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What is software?

• A sequence of instructions that perform some task

• Test cases

• Version control history

• Issue tracker

• Documentation

• …

How should it be analyzed?



Analysis of a natural object

• Machine learning over executions

• Version control history analysis

• Bug prediction

• Upgrade safety

• Prioritizing warnings

• Program repair



Natural language in programs

This talk:

1. Variable names:
find undesired variable interactions

2. Error messages and user manuals:
find inadequate diagnostic messages

3. Procedure documentation:
generate test oracles



Undesired variable interactions

int totalPrice;
int itemPrice;
int shippingDistance;

totalPrice = itemPrice + shippingDistance;

• The compiler issues no warning

• A human can tell the abstract types are different

Idea:

• Cluster variables based on usage in program operations

• Cluster variables based on words in variable names

Differences indicate bugs or poor variable names
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Clustering based on operations

Abstract type inference [ISSTA 2006]

int totalCost(int miles, int price, int tax) {

int year = 2016;

if ((miles > 1000) && (year > 2000)) {

int shippingFee = 10;

return price + tax + shippingFee;

} else {

return price + tax;

}

}
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Clustering based on variable names

Compute variable name similarity

1. Tokenize each variable into dictionary words
• in_authskey15⇒ {“in”, “authentications”, “key”}

• Expand abbreviations, best-effort tokenization

2. Compute word similarity
• For all w1 ∈ var1 and w2 ∈ var2, use WordNet or edit distance

3. Combine word similarity into variable name similarity
• maxwordsim(w1) = maximum wordsim(w1, w2) for w2 ∈ var2

• varsim(var1) = average maxwordsim(w1) for w1 ∈ var1



Results

• Found an undesired variable interaction in grep
if (depth < delta[tree->label])

delta[tree->label] = depth;

• Loses top 3 bytes of depth

• Not exploitable because of guards elsewhere in 
program, but not obvious here



Inadequate diagnostic messages

Scenario: user supplies a wrong configuration option
--port_num=100.0

Problem: software issues an unhelpful error message

• “… unexpected system failure …”

• “… unable to establish connection …”

• Better:  “--port_num should be an integer”

Goal:  detect such problems before shipping the code



Challenges for proactive detection 
of inadequate diagnostic messages

• How to trigger a configuration error?

• How to determine the inadequacy of a diagnostic message?



• How to trigger a configuration error?

• How to determine the inadequacy of a diagnostic message?

ConfDiagDetector’s solutions

‒ Configuration mutation + run system tests

‒ Use a NLP technique to check its semantic meaning

system testsconfiguration + failed tests  ≈ triggered errors

Diagnostic messages 
output by failed tests

User manual

Similar semantic meanings?



Message analysis

• A message is adequate, if it
• contains the mutated option name or value

• has a similar semantic meaning with the manual description

OR



Text similarity technique [Mihalcea’06]

Manual description
A message

Has similar semantic meanings, if many words in them
have similar meanings

The program goes wrong

The software fails

Example:

• Remove all stop words

• For each word in the diagnostic message, 
tries to find the similar words in the manual

• Two sentences are similar, if “many”  words
are similar between them.



Results

• Reported 25 missing and 18 inadequate messages
in Weka, JMeter, Jetty, Derby

• Validation by 3 programmers:
• 0% false negative rate

• 2% false positive rate



Test oracles for exceptional behavior

Exceptional behavior is a significant source of failures,
but is under-tested (significantly less coverage)

Goal: create test oracles (= assert statements)

Although programmers may not write tests,
the programmer does provide other indications:
procedure documentation (e.g., Javadoc)
/**
* Checks whether the comparator is now locked
* against further changes.
* 
* @throws UnsupportedOperationException if the
* comparator is locked
*/

protected void checkLocked() {...}



Text to code

1. Parse the @throws expression using the Stanford 
Parser
• Parse tree, grammatical relations, cross-references
• Challenges:

• Often not a well-formed sentence; code snippets as nouns/verbs
• Referents are implicit, assumes coding knowledge

2. Match each subject to a Java element
• Pattern matching
• Semantic similarity
• Lexical similarity to identifiers, types, documentation 

3. Match each predicate to a Java element

4. Create assert statement from expressions and methods



Automatically generated tests

• A test generation tool outputs:
• Passing tests – useful for regression testing
• Failing tests – indicates a program bug

• Without a formal specification, tool guesses 
whether a given behavior is correct

• False positives:  report a failing test
that was due to illegal inputs

• False negatives:  fail to report a failing test
because it might have been due to illegal inputs

• Results:  Reduced false positive test failures in 
EvoSuite by 1/3 or more



Machine learning + software engineering

• Software is more than source code

• Formal program analysis is useful, but insufficient

• Analyze and generate all software artifacts

A rich space for further exploration


