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Abstract. Appearance features are good at discriminating activities in a fixed
view, but behave poorly when aspect is changed. We describe a method to build
features that are highly stable under change of aspect. It is not necessary to have
multiple views to extract our features. Our features make it possible to learn a
discriminative model of activity in one view, and spot that activity in another
view, for which one might poses no labeled examples at all. Our construction
uses labeled examples to build activity models, and unlabeled, but corresponding,
examples to build an implicit model of how appearance changes with aspect. We
demonstrate our method with challenging sequences of real human motion, where
discriminative methods built on appearance alone fail badly.

1 Introduction

Human activity recognition is a core unsolved computer vision problem. There are sev-
eral reasons the problem is difficult. First, the collection of possible activities appears
to be very large, and no straightforward vocabulary is known. Second, activities appear
to compose both across time and across the body, generating tremendous complexity.
Third, the configuration of the body is hard to transduce, and there is little evidence
about what needs to be measured to obtain a good description of activity.

There is quite good evidence that many activities result in strong spatio-temporal
patterns of appearance, and most feature constructions are based on this observation.
However, such constructions are bound to a view — if the camera rotates with respect
to the body, a disastrous fall in discriminative performance is possible (see Section 6).
One strategy is to learn a new model for each view; but it isn’t practical to obtain several
examples of each activity in each view. An alternative, which we expound in this paper,
is to transfer models between views. We do so by building models in terms of features
which are stable with change of view, yet discriminative.

2 Background

There is a long tradition of research on interpreting activities in the vision community
(see, for example, the extensive surveys in [18,20]). Space allows touching only on most
relevant points.
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Appearance features are widely used. Generally, such features encode (a) what the
body looks like and (b) some context of motion. At low spatial resolution when limbs
cannot be resolved, flow fields are discriminative for a range of motions [3]. At higher
resolutions, appearance features include: braids [27]; characteristic spatio-temporal vol-
umes [7]; motion energy images [9]; motion history images [9]; spatio-temporal interest
points [23]; nonlinear dimensionality reduced stacks of silhouettes [38]; an extended
radon transform [40]; and silhouette histogram of oriented rectangle features [21].

Primitives: Motions are typically seen as having a compositional character, with hid-
den Markov models used to recognize, among others: tennis strokes [45]; pushes [43];
and handwriting gestures [46]. Feng and Perona [17] call actions “movelets” and build a
vocabulary by vector quantizing a representation of image shape. These codewords are
then strung together by an HMM, representing activities; there is one HMM per activ-
ity, and discrimination is by maximum likelihood. Alternatively, Bregler fits a switching
linear dynamical system ([10]; see also [37]); Ikizler and Forsyth build primitives ex-
plicitly by clustering motion capture [21].

Aspect: Appearance features are subject to aspect problems, which are not generally
studied. One alternative is to model in 3D. There is a strong evidence that 3D config-
uration can be inferred from 2D images (e.g., [19,6,33]; see also discussion in [18]).
At higher spatial resolutions one can recover body configuration and reason about
it [31,21], and, though inferred body configuration can be quite noisy, there is some
evidence this leads to aspect invariant methods [21], or learn in 3D and recognize in
2D [41]. Alternatively, one might use an implicit representation of 3D shapes as a
set of silhouettes from multiple views [2,26], spatio-temporal volumes derived from
such a silhouettes [42,47], or spatio-temporal curvature of 2D trajectory [32]. Things
are more difficult when only one view is available, on which to compute feature values.
View invariant motion representations offer one solution, but one must use model-based
invariants [29].

Transfer Learning: Transferring knowledge across related tasks is a known phenom-
enon in human learning [11]. In machine learning, simply pooling the training data
does not necessarily work because decision boundaries in the feature space may not be
similar for similar tasks. For example, in Figure 2 corresponding frames in camera 1
and camera 4 are totally different.

An extensive literature review is available at [22]. To summarize, two main cat-
egories of approach have been used in the literature. One is to use models that are
robust under change of domain. One might: use similar tasks to reasonably estimate
the prior [48,30,?]; use hierarchical bayesian models with hyper priors constrained to
be similar for similar tasks [5,25,44]; consider a regularized multi task learning frame-
work, when there is a trade-off between large margins and similar decision boundaries
[15]; boost the prediction power of the most helpful out of domain data [12]; or transfer
rules in a reinforcement learning framework [34,44].

The second category of approach is to design features which are well behaved under
change of domain. The main idea is to have a common feature mapping in which similar
objects in different domains look similar, and dissimilar objects look different, even
in the same domain. To do this, one might introduce some auxiliary artificial tasks to
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uncover the shared structure among similar tasks [4], or learn a distance function which
behaves well under transfer [35].

Most similar to our work is the approach of Farhadi, Forsyth and White [16], who
construct the space of comparative features. These features compare new words (in sign
language) with base words for a view, and in turn, use the result of the comparison as
a feature.They demonstrate that, once a semantically similar feature space has been
constructed, models of sign language words learned from an animated dictionary alone
can be used to recognize sign language words produced by a human signer in different
aspects.They claim that since comparisons are transferable, the comparative features
will be well behaved under change of domain. We believe that the random searches on
the split space,used in [16], result in a noisy feature space. This, we think, is the main
reason they needed a topic model on the top of their comparative features. We differ
from their work in that: we have a more focused search mechanism for finding stable
features and consequently we don’t need to have a topic model; and our process appears
to apply quite generally, rather than in the specific domain of ASL.

Many vision problems are naturally seen as transfer learning problems (for example,
the standard problem of determining whether two face images match without ever hav-
ing seen images of that individual; as another example, one might use cartoons to learn
the location of object features, and very few real images to learn their appearance [14]).

3 Activity Model

We first describe frames of activities and their context. We then look at the long
timescale. We describe frames by vector quantization of local appearance features to
form the codewords. We match based on the frequencies with which codewords appear
in a sequence. In the object recognition literature, local texture codewords are strongly
discriminative [13], without spatial information. Similarly, we do not represent precise
temporal orderings. Quantitative evaluations show strong discriminative performance
for these activity descriptors. See Table 2 and 3 for detailed accuracies.

Descriptive Features: We employ the feature extraction technique of [36]. Their descrip-
tor is a histogram of the silhouette and of the optic flow. Given the bounding box of the
actor and the silhouette, the optic flow is computed using Lucas-Kanade algorithm [24].
They considerusing anormalized size featureextraction window.Featuresconsistof three
channels, smoothed horizontal flow, smoothed vertical flow, and the silhouette. The nor-
malized feature extraction window is divided into 2×2 sub-windows. Each sub-window
is then divided into 18 pie slices covering 20 degrees each. The center of the pie is in the
center of the sub-window, and the slices do not overlap. The values of each channel are
integrated over the domain of every slice. The result is a 72-dimensional histogram. By
concatenating the histograms of all 3 channels we get a 216-dimensional frame descriptor.

To encode local temporal structure of the activities we consider stacking features
from previous and next frames. We pick the first 50 principal components of the de-
scriptors of a window of size 5, centered at the frame we want to describe. For further
frames in both directions, previous and next frames, we pick the first 5 principal com-
ponents of the windows of size 5, centered at the (i + 5)th and (i − 5)th frames. This
gives us a 60 dimensional descriptor for each frame, which we call descriptive features.
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Fig. 1. Feature Extraction: Each frame is described by silhouette information, horizontal and
vertical optical flow on a normalized size feature extraction window. We histogram all three
channels of information by integration over angular slices of subwindows of the bounding box.
We then stack information about previous and next frames to model local dynamics of activities.

Vector quantization: There is evidence that motions are composites of short timescale
primitives [17]. Temporal order over short to medium timescales does not seem to be
an important discriminative cue, so we can use a bag of features model. This suggests
vector quantizing frame descriptors to form codewords. We use K-means clustering.

Matching: Each activity is described by a histogram of codewords, which we call
codeword-based description. We use a 1 Nearest Neighbor (1NN) classifier to recog-
nize an activity. We use hamming distance for matching the histograms.

Figure 1 depicts the feature extraction procedure. These features are discriminative,
98.92% average accuracy on Weizman10 dataset [8] is reported in [36] using a 1NN
classifier on these features, comparing to 97.78% average accuracy of [39] and 82.6%
average accuracy of [28] on the same dataset.

4 Transferable Activity Model

We consider two types of activities: shared activities, that are observed in both source
and target views, and orphan activities that are observed only in the source view. Shared
activities in both the source and the target view are not labeled, while orphan activity
labels are available in the source view. We would like to transfer orphan activity models
from the source to the target view. This means that we would like to learn a model for
an orphan activity in the source view and test it in the target view.

Activities look different from different view points. Each column in Figure 2 shows
how much a particular frame in an activity looks different across view points. This
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Fig. 2. The IXMAS dataset, Each column shows changes across the views. Because of these
differences learning a model of descriptive features in one view and testing it in another view
fails badly. Camera 4 has a weird configuration, introducing ambiguities in action classification
for this view.

suggests that, under transfer circumstances, appearance based description will work
poorly. It does; a 1NN classifier gets 14% average accuracy (leave one action out) when
trained on one camera and tested in another one (for detailed accuracies see Table 2).

To be able to transfer activity models from the source to the target view, we need
discriminative features that tend to be similar in different views. Codeword-based rep-
resentation of activities inside each view seems to be discriminative. We could cluster
both the source and the target views. But this is not enough because we do not know
which cluster in the target view corresponds to which one in the source view, so we
could not transfer a model. We need a method to describe each view such that corre-
spondence is straightforward. For this reason, we build a cell structure on top of the
clusters in the source view.

Shared activities are valuable because they demonstrate what the body will look like
in the target view, for a given appearance in the source view. Our strategy is to build a
discriminative problem around the clusters in the source view. We construct a structure
of cells within which clusters lie. These cells are produced by an arrangement of hy-
perplanes, which we call splits. We use the shared activities to train this discriminative
task. For shared activities we choose which side of each hyperplane in the source view
a frame lies. We can now force the corresponding frame in the target view to be on
the same side of the corresponding hyperplane in the target view. Figure 3 shows the
procedure for making these new features, which we call split-based descriptors. If we
have enough shared activities, we can establish correspondences between views.

The core idea here is that splits are transferable because we learn them to be. This
means that the split-based features of a frame in the source view are similar to the split-
based features of the corresponding frame in the target view. As a result, an orphan
activity model can be applied to both views, if it is built using split-based features.
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4.1 Building Splits in the Source View

We start by clustering the source view to form the codewords. We can now describe
activities in the source view by a histogram of the codewords. Our split-based features
take the form

fi(xv
j ) = sign(αv

i · Φ(xv
j )). (1)

Where fi(xv
j ) is the ith component of the feature vector of the jth frame in view v,

αv
i is the ith split coefficient in view v and Φ(xv

j ) is the appearance feature for the jth

frame in view v . We would like these features to be discriminative, in the sense that
different clusters in one view should have distinct features. These features should also
be transferable, meaning that

fi(xs
j) = fi(xt

ĵ
). (2)

Where ĵ in the target view, is the corresponding frame to frame j in the source view.
When we see activities simultaneously from two different views, we get temporal corre-
spondences between frames in different views for free. We can now choose split-based
features that are discriminative for the source view. We expect these features, and so
orphan models, to transfer because we can produce training data to train on the target
view. Training data is the appearance feature in the target view and training labels are,
in fact, the split-based descriptors in the source view.

How to choose splits? A random choice of splits was used in [16]. There is a better
way. Generally, clusters form blobby structures in the feature space, so cluster mem-
bers are usually close together. We want splits to form a cell structure that respects the
clusters. This implies that splits that do not break up clusters are better. This suggests
choosing splits that have large margins with respect to cluster centers. We obtain them
by Maximum Margin Clustering (MMC).

Fig. 3. We first cluster the source view using the original descriptive features. We then use Maxi-
mum Margin Clustering to choose informative splits in the source view. Split-based features are
constructed by checking which side of each split a particular frame lies. We can directly transfer
the split values to the corresponding frames in the target view. Using unlabeled shared activities,
which have established implicit correspondences, splits are transferred from the source to the
target view. We now can learn splits in the target view, using the descriptive features as training
data and transferred split values as labels. These split-based features are transferable, and one
could simply use an already learned model in the source view to recognize orphan activities in
the target view.
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Feature selection is a problem here. Similar to [16], we use several different random
projections of the data. We apply MMC to each random projection to get several splits.
Different projections usually yield different splits. We discard redundant splits and score
the remainder by how well they can be predicted from the data.

Max Margin Clustering. For each random projection we look for the maximum mar-
gin hyperplane separating cluster centers in the source view. This lowers the computa-
tional burden of finding splits.

One can find these maximum margin hyperplanes by solving a Semi-Definite Pro-
gramming problem, which is computationally expensive. However, [49] introduce an
alternating optimization approach on the original non-convex problem of:

miny minω,b,ξi ‖ ω ‖2 +2CξT e (3)

s.t. yi(ωT ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0
yi = {±1},−� ≤ eT y ≤ �

where ω, b are SVM parameters, ξ is the slack variable, ϕ is the mapping induced by
the kernel, C > 0 is the regularization parameter, yi is the label for xi, � ≥ 0 is a
constant controlling the class imbalance and e is the vector of ones. There, one fixes
y and optimizes over ω, b, ξ then fixes ω, b, ξ and optimizes over y, and so on. They
suggest using SVR with the Laplacian loss, instead of SVM with the hinge loss, in the
inner optimization subproblem, to avoid premature convergence.

4.2 Building Splits in the Target View

So far, we have chosen different splits of the data in the source view. Since we want
the features to be similar in different views, we directly transfer the splits in the source
view to the target view. For each random projection, we learn a classifier in the target
view. We use appearance features in the target view as training data and split values,
transferred from the source view, as labels for training. Figure 3 depicts the whole
procedure for constructing the split-based features.

4.3 Natural Transfer of Activity Models

At this point we know the splits in the source view and we have learned them in the
target view, so we can describe each frame using the split-based features in both views.
For shared activities, the split-based features are the same in both views. For a given
orphan activity in the target view, we first construct the split-based features. To do this,
we project the original features, using the same random projections used in learning
each split. Then, by checking which side of each hyperplane each frame lies we can
form the split-based features. Split-based features, as depicted in Figure 3, are binary
features explaining which side of each split a particular frame lies.

With enough training data, we will have similar split-based features for orphan ac-
tivities in both views. This means that, we can simply use the model learned on the
source view and test it in the target view. Note that the orphan activities have not ever
been observed in the target view. See Table 1 for the general framework on building
transferable models.
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Table 1. General framework of learning transferable models. One can choose his/her choice
of descriptive features and classifier and plug them in to this general framework to build trans-
ferable models. All one needs is a pool of unlabeled, but corresponding, data in both views and
labeled data for orphan objects only in the source domain.

General framework for building transferable models :
Learning:

1. Extract suitable descriptive features for your problem.
2. Select your choice of classifier.
3. Choose splits using the MMC on random projections of descriptive features in the source

domain.
4. Transfer the splits to the target domain, using an established correspondences between unla-

beled shared objects in both domains.
5. Learn the transferred splits in the target domain

Recognition:
1. Extract descriptive features for a query orphan object.
2. Construct the split-based descriptors in the target view, using the already learned splits in the

target view.
3. Recognize the query orphan object using the model that you learned in the source domain.

5 Experimental Setup

To examine the performance of our transferable activity model we need to choose a
dataset with multiple views of multiple actions. We picked the IXMAS dataset [42]
because there are 5 different views of 11 actions performed 3 times by 10 actors, se-
quences are time aligned, and silhouette information is also provided. There is a draw-
back in using the IXMAS dataset to test our method. The actors were not instructed to
have a fixed angle to each cameras. This introduces some noise to our model. Fortu-
nately, there is no large aspect change in each view, probably because the actors needed
to see the instructor. See Figure 2 for example frames from the IXMAS dataset.

We try all 20 combinations of transfer among views (there are 5 views in IXMAS
dataset). We cluster the source view to 40 clusters using k-means clustering on the de-
scriptive features. We describe activities by histograms of codewords. 1000 different
30-dimensional random projections of descriptive features are used. For each random
projection we find the MMC split on the cluster centers in the source view. Redundant
splits are discarded and the best 25 splits are picked. Splits are scored based on how
well they can be predicted from the data(train set accuracies). We learn splits in the
target view using SVMs with Gaussian kernels on 1/10 of data, due to the computa-
tional limitations. This doesn’t affect the quality of the splits dramatically. For a given
orphan action, we predict which side of each split all frames lie. We then construct the
codeword-based description of that action by matching the split-based description of
each frame in the target view to the closest one in the source view. We then use a 1NN
classifier to predict the action label for the orphan action, using the source view. Due to
the limited number of actions in the dataset, we follow the leave-one-action-out strategy
for choosing an orphan action. This means that we exclude all examples of the selected
orphan action, performed by all the actors, in the target view. We averaged over all pos-
sible combinations of selecting orphan actions to report the average transfer accuracy.
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Table 2. Multi Class Transfer Results: The row labeled FO gives the accuracy with which
activities are discriminated when both trained and tested on that camera. Columns give the result
of testing on the camera heading the column (in bold, the target), when trained on the camera
given in the row (normal, the source). There are two cases: first, simply training on appearance
features (WT) and second, using our transfer mechanism (Tr). For example, training on camera 4
and testing on camera 0 gives an accuracy of 12% if one uses appearance features only, and 51%
if one uses our method. Notice that our transfer mechanism significantly improves performance;
there is a cost for training on the wrong view, but it is not particularly high. Camera 4 is generally
difficult. Accuracy numbers are computed in leave-one-orphan-activity-out fashion. This means
that for a given transfer scenario we average over all possible selections of an orphan activity.

Camera 0 Camera 1 Camera 2 Camera 3 Camera 4
FO 76 76 68 73 51

WT Tr WT Tr WT Tr WT Tr WT Tr
Camera 0 NA NA 35 72 16 61 8 62 10 30
Camera 1 38 69 NA NA 15 64 8 68 11 41
Camera 2 16 62 16 67 NA NA 6 67 11 43
Camera 3 8 63 8 72 8 68 NA NA 8 44
Camera 4 12 51 11 55 15 51 9 53 NA NA

6 Results

We consider two general experiments. Transfer of binary classifiers (Table 3), and trans-
fer of multi class classifiers (Table 2). We demonstrate the possibilities of transferring
activity models from one view to another view. One could reasonably use more so-
phisticated activity models than what we are using in these experiments. What we care
about is the price that we are paying for transfer, given a classifier. Note that (a) we are
not observing orphan activities in the target domain; (b) we don’t know the labels for
shared activities in both views (c) we are classifying activities in the target view using
a classifier learned on the source view.

Table 2 and 3 show average accuracies in all 20 possible transfer scenarios. For
each case we report three different accuracies: 1) Fully Observed (FO) accuracies, in
which we use 1NN classifier and all the actions are observed in that view, 2) Without
Transfer (WT) accuracies, in which we don’t observe orphan activities in the target view
and we try to classify them using 1NN classifier on the source view, and 3) Transfer
accuracies (Tr).

Transfer is hard, as the “without transfer” (WT) columns in Table 2 show. For ex-
ample, without transfer learning we get an accuracy of 8% for classifying activities in
camera 3 using classifiers learned in camera 1. Transfer learning classifies the activities
with the accuracy of 72%. This is a big gain, considering that our classifier has not ever
seen an example of orphan activities in the target view. If the classifier fully observes
the activities in the target view, we get an accuracy of 76%, comparing to 72% accuracy
under transfer. Note that transferring from (or to) camera 4 is not as good as the other
4 cameras, because we can’t build discriminative enough split-based descriptors. The
fully observed accuracies in camera 4 shows that due to the odd geometrical configura-
tion of camera 4 (See Figure 2 for some pictures from camera 4), some of the actions
look the same, in that view (also reported in [41]).
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Table 3. One vs All Transfer Results: The row labeled FO gives the accuracy with which ac-
tivities are discriminated when both trained and tested on that camera. Columns give the result
of testing on the camera heading the column (in bold, the target), when trained on the camera
given in the row (normal, the source). There are two cases: first, simply training on appearance
features (WT) and second, using our transfer mechanism (Tr). For example, training on camera 4
and testing on camera 0 gives an accuracy of 32% if one uses appearance features only and 87%
if one uses our method. Notice that our transfer mechanism significantly improves performance;
there is a cost for training on the wrong view, but it is not particularly high. Camera 4 is generally
difficult. Accuracy numbers are computed in leave-one-orphan-activity-out fashion. This means
that for a given transfer scenario we average over all possible selections of an orphan activity.

Camera 0 Camera 1 Camera 2 Camera 3 Camera 4
FO 95 96 93 93 87

WT Tr WT Tr WT Tr WT Tr WT Tr
Camera 0 NA NA 69 96 35 88 33 86 26 75
Camera 1 67 95 NA NA 35 91 35 81 26 74
Camera 2 41 86 42 87 NA NA 28 89 31 75
Camera 3 27 87 32 84 20 91 NA NA 23 76
Camera 4 32 87 32 88 30 84 27 83 NA NA

Table 4. View Estimation Results. If we don’t know the target view, we can identify the view dis-
criminatively using the descriptive features and a 1NN classifier. This table shows classification
results for view classification problem. If the target view is not specified, then we should multiply
accuracies in Table 2 and 3 by accuracies in this table. Since these numbers are reasonably close
to 1, we shouldn’t expect a major change in accuracies.

Camera 0 Camera 1 Camera 2 Camera 3 Camera 4
98 95 96 95 85

Estimating view: Our discussion has assumed that the view is known. This means that
we know the source and the target view, for computing accuracies in Table 2 and 3. But
it is not crucial to know the target view. We can identify the view discriminatively using
the descriptive features and a 1NN classifier. Table 4 shows classification results for
view classification problem. If the target view is not specified, then we should multiply
accuracies in Table 2 and 3 by accuracies in Table 4. Since the numbers in Table 4 are
reasonably close to 1, we shouldn’t expect a major change in accuracies.

To our knowledge, transferring activity models between views is novel, and so we
can not compare directly with other methods. The most similar experiment is [41]. In
this case, learning is in 3D, using 3D exemplars, and recognition is in 2D. Authors report
an average accuracy of 57.8%, compared to our average transfer accuracy of 58.1%, on
the same dataset. In our experiments we use the same experimental setting as in [41].
Although we appear to have only a tiny lead in classification accuracy, the comparison
is rough because, to train, they observe all the activities in all views and we do not.
Similarly, it is worth mentioning that view invariant approaches [42,2,26,23,32] need
to observe all of the activities and labels in all views. Here, we neither observe orphan
activities in the target view, nor know the labels for shared activities in either views.
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7 Discussion

We have shown that a discriminative appearance model of activity can be trained on
one view and tested on a second, different view, as long as one uses the right features.
Our split-based representation requires knowing the view, but this can be determined by
a simple matching procedure. These split-based features can be seen as view invariant
features, or as a representation of the structure shared between different tasks (recognize
from a fixed view), using a pool of unsupervised data.

One could cluster activity frames in each view, then build correspondence between
clusters explicitly. However, this might require quite small clusters, because a large
volume of feature space in one view might correspond to a small volume in another.
Our discriminative strategy for building features has the advantage that it implicitly
follows these changes in the underlying feature metric.

Our procedure is implemented using activity data, but we believe that the underlying
problem — use data from one aspect to be able to recognize something seen at another
aspect — is pervasive in vision. Our solution appears to be quite general: if one has
corresponding, but unlabeled, data, one can learn and account for the distortion of
the feature space caused by changes of view.
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