is advanta-

geous to push as much computation to it as possible to achieve max-

imum reduction in the number of round trips between the servers.

The difference in performance between the Pyxis and Manual im-

plementations is negligible (within the margin of error of the ex-

periments due to variation in the TPC-C benchmark’s randomly

generated transactions).

There are some differences in the operations of the Manual and

Pyxis implementations, however. For instance, in the Manual im-

plementation, only the method arguments and return values are

communicated between the two servers whereas the Pyxis imple-

mentation also needs to transmit changes to the program stack and

heap. This can be seen from the network utilization measures in

Fig. 9(c), which show that the Pyxis implementation transmits more

data compared to the Manual implementation due to synchroniza-

tion of the program stack between the runtimes. We experimented

with various ways to reduce the number of bytes sent, such as with

compression and custom serialization, but found that they used

more CPU resources and increased latency. However, Pyxis sends

data only during control transfers, which are fewer than database

operations. Consequently, Pyxis sends less data than the JDBC im-

plementation.

7.1.2 Limited CPU Setting

Next we repeated the same experiment, but this time limited the

DBMS and JVM (applicable only to Manual and Pyxis implemen-

tations) on the database server to use a maximum of three CPUs and

gave Pyxis a small CPU budget. This experiment was designed to

emulate programs running on a highly contended database server

or a database server serving load on behalf of multiple applica-

tions or tenants. The resulting latencies are shown in Fig. 10(a)

with CPU and network utilization shown in Fig. 10(b) and (c). The

Manual implementation has lower latencies than Pyxis and JDBC

when the throughput rate is low, but for higher throughput values

the JDBC and Pyxis implementations outperforms Manual. With

limited CPUs, the Manual implementation uses up all available

CPUs when the target throughput is sufficiently high. In contrast,

all partitions produced by Pyxis for different target throughput val-

ues resemble the JDBC implementation in which most of the pro-

gram logic is assigned to the application server. This configuration

enables the Pyxis implementation to sustain higher target through-

puts and deliver lower latency when the database server experiences

high load. The resulting network and CPU utilization are similar to

those of JDBC as well.

7.1.3 Dynamically Switching Partitions

In the final experiment we enabled the dynamic partitioning fea-

ture in the runtime as described in Sec. 6.3. The two partitionings

used in this case were the same as the partitionings used in the

previous two experiments (i.e., one that resembles Manual and an-

other that resembles JDBC). In this experiment, however, we fixed

the target throughput to be 500 transactions / second for 10 min-

utes since all implementations were able to sustain that amount of

throughput. After three minutes elapsed we loaded up most of the

CPUs on the database to simulate the effect of limited CPUs. The

average latencies were then measured during each 30-second pe-

riod, as shown in Fig. 11. For the Pyxis implementation, we also

measured the proportion of transactions executed using the JDBC-

like partitioning within each 1-minute period. Those are plotted

next to each data point.

As expected, the Manual implementation had lower latencies

when the server was not loaded. For JDBC the latencies remain

constant as it does not use all available CPUs even when the server

is loaded. When the server is unloaded, however, it had higher

latency compared to the Manual implementation. The Pyxis im-

plementation, on the other hand, was able to take advantage of the

two implementations with automatic switching. In the ideal case,

Pyxis’s latencies should be the minimum of the other two imple-

mentations at all times. However, due to the use of EWMA, it took

a short period of time for Pyxis to adapt to load changes, although it

eventually settled to an all-application (JDBC-like) deployment as

shown by the proportion numbers. This experiment illustrates that

even if the developer was not able to predict the amount of avail-

able CPU resources, Pyxis can generate different partitions under

various budgets and automatically choose the best one given the

actual resource availability.

7.2 TPC­W
In the next set of experiments, we used a TPC-W implementation

written in Java. The database contained 10,000 items (about 1GB

on disk), and the implementation omitted the thinking time. We

drove the load using 20 emulated browsers under the browsing mix

configuration and measured the average latencies at different tar-

get Web Interactions Per Seconds (WIPS) over a 10-minute period.

We repeated the TPC-C experiments by first allowing the JVM and

DBMS to use all 16 available cores on the database server followed

by limiting to three cores only. Fig. 12 and Fig. 13 show the latency

results. The CPU and network utilization are similar to those in the

TPC-C experiments and are not shown.

Compared to the TPC-C results, we see a similar trend in latency.

However, since the program logic in TPC-W is more complicated
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Figure 9: TPC-C experiment results on 16-core database server
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Figure 10: TPC-C experiment results on 3-core database server
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Figure 11: TPC-C performance results with dynamic switching

than TPC-C, the Pyxis implementation incurs a bit more overhead

compared to the Manual implementation.

One interesting aspect of TPC-W is that unlike TPC-C, some

web interactions do not involve database operations at all. For

instance, the order inquiry interaction simply prints out a HTML

form. Pyxis decides to place the code for those interactions entirely

on the application server even when the server budget is high. This

choice makes sense since executing such interactions on the appli-

cation server does not incur any round trips to the database server.

Thus the optimal decision, also found by Pyxis, is to leave the

code on the application server rather than pushing it to the database

server as stored procedures.
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Figure 12: TPC-W latency experiment using 16 cores

7.3 Microbenchmark 1
In our third experiment we compared the overhead of Pyxis to

native Java code. We expected code generated by Pyxis to be

slower because all heap and stack variable manipulations in Pyxis

are managed through special Pyxis objects. To quantify this over-

head we implemented a linked list and assigned all the fields and

code to be on the same server. This configuration enabled a fair

comparison to a native Java implementation. The results show that

the Pyxis implementation has an average overhead of 6× compared

to the Java implementation. Since the experiment did not involve

any control transfers, the overhead is entirely due to the time spent

running execution blocks and bookkeeping in the Pyxis managed

program stack and heap. This benchmark is a worst-case scenario

for Pyxis since the application is not distributed at all. We expect
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Figure 13: TPC-W latency experiment using 3 cores

CPU Load APP APP—DB DB

No load 7m37s 7m 6m39s

Partial load 8m55s 8m 8m11s
Full load 16m36s 17m30s 17m44s

Figure 14: Microbenchmark 2 results

that programmers will ask Pyxis to partition fragments of an ap-

plication that involve database operations and will implement the

rest of their program as native Java code. As noted in Sec. 5.2, this

separation of distributed from local code is fully supported in our

implementation; programmers simply need to mark the classes or

functions they want to partition. Additionally, results in the previ-

ous sections show that allowing Pyxis to decide on the partitioning

for distributed applications offers substantial benefits over native

Java (e.g., the JDBC and Manual implementations) even though

Pyxis pays some local execution overhead.

The overhead of Pyxis is hurt by the mismatch between the Java

Virtual Machine execution model and Pyxis’s execution model based

on execution blocks. Java is not designed to make this style of exe-

cution fast. One concrete example of this problem is that we cannot

use the Java stack to store local variables. Targeting a lower-level

language should permit lowering the overhead substantially.

7.4 Microbenchmark 2
In the final experiment, we compare the quality of the gener-

ated partitions under different CPU budgets by using a simple mi-

crobenchmark designed to have several interesting partitionings.

This benchmark runs three tasks in order: it issues a 100k small

select queries, performs a computationally intensive task (compute

SHA1 digest 500k times), and issues another 100k select queries.

We gave three different CPU budget values (low, medium, high) to

represent different server loads and asked Pyxis to produce parti-

tions. Three different partitions were generated: one that assigns all

logic to application server when a low budget was given (APP); one

that assigns the query portions of the program to the database server

and the computationally intensive task to the application when a

middle range budget was given (APP—DB); and finally one that

assigns everything to the database server (DB). We measured the

time taken to run the program under different real server loads, and

the results are shown in Fig. 14.

The results show that Pyxis was able to generate a partition that

fits different CPU loads in terms of completion time (highlighted in

Fig. 14). While it might be possible for developers to avoid using

the Pyxis partitioner and manually create the two extreme partitions

(APP and DB), this experiment shows that doing so would miss

the “middle” partitions (such as APP—DB) and lead to suboptimal

performance. Using Pyxis, the developer only needs to write the

application once, and Pyxis will automatically produce partitions

that are optimized for different server loads.

8. RELATED WORK
Several prior systems have explored automatically partitioning

applications across distributed systems. However, Pyxis is the first

system that partitions general database applications between an ap-

plication server and a database server. Pyxis also contributes new

techniques for reducing data transfers between host nodes.

Program partitioning. Program partitioning has been an active

research topic for the past decade. Most of these approaches re-

quire programs to be decomposed into coarse-grained modules or

functions that simplify and make a program’s dependencies ex-

plicit. Imposing this structure reduces the complexity of the par-

titioning problem and has been usefully applied to several tasks:

constructing pages in web applications with Hilda [33], processing

data streams in sensor networks with Wishbone [23], and optimiz-

ing COM applications with Coign [18].

Using automatic partitioning to offload computation from hand-

held devices has featured in many recent projects. Odessa [25] dy-

namically partitions computation intensive mobile applications but

requires programs to be structured as pipelined processing compo-

nents. Other projects such as MAUI [12] and CloneCloud [9] sup-

port more general programs, but only partition at method bound-

aries. Chroma [4] and Spectra [4] also partition at method bound-

aries but improve partition selection using code annotations called

tactics to describe possible partitionings.

Prior work on secure program partitioning such as Swift [8] and

Jif/split [34, 35] focuses more on security than performance. For

instance, Swift minimizes control transfers but does not try to opti-

mize data transfers.

Pyxis supports a more general programming model compared

to these approaches. Our implementation targets Java programs

and the JDBC API, but our technique is applicable to other gen-

eral purpose programming languages. Pyxis does not require spe-

cial structuring of the program nor does it require developer an-

notations. Furthermore, by considering program dependencies at

a fine-grained level, Pyxis can automatically create code and data

partitions that would require program refactoring or design changes

to affect in other systems.

Data partitioning and query rewriting. Besides program par-

titioning, another method to speed up database applications is to

rewrite or batch queries embedded in the application. One tech-

nique for automatically restructuring database workloads is to issue

queries asynchronously, using program analysis to determine when

concurrent queries do not depend on each other [6], or using data

dependency information to batch queries together [15]. Automatic

partitioning has advantages over this approach: it works even in

cases where successive queries do depend on each other, and it can

reduce data transfers between the hosts.

Data partitioning has been widely studied in the database re-

search community [2, 27], but the techniques are very different.

These systems focus on distributed query workloads and only par-

tition data among different database servers, whereas Pyxis parti-

tions both data and program logic between the database server and

its client.

Data persistence languages. Several projects explore integrated

query languages [32, 11, 21, 10, 19] that improve expressive-

ness and performance of database applications. Pyxis partitions

database applications that use the standard JDBC API. However,
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partitioning programs that employ integrated query languages would

ease analysis of the queries themselves and could result in addi-

tional optimizations. Raising the level of abstraction for database

interaction would also allow Pyxis to overcome difficulties like

constraining JDBC API calls to be on the same partition, and can

potentially improve the quality of the generated partitions.

Custom language runtimes. Sprint [26] speculatively executes

branches of a program to predict future accesses of remote data

and reduce overall latency by prefetching. The Sprint system is tar-

geted at read-only workloads and performs no static analysis of the

program to predict data dependencies. Pyxis targets a more general

set of applications and does not require speculative execution to

conservatively send data between hosts before the data is required.

Executable program slicing [5] extracts the program fragment

that a particular program point depends on using the a system de-

pendence graph. Like program slicing, Pyxis uses a control and

data dependencies to extract semantics-preserving fragments of pro-

grams. The code blocks generated by Pyxis, however, are finer-

grained fragments of the original program than a program slice,

and dependencies are satisfied by automatically inserting explicit

synchronization operations.

9. CONCLUSIONS
In this paper we presented Pyxis, a system for partitioning database

applications across an application and database server. The goal of

this partitioning is to eliminate the many small, latency-inducing

round trips between the application and database servers by push-

ing blocks of code into the database as stored procedures. Benefits

of our approach include that users are not required to manually con-

vert their code into the stored procedure representation, and that our

system can dynamically identify the best decomposition of the ap-

plication based on variations in server load. Our key technical con-

tributions include a cost-based profiling and analysis framework,

as well as a compilation strategy for converting the output of our

analysis into valid executables. Our experiments show that Pyxis

is able to provide performance benefits that are as good as a man-

ual conversion to stored procedures, providing up to 3× reduction

in latency and a 1.7× improvement in throughput versus a conven-

tional JDBC-based implementation of TPC-C.
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