
Differential program verification

Shuvendu K. Lahiri
Research in Software Engineering (RiSE),

Microsoft Research

Redmond, WA

Involved in building static assertion
checkers

HAVOC [POPL’06,’08,’09, CAV’09, VSTTE’10, S&P’13]
 Heap logics, efficient memory modeling for C

• NTFS object management(~50 bugs, 300KLOC)
• Variants of MSRC Security Vulnerabilities in

IE/Kernel (~100 bugs, ~2MLOC)

STORM [CAV’09]
 Reducing concurrency analysis to sequential

• Concurrency bugs in Drivers (~10 bugs, 10KLOC)

Angelic Verifier [PLDI’13,CAV’15]
 Configurable angelic environment specification inference

• Assertion checker (memory safety, type-state) on Drivers/Kernel
(~100+ bugs, ~100KLOC) with minimal env modeling

• Will ships in a future release of Windows DK

Uses
components
Z3, Boogie,

Corral, Houdini,
…

Challenges for static assertion checkers

– Ability to find new bugs in large unannotated code
bases (without hand holding)

• Not cost-effective for legacy developers
– Costly upfront investment

• Need for specifications

• Need for environment specifications

• Need for help with program-specific invariants

– Scalability of (precise) interprocedural analysis

– Issue of false alarms
• Users get discouraged after a few “dumb warnings” [Coverity

report ‘10]

Motivation(s)

• How can program verifiers be used by any
developer cost-effectively?
– Tap (active) research in PL, FM, SE, conferences

– Answer questions that devs care about (even late in
development)

• Does modern software engineering process
create new ways to apply/leverage/extend
program verifiers?

One direction: differential verification

• Goal
– Preserve the quality of existing code

across evolution (no “regressions”)

• Idea: Verify properties of program
differences
– Highlight semantic differences that are

unintended

• Research question
– What properties of differences are

interesting?
– Which of them are amenable to

automated verification?

• This talk
– Some problems in this space
– Some ongoing solutions

Motivation: Verifying StringCopy

Check all
dereferences
are in bound

Need
precondition

relating dst,src,
size, null-

terminated

Need a
program-

specific loop
invariant

void StringCopy2

(char* dst, char*src, int
size)

{

int i=0;

for(;i<size-1 &&

*src; i++)

*dst++ = *src++;

*dst = 0;

}

}

False alarms from no preconditions

assert(Valid(x))
before every *x

size ==2, !Valid(src)size ==2, !Valid(dst)size ==1, !Valid(dst)

void StringCopy2

(char* dst, char*src, int
size)

{

int i=0;

for(;i<size-1 &&

*src; i++)

*dst++ = *src++;

*dst = 0;

}

}

Weaken the soundness: relative
correctness

void StringCopy2

(char* dst, char*src, int
size)

{

int i=0;

for(;i<size-1 &&

*src; i++)

*dst++ = *src++;

*dst = 0;

}

}

void StringCopy1

(char* dst, char*src, int
size)

{

int i=0;

for(;*src &&

i<size-1; i++)

*dst++ = *src++;

*dst = 0;

}

Is there any input that
passes StringCopy1 but fails

StringCopy2?

Relative correctness (Proof)

void StringCopy2

(char* dst, char*src, int
size)

{

int i=0;

for(;i<size-1 &&

*src; i++)

*dst++ = *src++;

*dst = 0;

}

}

void StringCopy1

(char* dst, char*src, int
size)

{

int i=0;

for(;*src &&

i<size-1; i++)

*dst++ = *src++;

*dst = 0;

}

No need for any preconditions

Mutual loop invariants:
src.1=src.2, dst.1=dst.2, size.1=size.2, i.1=i.2,
Mem_char.1 == Mem_char.2, ok1  ok2

Problems

• Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

• Equivalence checking for evolving compilers
– FSE’13, CAV’15

• Differential Assertion Checking and VMV
– FSE’13, PLDI’14

• Relative bounds and termination
• Semantic Diff for Concurrent Programs
• Semantic Merge
• Semantic Change Impact Analysis

Explored in a
tool SymDiff

Problems

• Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

• Equivalence checking for evolving compilers
– FSE’13, CAV’15

• Differential Assertion Checking and VMV
– FSE’13, PLDI’14

• Relative bounds and termination
• Semantic Diff for Concurrent Programs
• Semantic Merge
• Semantic Change Impact Analysis

Explored in a
tool SymDiff

proc f1(x1): r1
modifies g1
{

s1;
L1:

w1 := call h1(e1);
t1

}

proc f2(x2): r2
modifies g2
{

s2;
L2:

w2 := call h2(e2);
t2

}

Reduce differential analysis single
program analysis

Novel product
construction

Off-the-
shelf

program
verifier +
invariant
inference

Verifying bug fixes

• Question: did a fix inadvertently introduce new bugs?

• Verisec suite:
“snippets of open source programs which contain buffer
overflow vulnerabilities, as well as corresponding patched
versions.”

– Examples include apache, madwifi, sendmail, …(~ 50-100 LOC)
– Relative memory safety (buffer overflow) checking

• Automatic proof of relative correctness
– Using small space of relative invariants {x <= x’, x >= x’, x == x’, x  x’, ..}

• Applied similar ideas in Verification Modulo Versions (VMV) in CLOUSOT
– Conditions guaranteeing “bug fix” vs. “regression” (~100KLOC C#)

Problems

• Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

• Equivalence checking for evolving compilers
– FSE’13, CAV’15

• Differential Assertion Checking and VMV
– FSE’13, PLDI’14

• Relative bounds and termination
• Semantic Diff for Concurrent Programs
• Semantic Merge
• Semantic Change Impact Analysis

Explored in a
tool SymDiff

Semantic merge

• Inconsistency can be introduced by (text-based)
git merge
– Blamed for Apple SSL/TLS Goto Bug 2014 (led to security

exploits)

• Questions
– Can we have a semantic formulation of conflict-freedom?

[revive ’90s work]

– Can we check such a property automatically?

Semantic merge

• Verifying conflict freedom for 3-way merge
– How to represent differences (using edit scripts)
– Formalize conflict-freedom

• A variable v in Merge agrees with the A (respectively B) if A
(respectively B) changes v’s value over Base

– Reduction to assertion checking
– Sound 4-way product construction
– Simulation relation inference using Horn Clause Solver

(Duality)

• Next step: Semantic merge
– Synthesize verified merge when git merge fails or causes

conflict

Problems

• Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

• Equivalence checking for evolving compilers
– FSE’13, CAV’15

• Differential Assertion Checking and VMV
– FSE’13, PLDI’14

• Relative bounds and termination
• Semantic Diff for Concurrent Programs
• Semantic Merge
• Semantic Change Impact Analysis

Explored in a
tool SymDiff

Semantic change impact

• Problem
– Which statements are impacted by

a change (soundly)?
– Current approaches don’t exploit

change semantics to contain
changes

– Hard to localize change (even for
refactoring parts)

• Solution
– Incorporate change semantics by

inferring equivalences when they
hold (SymDiff)

– More subtle than checking two
procedures are equal

– Novel combination of data-flow and
differential invariant inference

Foo(x, z) {
y = x + x 2x ;
Bar(y);
Complex(z);

}

Bar(y) {
Baz(y+1);
….

}
Baz(z) {

…
Foo(.., z);
….

}

Semantic change impact

• Problem
– Which statements are impacted by

a change (soundly)?
– Current approaches don’t exploit

change semantics to contain
changes

– Hard to localize change (even for
refactoring parts)

• Solution
– Incorporate change semantics by

inferring equivalences when they
hold (SymDiff)

– More subtle than checking two
procedures are equal

– Novel combination of data-flow and
differential invariant inference

Foo(x, z) {
y = x + x 2x ;
Bar(y);
Complex(z);

}

Bar(y) {
Baz(y+1);
….

}
Baz(z) {

…
Foo(.., z);
….

}

Semantic change impact

• Questions

– How to formalize CI soundly, not dependent on
syntactic diff

– What kind of semantic/relative facts can help
prune impact

– How to leverage relative verification in a scalable
manner with a lightweight static analysis

• Applied it to several GitHub projects using
SMACK +SymDiff

Summary

• Differential verification
– Verify properties of difference (2+ programs) as opposed to a single program
– New domain of problems to apply verification
– Less reliance of specifications, environment modeling and program-specific

invariants

• Use cases in software engineering
– High quality detection of regressions (e.g. relative memory safety)
– Help with refactorings (equivalence checking, ..)
– Code review (understand change impact)
– Redundant tests (that only cover non-impacted statements)
– Safer merge (avoid cost regression and rollback later)
– Verifying approximations in compilers (relative assertion, termination safety)

• A new cost-effective way to use automatic verification!

SymDiff http://research.microsoft.com/en-us/projects/symdiff/

http://research.microsoft.com/en-us/projects/symdiff/

