
Aligning ASL for statistical translation using a discriminative word model

Ali Farhadi, David Forsyth

Computer Science Department

University of Illinois at Urbana-Champaign

{afarhad2,daf}@uiuc.edu

Abstract

We describe a method to align ASL video subtitles with

a closed-caption transcript. Our alignments are partial,

based on spotting words within the video sequence, which

consists of joined (rather than isolated) signs with unknown

word boundaries. We start with windows known to contain

an example of a word, but not limited to it. We estimate the

start and end of the word in these examples using a voting

method. This provides a small number of training examples

(typically three per word). Since there is no shared struc-

ture, we use a discriminative rather than a generative word

model.

While our word spotters are not perfect, they are suffi-

cient to establish an alignment. We demonstrate that quite

small numbers of good word spotters results in an alignment

good enough to produce simple English-ASL translations,

both by phrase matching and using word substitution. Key-

words: Applications of Vision; Image and video retrieval;

Object recognition; Action Analysis and Recognition.

1. Introduction

Recognition: Recognizing American sign language

(ASL) has been well studied. Authors typically fit Hidden

Markov Models to words, and use the models discrimina-

tively. Starner and Pentland [17] report a recognition rate

of 90% with a vocabulary of 40 signs using a rigid lan-

guage model. Grobel and Assan recognize isolated signs

under similar conditions for a 262-word vocabulary using

HMM’s [8]. This work was extended to recognize continu-

ous German sign language with a vocabulary of 97 signs by

Bauer and Hienz [2]. Vogler and Metaxas use estimates of

arm position from a physical sensor mounted on the body or

from a system of three cameras and report word recognition

accuracy of the order of 90% for a vocabulary of 53 words

in [19, 20, 23], and build a phoneme model for 22 word vo-

cabulary without handshapes in [21] and with handshapes

in [22]. Bowden et al. use ICA and a Markov model to

learn accurate models of 49 isolated signs using one exam-

ple per sign [3]. There is no explicitly discriminative model

Figure 1. Left: a typical frame, showing the subtitle in a circle

on the bottom left corner, one of four possible locations. The ex-

tracted ASL frame is on the right, expanded to emphasize the rel-

atively low resolution available.

in the literature.

Alignment While a few projects have attempted to trans-

late English into ASL (see review in [7]) none have made

a heavy use of statistical techniques and the literature con-

tains no attempt to align closed captions with ASL (or any

other sign language). Alignment is an established and im-

portant tool in the statistical machine translation literature

(reviews in [13, 11]). A bitext is a body of material in two

languages that has the same meaning; the most used exam-

ple is Canadian Hansard, which reports the doings of the

Canadian parliament in both English and French. In align-

ment, one attempts to find correspondence between increas-

ingly fine units of meaning for a bitext: typically, one aligns

first at (roughly) the paragraph level, establishing which

paragraphs correspond to which; then at the sentence level,

and then, using more sophisticated models of correspon-

dence, at the phrase or word level (it is possible to align

quite complex syntactical structures [15]). Coarse align-

ments can be done linearly [13]. The most stable landmarks

for English-ASL alignment are “frozen” ASL signs, which

are produced with consistent gestures. These include nouns,

certain non-manual features (e.g. the facial expression for

questions), and possibly those verbs which are not spatially

directed and don’t incorporate classifiers (e.g. KNOW and

WORK).

A statistical translation is obtained from an alignment

by choosing a best target sentence, given a source sentence,

under various models of word correspondence (methods
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Figure 2. Continuous ASL video is rich in tricky phenomena. Top two rows show examples of the word “grandma”; we show every 2nd

frame of the word. Bottom two rows show examples of the word “grandpa”; again, we show every 2nd frame of the word. Note the word

length is not constant, and that the role of right and left hands have switched for the two examples of grandpa.

Figure 3. Rough linear alignment offers pools of continuous ASL

video within which a word is known to lie. To build a word model,

we need to identify the start and end of the word. Typically, we

have three example pools for each word. We fit four HMM’s to

these examples, two with the state model on the left (where the

word model itself is a 48 state HMM with self-loops and skipping;

the two HMM’s have different emission models), and two with the

HMM on the right, which looks for substantial changes in the se-

quence. We expect these to occur at the start and the end of the

word, and so look for start running this HMM forward in time and

end running it backward. This procedure yields three putative start

points and three putative end points for each training example; we

take the median. Figure 7 shows the method is successful.

Figure 4. We have built discriminative word models for a vo-

cabulary of 31 words, shown here broken out by part of speech.

The only language model is the transcript which must be aligned.

Words in red are words for base words; all other words are derived

words, using the language of section 2.

date to at least [4]; see the review in [1]). Some models

come with huge difficulties in identifying the best sentence.

An increasingly popular alternative is to work with some-

what larger chunks than words: One cuts-and-pastes from a

corpus of aligned bitext, with some limited linguistic trans-

formations (e.g. substituting one word for another word of

the same class). This “Example Based Machine Transla-

tion” approach dates to at least [14] and has been used suc-

cessfully by the Diplomat project to quickly develop trans-

lators for new languages [5, 6]. While phrasal translation

appears to be a natural method for English-ASL transla-

tion, we are aware of no attempt to build phrasal transla-

tion methods, perhaps because no-one has aligned a bitext.

Bungeroth and Ney [24]suggest a statistical machine trans-

lation system for transcribed sign language, using a tran-

scription notation like HamNoSys, and written language,

especially for the language pair German Sign Language

(DGS) and German.

Wordspotting is a method introduced by Rath and Man-

matha [16] for identifying words in handwriting; one builds

a discriminative word model using aligned training data.

2. Word Spotting with a Discriminative Model

Typically, most words appear seldom [12], and this

means that, to align a large body of continuous sign lan-

guage with a transcript, one must be willing to build word

models with relatively few examples. Furthermore, these

examples will not be well localized; instead, one is pre-

sented with chunks of video within which a word is known

to appear. HMM’s are not particularly well adapted to mod-

eling sign language. First, unless one has a phonemic dic-

tionary available, one cannot benefit from the pooling of

training data across words that is so useful in speech ap-

plications — each word model is a completely new model.

We are not aware of a phonemic dictionary for any sign lan-

guage, though there is work on ASL phonology [18] and

extensive linguistic work [9]. Second, HMM’s are genera-

tive, and may produce weak results unless one works with

features known to be discriminative, particularly when one

has few training examples. The advantage of HMM’s is

their ability to encode dynamical information; as we show,

standard discriminative methods can do so perfectly satis-

factorily.

2.1. Dataset

Our dataset consists of 80000 frames from an ASL sub-

titled version of the film “The Land before Time III: Jour-

ney through the Mists”, digitized from video tape, and with

closed captions extracted. There are variations in subtitling

practice, some using ASL word order and constructions and

others using English word order (which our subtitles do).



Figure 5. Our film, “The Land before Time III: Journey through the Mists” consists of a series of blocks of video where spoken narration,

ASL subtitling and closed captions occur, interspersed with video where there is neither dialogue nor narration. In a typical block, there

are several speakers. Top: A timeline for one such block, with discriminative word model responses marked. The green blocks represent

correct detections, the red blocks represent false positives. We are not aware of false negatives. Each green block is linked to the first letter

of the word it represents in the transcript below (where spotted words are marked in green). Figure 6 shows a second such sequence.

Frames are extracted using a commercial application, Fi-

nalCut Express, which can suppress the most objectionable

interlacing effects. The subtitling appears in a circle placed

in one of four places in each frame, and straightforward

color and texture tests are sufficient to tell reasonably re-

liably whether and where a subtitle appears. Frames with-

out subtitles are discarded, the subtitle is cut out, and the

outside of the circle is blacked out (figure 1).

2.2. Rough Alignment

Our film, “The Land before Time III: Journey through

the Mists” consists of a series of blocks of video where spo-

ken narration, ASL subtitling and closed captions occur, in-

terspersed with video where there is neither dialogue nor

narration. In a typical block, there are several speakers. All

this means that video blocks and transcript blocks are al-

ready aligned. Within a block, a linear alignment assumes

that each word is of fixed length, and for a given word ob-

tains a window of video of typically much greater length

centered by word counting. These sequences are expected

to contain the word, amid much video “junk”. We start with

three example sequences per word, each of which consists

of 300 frames; our words typically run to 30 frames.

2.3. Features

Subtitle frames are produced as in section 2.1. We then

identify possible hands and head in each frame, using a

simple skin detector that uses color thresholds. Skin pixels

are clustered to three clusters of known size using k-means.

Head and hand configuration is encoded by extracting SIFT

features for a bounding box centered on the cluster; we use

local code, implementing the features of Lowe [10]. When

hands overlap, the clusters overlap and so do these bound-

ing boxes, meaning that both hands may be reported with

the same feature. This appears to present no problem over-

all, most likely because hands do not overlap for long peri-

ods and we use dynamical features. We classify the leftmost

hand as the left hand. The static feature vector for a sin-

gle frame is 395 dimensional and consists of sift features

for head and hands, position of the head, offset from left to

right hand, and orientation and velocity of each hand. We

obtain a dynamic feature vector for each frame by stacking

feature vectors for an 11 frame interval centered on the cur-

rent frame. The resulting vector has dimension 4345. This

dimension is disturbingly large; in section 2.5, we demon-

strate a novel method of dimension reduction using discrim-

inative features.

2.4. Finding Word Boundaries for Training

In our experience, HMM’s produce relatively poorly dis-

criminative word models under these conditions, but are

good at identifying start and end of word within a sequence.

However, at this stage we do not have a clear model of

which features are discriminative or are best used to pro-

duce a word model. For different words, different features

seem to apply. We therefore use several HMM’s to esti-

mate word start and end, and take the median as an estimate.

We use two topologies: a junk-word-junk model (where the

word has 48 hidden states, with self-loops and skips) and

a 1-2 model (figure 3), which is intended to find signifi-

cant changes in the sequence. We use the junk-word-junk

model with two sets of features. First, we use the per frame

static features, dimension reduced using PCA to 30 dimen-



sions. Second, we use the dynamical feature vector, dimen-

sion reduced using PCA applied to head and hand shape

information to 189 dimensions. Inference by dynamic pro-

gramming then produces two estimates of the start and end

of the word.

Our 1-2 model uses a 44 dimensional feature vector con-

sisting of the velocity measurements for each hand for an 11

frame window centered on the current frame. This model

looks for large changes in dynamical structure; we apply it

forward and backward in time, to obtain a third estimate of

start and end point respectively. We then take the median

estimate for start and end point for the word.

2.5. Building Discriminative Word Models

We now have three fairly accurate example windows for

each word. We select a subset of B words to serve as base

words, to which we fit a one-vs-all discriminative model us-

ing each frame of each word as examples, and using the dy-

namic feature. The model is fit using logistic regression on

the dynamic features. One could reasonably fear variance

problems, given the feature vector is 4345 dimensional and

there are relatively few examples; we have not encountered

any. However, we do not wish to fit a discriminative model

for each word to a feature vector of such high dimension.

We therefore use the posterior as a feature.

For any base word, we can compute the posterior that

a frame comes from that base word or some other, condi-

tioned on an 11 frame window centered on the frame. We

now compute a new set of features for each frame, con-

sisting of the posterior for each base word. We use this B

dimensional feature vector as a feature vector for all other

words. For other words, we apply logistic regression to the

output of the logistic regression that represents base words.

The feature vector is attractive, because it is much lower

dimensional than our original dynamical feature vector;

because it is composed of discriminative features, albeit

discriminative for related tasks; and because it compares

frames with other words. We call words for which the dis-

criminative model is built in this way derived words. Cur-

rently, base words are chosen at random, but we believe that

some choices are better than others, and are investigating a

search procedure.

We can now compute a posterior that any frame comes

from a given word or some other, conditioned on a window

of frames centered on the current frame. We compute this

posterior for each frame and each word that appears in the

corresponding transcript block. Detection consists of two

stages: First, for each frame declare a detection of a word

when its posterior exceeds some threshold. Second, sup-

press detections that span fewer than half the average size of

a training word. We do not require that words exclude one

another (meaning that a frame might be allocated to more

than one words). The transcript will be used to determine
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Figure 7. The scatter plot compares manually determined start and

end points found using an ASL dictionary with those obtained in

pools of training video by our median method (section 2.4; fig-

ure 3) for 48 examples of 16 words (3 examples per word). Our

method localizes starts and ends in continuous ASL video to within

approximately two frames.
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Figure 8. The scatter plot compares manually determined start and

end points found using an ASL dictionary with those obtained by

our discriminative method (section 2) for 30 words. Note the offset

in the scatter plot, indicating a small bias in the predicted start/end

points; we do not currently correct this bias, but believe that it in-

dicates that word boundaries in continuous ASL video may be ac-

companied by characteristic features that could be found without

word models. Allowing for bias correction, our method localizes

starts and ends in continuous ASL video to within approximately

two frames.

what, if any, word is present.

2.6. Alignment, Word Order and Correction

We now have a block of video with possible word de-

tects in place. The word detectors have not produced false

negatives in our experiments, but do produce the occasional

false positive (figures 5 and 6). However, the purpose of

the exercise is alignment, meaning that a transcript is avail-

able. The transcript does not exactly correspond to the ASL

(for example, synonyms in the transcript might produce the

same signs). However, the nouns, verbs and adjectives in

the transcript are generally reproduced in the video and ap-

pear in the same order. We use a simple finite-state method

to obtain a set of detections of words that are (a) detectable

in the transcript and (b) appear in the video in the same

order in which they appear in the transcript. A more com-

plex finite-state machine might be required to manage ASL

word order; sufficient information about ASL syntax exists



Figure 6. Top: A timeline for a second block, with discriminative word model responses marked. The green blocks represent correct

detections, the red blocks represent false positives. We are not aware of false negatives. Each green block is linked to the first letter of the

word it represents in the transcript below (where spotted words are marked in green). Figure 5 shows another such sequence.

that building such a machine appears practical (e.g. [18]).

3. Results

Precision and recall are not meaningful measures for

an alignment; instead, we demonstrate the accuracy of our

method with figures giving the partial alignments obtained

for two blocks and with example phrasal translations that

result.

3.1. Word Spotting

We have checked our method for identifying word

boundaries from initial linear alignments using correct

boundaries established by hand using the American Sign

Language Browser at Michigan State University. Figure 7

shows that our method is extremely effective at pulling out

word boundaries from long windows of continuous ASL.

We use 21 base and 10 derived words. The discriminative

model is accurate at obtaining word boundaries, in compar-

ison to manual estimates (figure 8). made using a good dic-

tionary, though there is some small bias (figure 8). The tran-

script easily deals with the small number of false positives

that occur (figure 5 and 6). Note that the relatively small vo-

cabulary is still large enough to identify phrase boundaries

for several useful phrases, and to allow phrasal substitution.

3.2. Phrasal Translation

We are able to isolate several phrases; this means that (a)

those phrases can be translated from English to ASL and (b)

that these phrases can be employed productively (figure 9).

The supplementary material contains ASL translations of

the phrases “We have to get the dinosaur”; “What is it”;

“Your grandpa is very nice”; “Your Grandpa is very wrong”;

“Your nice dinosaur is very sick”; “Your sick dinosaur is

very cured”; and “Your sick dinosaur is very nice”.

4. Discussion

We have shown that alignment (and so phrasal transla-

tion) of a continuous ASL-English bitext is possible using

a simple discriminative word model. Our model is novel in

not explicitly encoding the dynamical structure of a word.

Our use of posterior information for base words as a feature

for derived words is novel, and suggests a general method

of building image features. Word spotting results are good,

and the small errors that do appear can be dealt with by the

alignment. Future work will involve building a more so-

phisticated finite state representation of ASL word order, to

allow alignment of more complex ASL sequences.
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