Differential program verification

Shuvendu K. Lahiri

Research in Software Engineering (RiSE),
Microsoft Research
Redmond, WA

Involved in building static assertion
checkers

HAVOC [POPL’06,'08,'09, CAV’09, VSTTE’10, S&P’13] HEEE
components
« NTFS object management(~50 bugs, 300KLOC) Z3, Boogie., :
* Variants of MSRC Security Vulnerabilities in Corral, Houdini,
|IE/Kernel (~100 bugs, ~2MLOC

STORM [CAV’09]

e Concurrency bugs in Drivers (~10 bugs, 10KLOC)

Angelic Verifier [PLDI’13,CAV’15]

» Assertion checker (memory safety, type-state) on Drivers/Kernel
(~100+ bugs, ~100KLOC) with minimal env modeling
* Will ships in a future release of Windows DK

Challenges for static assertion checkers

— Ability to find new bugs in large unannotated code
bases (without hand holding)

* Not cost-effective for legacy developers

— Costly upfront investment
* Need for specifications
* Need for environment specifications
* Need for help with program-specific invariants

— Scalability of (precise) interprocedural analysis

— Issue of false alarms

* Users get discouraged after a few “dumb warnings” [Coverity
report ‘10]

Motivation(s)

* How can program verifiers be used by any
developer cost-effectively?
— Tap (active) research in PL, FM, SE, conferences
— Answer guestions that devs care about (even late in

development)

 Does modern software engineering process
create new ways to apply/leverage/extend
program verifiers?

One direction: differential verification

Goal

— Preserve the quality of existing code
across evolution (no “regressions”)

Idea: Verify properties of program
differences

— Highlight semantic differences that are
unintended

Research question

— What properties of differences are
interesting?

— Which of them are amenable to
automated verification?

This talk

— Some problems in this space
— Some ongoing solutions

Motivation: Verifying StringCopy

Need
precondition
relating dst,src,

size, null-
terminated

Need a
program-
specific loop
invariant

Check all

dereferences
are in bound

void StringCopy?2

char* dst, char*src, 1int
size)

{
int i=0;
ofor(;i<size-1 &&
*Src; i++)
*dst++ = *Src++;
*dst = 0;

False alarms from no preconditions

void StringCopy?2
siire=—2], |\\&dilit{éit)) (char* dst, char*src, 1int

assert(Valid(x))
before every *x

Weaken the soundness: relative
correctness

void StringCopyl

(char* dst, char*src, int
size)

{
int 1=0;
for(;*src &&
i<size-1; i++)
*dst++ = *Src++;
*dst = 0;
}

passes StringCopy1 but fails

void StringCopy?2

(char* dst, char*src, int
size)

{
int i=0;
for(;i<size-1 &&
*Src; i4+)
*dst++ = *src++;
*dst = 0;
}

Is there any input that

StringCopy2?

Relative correctness (Proof)

void StringCopyl void StringCopy?2
(char* dst, char*src, 1int (char* dst, char*src, 1int
size) size)
{ {

int 1=0; int 1=0;

for(;*src && for(;i<size-1 &&

i<size-1; i++) *src; i++)
*dst++ = *sSrc++; *dst++ = *src++;

*dst = 0; *dst = 0;

} }

No need for any preconditions

£ AN

| Mutual loop invariants:
src.1=src.2, dst.1=dst.2, size.1=size.2, i.1=i.2,
Mem_char.1 == Mem_char.2, okl =» ok2

Problems

* Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

Equivalence checking for evolving compilers
— FSE’13, CAV’15

Differential Assertion Checking and VMV

— FSE’13, PLDI'14

Relative bounds and termination
Semantic Diff for Concurrent Progra

Semantic Merge o0l Symbif
Semantic Change Impact Analysis

Problems

* Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

Equivalence checking for evolving compilers
— FSE’13, CAV’15

Differential Assertion Checking and VMV

— FSE’13, PLDI'14

Relative bounds and termination
Semantic Diff for Concurrent Progra

Semantic Merge o0l Symbif
Semantic Change Impact Analysis

Reduce differential analysis=® single
program analysis

proc f1_f2(x1,x2) returns (rl,r2)
?'mdifies gl, g2
proc f1(x1): rl G g e
modifies g1 s
{ N I d t . i1, gill :=el, gl ; //store inputs
Sl. ove ro uc T w=1 ::Jeh'l(els)t; ca witness
Ll' ! p . 2::1 ,7 go'ill ":/dl,tgl; f//5rct>re outputs Off-the-
Wi = call hi(ed); construction fexq shelf
- ’
[[s2:1]
L2:
tl 2 i2, gil2 :=e2, g2, //store inputs program
} 532 Y2 iruer skt call witness verifier +
o2 ,- go_I2 = w2, g2; //store outputs
proc f2(x2): r2 [e2 1 invariant
H A block f ir of | sil .
modifies g2 Vtor 5. pair of mapped procedures inference
{ if (b_l1 && b_I2) { //for (L1,12) pair
2 ;’t{sgtfresgigezg_!obgais i
s2; . — g1, g2
L2: gl, g2 := gill, gil2;)
. call k1, I:Q = |h§:.|g:2('_u' i1z]I;
1 ==ol1 1 == _11);
w2 := call h2(e2); omwme (K2 —— o2 S8 52 —— Eol),
t2 /{res;ore g!obf.‘s . g2
gl, g2 :=stgl, s '
} }
return;

Verifying bug fixes

Question: did a fix inadvertently introduce new bugs?

Verisec suite:

“snippets of open source programs which contain buffer
overflow vulnerabilities, as well as corresponding patched
versions.”

— Examples include apache, madwifi, sendmail, ...(~ 50-100 LOC)
— Relative memory safety (buffer overflow) checking

Automatic proof of relative correctness
— Using small space of relative invariants {x <= x’, x>=x’, x == x’, x =2 X/, ..}

Applied similar ideas in Verification Modulo Versions (VMV) in CLOUSOT
— Conditions guaranteeing “bug fix” vs. “regression” (~100KLOC C#)

Problems

* Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

Equivalence checking for evolving compilers
— FSE’13, CAV’15

Differential Assertion Checking and VMV

— FSE’13, PLDI'14

Relative bounds and termination
Semantic Diff for Concurrent Progra

Semantic Merge o0l Symbif
Semantic Change Impact Analysis

Semantic merge

}

Base:

int £(int x) {

return x;

Variant A:

int f(int x) {
X++;
return x;

1

Variant B:
int £(int x) {

X++;
return x;
}

Incorrect merge:
int f(int x) {
X++;
X++;
return x;
1

Inconsistency can be introduced by (text-based)

git merge

— Blamed for Apple SSL/TLS Goto Bug 2014 (led to security
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != @)

goto fail;
goto fail;

Questions

/* MISTAKE! THIS LINE SHOULD NOT BE HERE */

— Can we have a semantic formulation of conflict-freedom?

[revive '90s work]

— Can we check such a property automatically?

Semantic merge

* Verifying conflict freedom for 3-way merge
— How to represent differences (using edit scripts)

— Formalize conflict-freedom

e Avariable vin Merge agrees with the A (respectively B) if A
(respectively B) changes v’s value over Base

— Reduction to assertion checking
— Sound 4-way product construction

— Simulation relation inference using Horn Clause Solver
(Duality)

* Next step: Semantic merge

— Synthesize verified merge when git merge fails or causes
conflict

Problems

* Procedure-level equivalence rarely holds for feature-additions,
bug-fixes, refactoring

Equivalence checking for evolving compilers
— FSE’13, CAV’15

Differential Assertion Checking and VMV

— FSE’13, PLDI'14

Relative bounds and termination
Semantic Diff for Concurrent Progra

Semantic Merge o0l Symbif
Semantic Change Impact Analysis

Semantic change impact

* Problem

— Which statements are impacted by
a change (soundly)?

— Current approaches don’t exploit
change semantics to contain
changes

— Hard to localize change (even for
refactoring parts)

e Solution

— Incorporate change semantics by
inferring equivalences when they
hold (SymDiff)

— More subtle than checking two
procedures are equal

— Novel combination of data-flow and
differential invariant inference

Semantic change impact

* Problem

— Which statements are impacted by
a change (soundly)?

— Current approaches don’t exploit FOO(X“ |
change semantics to contain ‘ 2X ;
changes Bar(y);

— Hard to localize change (even for Complex(z);
refactoring parts) }

e Solution

— Incorporate change semantics by Bar(y) {
inferring equivalences when they Baz(y+1);

hold (SymDiff) \
— More subtle than checking two }

procedures are equal Baz(z) {

— Novel combination of data-flow and
differential invariant inference Foo(.., z);

Semantic change impact

e Questions

— How to formalize Cl soundly, not dependent on
syntactic diff

— What kind of semantic/relative facts can help
prune impact

— How to leverage relative verification in a scalable
manner with a lightweight static analysis

* Applied it to several GitHub projects using
SMACK +SymDiff

Summary

e Differential verification
— Verify properties of difference (2+ programs) as opposed to a single program
— New domain of problems to apply verification

— Less reliance of specifications, environment modeling and program-specific
invariants

e Use cases in software engineering
— High quality detection of regressions (e.g. relative memory safety)
— Help with refactorings (equivalence checking, ..)
— Code review (understand change impact)
— Redundant tests (that only cover non-impacted statements)
— Safer merge (avoid cost regression and rollback later)
— Verifying approximations in compilers (relative assertion, termination safety)

* A new cost-effective way to use automatic verification!

SymDiff http://research.microsoft.com/en-us/projects/symdiff/

http://research.microsoft.com/en-us/projects/symdiff/

