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Abstract

We propose to shift the goal of recognition from naming
to describing. Doing so allows us not only to name famil-
iar objects, but also: to report unusual aspects of a famil-
iar object (“spotty dog”, not just “dog”); to say something
about unfamiliar objects (“hairy and four-legged”, not just
“unknown”); and to learn how to recognize new objects
with few or no visual examples. Rather than focusing on
identity assignment, we make inferring attributes the core
problem of recognition. These attributes can be semantic
(“spotty”) or discriminative (“dogs have it but sheep do
not”). Learning attributes presents a major new challenge:
generalization across object categories, not just across in-
stances within a category. In this paper, we also introduce
a novel feature selection method for learning attributes that
generalize well across categories. We support our claims
by thorough evaluation that provides insights into the limi-
tations of the standard recognition paradigm of naming and
demonstrates the new abilities provided by our attribute-
based framework.

1. Introduction
We want to develop computer vision algorithms that go

beyond naming and infer the properties or attributes of ob-
jects. The capacity to infer attributes allows us to describe,
compare, and more easily categorize objects. Importantly,
when faced with a new kind of object, we can still say some-
thing about it (e.g., “furry with four legs”) even though we
cannot identify it. We can also say what is unusual about a
particular object (e.g, “dog with spots”) and learn to recog-
nize objects from description alone.

In this paper, we show that our attribute-centric approach
to object recognition allows us to do a better job in the tra-
ditional naming task and provides many new abilities. We
focus on learning object attributes, which can be seman-
tic or not. Semantic attributes describe parts (“has nose”),
shape (“cylindrical”), and materials (“furry”). They can be
learned from annotations and allow us to describe objects
and to identify them based on textual descriptions. But
they are not always sufficient for differentiating between
object categories. For instance, it is difficult to describe
the difference between cats and dogs, even though there are
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Figure 1: Our attribute based approach allows us not only to effectively
recognize object categories, but also to describe unknown object cate-
gories, report atypical attributes of known classes, and even learn models
of new object categories from pure textual description.

many visual dissimilarities. Therefore, we also learn non-
semantic attributes that correspond to splits in the visual
feature space. These can be learned by defining auxiliary
tasks, such as to differentiate between cars and motorbikes
using texture.

When learning the attributes, we want to be able to gen-
eralize to new types of objects. Generalizing both within
categories and across categories is extremely challenging,
and we believe that studying this problem will lead to
new insights that are broadly applicable in computer vi-
sion. Training attribute classifiers in the traditional way (use
all features to classify whether an object has an attribute)
leads to poor generalization for some attributes across cat-
egories. This is because irrelevant features (such as color
when learning shape) are often correlated with attributes for
some sets of objects but not others. Instead, we propose to
first select features that can predict attributes within an ob-
ject class and use only those to train the attribute classifier.
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For instance, to learn a “spots” detector, we would select
features that can distinguish between dogs with and without
spots, cats with and without spots, horses with and without
spots, and so on. We then use only these selected features
to train a single spot detector for all objects.

A key goal is to describe objects and to learn from de-
scriptions. Two objects with the same name (e.g., “car”)
may have differences in materials or shapes, and we would
like to be able to recognize and comment on those differ-
ences. Further, we may encounter new types of objects.
Even though we can’t name them, we would like to be able
to say something about them. Finally, we would like to learn
about new objects quickly, sometimes purely from a textual
description. These are important tools for humans, and we
are the first to develop them in computer vision at the object
category level.

We have developed new annotations and datasets to test
our ability to describe, compare, and categorize objects. In
particular, using Amazon’s Mechanical Turk [21], we ob-
tained 64 attribute labels for each of the twenty objects in
the PASCAL VOC 2008 [4] trainval set of roughly 12,000
instances. We also downloaded images using Yahoo! im-
age search for twelve new types of objects and labeled them
with attributes in a similar manner. To better focus on de-
scription, we perform experiments on objects that have been
localized (with a bounding box) but not identified. Thus,
we deal with the question “What is this?”, but not “Where
is this?” We want to show that our attribute-based approach
allows us to effectively categorize objects, describe known
and new objects, and learn to categorize new types of ob-
jects. We are particularly interested in the question of how
well we can generalize to new types of objects, something
that has not been extensively studied in past work.

Our experiments demonstrate that our attribute-based ap-
proach to recognition has several benefits. First, we can ef-
fectively categories objects. The advantage is particularly
strong when few training examples are available, likely be-
cause attributes can be shared across categories and provide
a compact but discriminative representation. Our tests also
indicate that selecting features provide large gains in learn-
ing from textual description and reporting unusual attributes
of objects. Surprisingly, we found that we can classify ob-
jects from a purely textual description as accurately as if we
trained from several examples. These experimental results
are extremely encouraging and indicate that attribute-based
recognition is an important area for further study.

2. Background
Our notion of attributes comes from the literature on con-

cepts and categories (reviewed in [15]). While research on
“basic level” categories [19] indicates that people tend to
use the same name to refer to objects (e.g., “look at that
cat” instead of “look at that Persian longhair” or “look at
that mammal”), there is much evidence [13] that category
formation and assignment depends on what attributes we
know and on our current goal. A cat in different contexts
could be a “pet”, “pest”, or “predator.” The fluid nature
of object categorization makes attribute learning essential.

For this reason, we make attribute learning the center of our
framework, allowing us to go beyond basic level naming.
We do not, however, attempt to resolve the long-standing
debate between exemplar and prototype models; instead we
experiment with a variety of classifiers. In this, we differ
from Malisiewicz and Efros [14] who eschew categoriza-
tion altogether, treating recognition as a problem of finding
the most similar exemplar object (but without trying to say
how that object is similar). Our model is also different from
approaches like [24] because our attributes are more general
than just textures.

Space does not allow a comprehensive review of current
work on object recognition. The main contrast is that our
work involves a form of generalization that is novel to the
literature — we want our system to make useful statements
about objects whose name it does not happen to know. This
means that we must use an intermediate representation with
known semantics (our attributes). It also means that we
must ensure that we can predict attributes correctly for cat-
egories that were not used in training (section 4).

Ferrari and Zisserman [9] learn to localize simple color
and texture attributes from loose annotations provided by
image search. By contrast, we learn a broad set of com-
plex attributes (shape, materials, parts) in a fully super-
vised manner and are concerned with generalization to
new types of objects. We do not explicitly learn to lo-
calize attributes, but in some cases our feature selection
method provides good localization as a side effect. Exten-
sive work has been done in parts models for object recog-
nition, but the emphasis is on localizing objects, usually
with latent parts (e.g., [8, 20, 7]) learned for individual ob-
ject categories. We differ from these approaches because
of the explicit semantics of our attributes. We define ex-
plicit parts that can be shared across categories.Several re-
searchers [2, 18, 12, 1, 22, 17] have shown that sharing
features across multiple tasks or categories can lead to in-
creased performance, especially when training data is lim-
ited. Our semantic attributes have a further advantage: they
can be used to verbally describe new types of objects and
to learn from textual description (without any visual exam-
ples).

3. Attributes and Features
We believe inferring attributes of objects is the key prob-

lem in recognition. These attributes can be semantic at-
tributes like parts, shapes, and materials. Semantic at-
tributes may not be always enough to distinguish all the
categories of objects. For this reason we use discrimina-
tive attributes as well. These discriminative attributes take
the form of comparisons borrowed from [5, 6],“cats and
dogs have it but sheep and horses don’t”.

Objects share attributes. Thus, by using predicted at-
tributes as features, one can get a more compact and more
discriminative feature space. Learning both semantic and
discriminative attributes open doors to some new visual
functions. We can not only recognize objects using pre-
dicted attributes as features, but also describe unfamiliar
objects. Furthermore, these attribute classifiers can report
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Figure 2: This figure summarizes our approach. We first extract base
features. We then select features that are beneficial in learning attribute
classifiers. We learn attribute classifiers using selected features. To learn
object categories we use predicted attributes as features. Using attribute
classifiers, we can do more than simple recognition. For instance, we can
describe unknown classes, report atypical attributes, and learn new cate-
gories from very few examples.

the absence of typical attributes for objects, as well as pres-
ence of atypical attributes. Finally, we can learn models for
new object classes using few examples. We can even learn
new categories with no visual examples, using textual de-
scriptions instead.

3.1. Base Features
The broad variety of attributes requires a feature repre-

sentation to describe several visual aspects. We use color
and texture, which are good for materials; visual words,
which are useful for parts; and edges which are useful for
shapes. We call these base features.

We use a bag of words style feature for each of these
four feature types. Texture descriptors [23] are computed
for each pixel, and quantized to the nearest 256 kmeans
centers. The texture descriptor is extracted with a texton
filterbank. Visual words are constructed with an HOG spa-
tial pyramid, using 8x8 blocks, a 4 pixel step size, and 2
scales per octave. HOG descriptors are quantized to 1000
kmeans centers. Edges are found using a standard canny
edge detector and their orientations are quantized into 8 un-
signed bins. Finally, color descriptors are densely sampled
for each pixel, and quantized to the nearest 128 kmeans cen-
ters. The color descriptor consists of the LAB values.

Having quantized these values, local texture, HOG, edge,
and color descriptors inside the bounding box are binned
into individual histograms. To represent shapes and loca-
tions, we also generate histograms for each feature type
for each cell in a grid of three vertical and two horizon-
tal blocks. This allows for coarse localization of attributes
such as wheels which tend to appear at the bottom of the
object. These seven histograms are stacked together result-
ing in a 9751 dimensional feature, which we refer to as the
base features.

3.2. Semantic Attributes
We use three main types of semantic attribute. Shape at-

tributes refer to 2D and 3D properties such as “is 2D boxy”,
“is 3D boxy”,“is cylindrical“, etc. Part attributes identify

parts that are visible, such as “has head”, “has leg”, “has
arm”, “has wheel”, “has wing”, “has window”. Material
attributes describe what an object is made of, including “has
wood”, “is furry”, “has glass”, “is shiny”.

3.3. Discriminative Attributes
We do not yet have a comprehensive set of visual at-

tributes. This means that, for example, instances of both
cats and dogs can share all semantic attributes in our list.
In fact, a Naive Bayes classifier trained on our ground truth
attributes in Pascal can distinguish classes with only 74%
accuracy. To solve this problem, we introduce auxiliary dis-
criminative attributes. These new attributes take the form of
random comparisons introduced in [6]. Each comparison
splits a portion of the data into two partitions. We form
these splits by randomly selecting one to five classes or at-
tributes for each side. Instances not belonging to the se-
lected classes or attributes are not considered. For example,
a split would assign “cat” to one side and “dog” to the other
side, while we don’t care where “motorbike” falls. Each
split is further defined by a subset of base features, such as
texture or color, to use for learning. For example, we might
use texture to distinguish between “cats” and “dogs”. We
then use a linear SVM to learn tens of thousands of these
splits and pick those that can be well predicted using the
validation data. In our implementation we used 1000 dis-
criminative attributes.

4. Learning to Recognize Semantic Attributes
We want to accurately classify attributes for new types of

objects. We also want our attribute classifiers to reflect the
correct semantics of attributes. Simply learning classifiers
by fitting them to all base features often fails to generalize
the semantics of the attributes correctly (section 6.3).

4.1. Across Category Generalization by Within
Category Prediction

Learning a “wheel” classifier on a dataset of cars, mo-
torbikes, buses, and trains is difficult because all examples
of wheels in this dataset are surrounded by “metallic” sur-
faces. The wheel classifier might learn “metallic” instead
of “wheel”. If so, when we test it on a new dataset that
happens to have wooden “carriage” examples, it will fail
miserably, because there are not that many metallic surfaces
around the wheel. What is happening is that the classifier is
learning to predict a correlated attribute rather than the one
we wish it to learn. This problem is made worse by using
bounding boxes,instead of accurate segmentations. This is
because some properties of nearby objects are likely to co-
occur with object attributes. This behavior is not necessarily
undesirable, but can cause significant problems if we must
rely on the semantics of the attribute predictions. This is
a major issue, because it results from training and testing
on datasets with different correlation statistics, something
we will always have to do because datasets will always be
small compared to the complexity of the world.



Feature Selection: The standard strategy for dealing
with generalization issues is to control variance by select-
ing a subset of features that can generalize well. However,
conventional feature selection criteria will not apply to our
problem because they are still confused by semantically ir-
relevant correlations — our “wheel” classifier does general-
ize well to cars, etc. (but not to carriages).

We use a novel feature selection criterion that decorre-
lates attribute predictions. Our criterion focuses on within
category prediction ability. For example, if we want to learn
a “wheel” classifier, we select features that perform well
at distinguishing examples of cars with “wheels” and cars
without “wheels”. By doing so, we help the classifier avoid
being confused about “metallic”, as both types of example
for this “wheel” classifier have “metallic” surfaces. We se-
lect the features using an L1-regularized logistic regression
(because it assigns non-zero weights to a small subset of
features [16]) trained for each attribute within each class,
then pool examples over all classes and train using the se-
lected features. For example, we first select features that
are good at distinguishing cars with and without “wheel” by
fitting an L1-regularized logistic regression to those exam-
ples. We then use the same procedure to select features that
are good at separating motorbikes with and without wheels,
buses with and without wheels, and trains with and without
wheels. We then pool all those selected features and learn
the “wheel” classifier over all classes using those selected
features.

To test whether our feature selection decorrelate pre-
dicted attributes, we can look at changes in correlation
across datasets. Throughout the paper we refer to features
that we select by the procedure explained above as selected
features and working with all features as whole features.
For example, the correlation between ground-truth “wheel”
and “metallic” in the a-Pascal dataset (section 5) is 0.71,
and in the a-Yahoo dataset is 0.17. We train on the a-Pascal
dataset with whole features and with selected features. In
testing on the a-Yahoo dataset (section 5), the correlation
between predictions by the “wheel” and “metallic” classi-
fiers trained on whole features is 0.56 (i.e. predictions are
biased to be correlated). When we do feature selection this
correlation falls to 0.28, this shows that classifiers trained on
selected features are less susceptible to biases in the dataset.

5. Datasets
We have built new datasets for exploring the object de-

scription problem. Our method for learning semantic at-
tributes requires a ground truth labeling for each training
example, but we must create our own, since no dataset ex-
ists with annotations for a wide variety of attributes which
describe many object types. We collect our attribute an-
notations for each of twenty object classes in a standard
object recognition dataset, PASCAL VOC 2008. We also
collect the same annotations for a new set of images, called
a-Yahoo. Labeling objects with their attributes can often be
an ambiguous task. This can be demonstrated by imperfect
inter-annotator agreement among “experts” (authors) and
Amazon Turk annotators. The agreement among experts
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Figure 3: Attribute prediction for attribute classifiers trained on a-Pascal
and tested on a-Pascal, comparing whole with selected features. We don’t
expect the feature selection to help in this case because we observe same
classes during training and testing. This means that the correlation statis-
tics are not changing during training and testing.

is 84.3%, between experts and Amazon Turk annotators is
81.4%, and among Amazon Turk annotators is 84.1%. Us-
ing Amazon Turk annotations, we are not biasing the at-
tribute labels toward our own idea of attributes.

a-Pascal: The Pascal VOC 2008 dataset was created for
classification and detection of visual object classes in vari-
ety of natural poses, viewpoints, and orientations. These
objects classes cluster nicely, “animals”, “vehicles”, and
“things”. The object classes are: people, bird, cat, cow,
dog, horse, sheep aeroplane, bicycle, boat, bus, car, mo-
torbike, train, bottle, chair, dining table, potted plant, sofa,
and tv/monitor. The number of objects from each category
ranges from 150 to 1000, along with over 5000 instances of
people. We collect annotations for semantic attributes for
each object using Amazon’s Mechanical Turk. We made
a list of 64 attributes to describe Pascal objects. We do
not claim to have attributes that exhaustively describe each
class.

a-Yahoo: To supplement the a-Pascal dataset, we collect
images for twelve additional object classes from the Yahoo
image search, which we call the a-Yahoo set; these images
are also labelled with attributes. The classes in a-Yahoo set
are selected to have objects similar to a-Pascal, while hav-
ing different correlations between the attributes selected on
a-Pascal. For example, compare a-Yahoo’s “wolf” category
to a-Pascal’s “dog”; a-Yahoo’s “centaur” to a-Pascal’s “peo-
ple” and “horses”. This allows us to evaluate the attribute
predictors’ generalization abilities. Objects in this set are:
wolf, zebra, goat, donkey, monkey, statue of people, cen-
taur, bag, building, jet ski, carriage, and mug.

These datasets are available at http://vision.cs.
uiuc.edu/attributes/.

6. Experiments and Results
First we show how well we can assign attributes and use

them to describe objects. We then examine the performance
of using the attribute based representation in the traditional
naming task and demonstrate new capabilities offered by
this representation: learning from very few visual examples
and learning from pure textual description. Finally we show
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Figure 4: Attribute prediction for across category protocols. On the left
is Leave-one-class-out case for Pascal and on the right is attribute predic-
tion for Yahoo set. Only attributes relevant to these tasks are displayed.
Classes are different during training and testing, thus we have across cat-
egory generalization issues. Some attributes on the left, like “engine”,
“snout”, and “furry”, generalize well, some do not. Feature selection helps
considerably for those attributes, like “taillight”, “cloth”, and “rein” that
have problem generalizing across classes. Similar to leave one class out
case, learning attributes on Pascal08 train set and testing them on Yahoo
set involves across category generalization, right plot. We can, in fact, pre-
dict attributes for new classes fairly reliably. Some attributes, like “wing”,
“door”, “headlight”, and “taillight”, do not generalize well. Feature se-
lection improves generalization on those attributes. Toward the high end
of this curve, where good classifiers sit, feature selection improves predic-
tion of attribute with generalization issues and produce similar results for
attributes without generalization issues. For better visualization purposes
we sorted the plots based on selected features’ area under ROC curve val-
ues.

benefits of our novel feature selection method compared to
using whole features.

6.1. Describing Objects
Assigning attributes: There are two main protocols for

attribute prediction: “within category” predictions, where
train and test instances are drawn from the same set of
classes, and “across category” predictions where train and
test instances are drawn from different sets of classes. We
do across category experiments using a leave-one-class-out
approach, or a new set of classes on a new dataset. We train
attributes in a-Pascal and test them in a-Yahoo. We measure
our performance in attribute predictions by the area under
the ROC curve, mainly because it is invariant to class pri-
ors. We can predict attributes for the within category proto-
col with the area under the curve of 0.834 (Figure 3).

Figure 4 shows that we can predict attributes fairly re-
liably for across category protocols. The plot on the left
shows the leave-one-class-out case on a-Pascal and the plot
on the right shows the same curve for a-Yahoo set.

Figure 5 depicts 12 typical images from a-Yahoo set with
a subset of positively predicted attributes. These attribute
classifiers are learned on a-Pascal train set and tested on a-
Yahoo images. Attributes written in red, with red crosses,
are wrong predictions.

Unusual attributes: People tend to make statements
about unexpected aspects of known objects ([11], p101).
An advantage of an attribute based representation is we
can easily reproduce this behavior. The ground truth at-
tributes specify which attributes are typical for each class.
If a reliable attribute classifier predicts one of these typi-
cal attributes is absent, we report that it is not visible in
the image. Figure 6 shows some of these typical attributes
which are not visible in the image. For example, it is worth
reporting when we do not see the “wing” an aeroplane is
expected to have. To qualitatively evaluate this task we re-

'is 3D Boxy'
 'is Vert Cylinder' 

'has Window' 
'has Row Wind' 
'has Headlight' 

'has Hand'
 'has Arm'  

'has Screen' 
'has Plastic' 

'is Shiny'

'has Head'  
'has Hair' 
'has Face'  

'hasSaddle' 
'has Skin'

'has Head' 
'has Torso' 
'has Arm' 
'has Leg' 

'has Wood' 

'has Head' 
'has Ear' 

'has Snout' 
'has Nose' 

'has Mouth' 

'has Head' 
'has Ear' 

'has Snout' 
'has Mouth' 

'has Leg' 

'has Furniture Back' 
'has Horn' 

'has Screen' 
'has Plastic' 

'is Shiny'

'has Head' 
'has Snout' 
'has Horn' 
'has Torso' 
'has Arm' 

'is Horizontal Cylinder' 
'has Beak' 
'has Wing' 

'has Side mirror' 
'has Metal' 

'has Head' 
'has Ear' 

'has Snout' 
'has Leg'

'has Cloth'

'has Tail' 
'has Snout' 

'has Leg' 
'has Text' 

'has Plastic'

' is 3D Boxy' 
'has Wheel'

'has Window
'is Round' 

' 'has Torso' 

X

X

X
X

X

X
X

X
X

X

X
X

X

Figure 5: This figure shows randomly selected positively predicted at-
tributes for 12 typical images from 12 categories in Yahoo set. Attribute
classifiers are learned on Pascal train set and tested on Yahoo set. We ran-
domly select 5 predicted attributes from the list of 64 attributes available in
the dataset. Bounding boxes around the objects are provided by the dataset
and we are only looking inside the bounding boxes to predict attributes.
Wrong predictions are written in red and marked with red crosses.
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Figure 6: Reporting the absence of typical attributes. For example, we
expect to see “Wing”in an aeroplane. It is worth reporting if we see a
picture of an aeroplane for which the wing is not visible or a picture of a
bird for which the tail is not visible.

Bird 
“Leaf”

Bus 
“face”

Motorbike 
“cloth”

DiningTable
“skin”

People
“Furn. back”

Aeroplane 
 “beak”

People
 “label”

Sofa 
 “wheel”

Bike
 “Horn”

Monitor 
window”

Figure 7: Reporting the presence of atypical attributes. For example, we
don’t expect to observe “skin” on a dining table. Notice that, if we have
access to information about object semantics, observing “leaf” in an image
of a bird might eventually yield “The bird is in a tree”. Sometimes our
attribute classifiers are confused by some misleading visual similarities,
like predicting “Horn” from the visually similar handle bar of a road bike.

ported 752 expected attributes over the whole dataset which
are not visible in the images. 68.2% of these reports are
correct when compared to our manual labeling of those re-
ports (Figure 6). On the other hand, if a reliable attribute
classifier predicts an attribute which is not expected to be
in the predicted class, we can report that, too (Figure 7).
For example, birds don’t have a “leaf”, and if we see one
we should report it. To quantitatively evaluate this predic-
tion we evaluate 951 of those predictions by hand; 47.3%
are correct. There are two important consequences. First,
because birds never have leaves, we may be able to exploit
knowledge of object semantics to reason that, in this case,
the bird is in a tree. Second, because we can localize fea-
tures used to predict attributes, we can show what caused
the unexpected attribute to be predicted (Figure 8). For ex-
ample, we can sometimes tell where the “metal” is in a pic-



Car       “text”

Cat          “hair”

People   “metal”

People  
“fun. back”

Motorbike     “skin”

Figure 8: This figure shows localization of atypical attributes for given
classes. Not only do we report unexpected attributes, but we also can
sometimes localize atypical attributes in images. For example, we don’t
expect to see “skin” in a motorbike, but when we do, we can localize the
skin reasonably well. Red colored points correspond to selected features.
This figure should be viewed in color.

SVM 58.5 (35.5)

Logistic Regression             54.6 (36.9)

PASCAL 08 Whole Features Selected Features
Base Features

51.2 (31.4)

54.6  (28.4) 59.4 (37.7)56.1 (34.3) 58.3 (38.1)

Sem. Attr. All Attr. Sem. Attr. All Attr.

53.4 (33.5) 51.8 (32.3) 53.5 (35.1)

Table 1: This table compares our accuracies in traditional naming task
with two simple baselines. Since the Pascal08 dataset is heavily biased
toward “people” category, we report both overall and mean per class accu-
racies. Mean per class accuracies appear in the parentheses. This table also
compares using attributes trained on selected features with those trained on
whole features. Columns marked as “All Attr.” refer to the cases when clas-
sifiers use both predicted semantic and non-semantic attributes as features.
Note that the attribute based representation does not help significantly in
the traditional naming task but it offers new capabilities,Figure 9.

ture that has people and “metal.”

6.2. Naming

Naming familiar objects: So far there is little evi-
dence that our attribute based framework helps the tradi-
tional naming task. However, this framework allows us
to learn new categories from very few visual examples or
even with pure textual description. We compare our per-
formance in naming task with two baselines, linear SVM
and logistic regression applied to base features to directly
recognize objects. We use the Pascal training set as our
train/val set and use the Pascal validation set as our test set.
Table 1 shows details of this experiment. A one vs. all lin-
ear SVM can recognize objects with the overall accuracy of
59.4% using our predicted attributes as features, comparing
to the accuracy of 58.5% of base features. Because we as-
sume that bounding boxes are provided, we can not directly
compare our results with other methods in the literature. It
is also worth noting differences between class confusions
using our attribute based features and standard recognition
methods. The biggest increase in confusions using our at-
tribute based representation is between “chair” and “sofa”.
The biggest decrease is between “bike” and “people”. The
shifts in the confusions may be due to our encoding of se-
mantics.

Sel. Feat.

Whole Feat.

Chance

From Textual 
Description

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 
20 40 60 80 100 120 140 160 180 200

 

Sem + Dis Attributes
Sem. Attributes
Base Features

Number of Training Examples Per Category

Accuracy vs. Number of Training Examples Per Category

Figure 9: Accuracy vs. number of training examples per category. We can
learn categories with considerably fewer examples. Using 4 examples per
class with 1NN classifier, which is our only choice for so few examples, we
can predict as well as with 20 examples per class using base features. If we
use almost 200 examples per category (purple circles) on original features
we are as good as using 40 examples (green circles) using our attributes.
Note that the semantic attributes are not designed to maximize discrimi-
nation. Discriminative attributes provide similar performance when used
with or without semantic attributes. Semantic attributes help us to achieve
enhanced visual capabilities without any loss in discrimination. Another
interesting point about our attribute base description is that we can recog-
nize objects from pure textual description and NO visual examples. As de-
picted above, recognizing objects from textual description (red arrows) is
as good as having almost 100 visual examples in semantic attribute space,
8 visual examples in base features and 3 in semantic and discriminative
attribute space. Red arrows indicate the accuracy of learning new classes
by textual description using whole and selected features.

Learning to Identify New Objects: The first test is
to examine standard object recognition in new categories.
We use predicted attributes as features and one-vs-all lin-
ear SVM as classifier. If we recognize classes in a-Yahoo
set using attribute classifiers trained on a-Pascal, we get an
overall accuracy of 69.8%. If we train attributes on a-Yahoo
as well, we get an overall accuracy of 74.7%, comparing to
72.7% using base features.

We can also recognize new classes with notably fewer
training examples than classifiers trained on base features
(Figure 9). We choose a 1NN classifier for this task, mainly
because we need to learn from very few examples per cate-
gory. As plotted in this figure we can learn new categories
using under 20% of the examples required by base features.
This means that the overall accuracy of training on almost
40 images per category (green circles) using our attributes is
equal to that of training on almost 200 images per category
(purple circles) on base features.

Learning New Categories from Textual Description:
A novel aspect of our approach is to learn new categories
from pure textual descriptions. For example, we can learn
new categories by describing new classes to our algorithm
as this new class is “furry”, “four legged”, “has snout”,and
“has head”. The object description is specified by a list of
positive attributes, providing a binary attribute vector. We
classify a test image by finding the nearest description to its
predicted attributes. Figure 9 shows that by learning new
categories from textual description we could get an accu-
racy of 32.5%, which is equal to having almost 100 visual
examples in semantic attribute space, 8 visual examples in
base feature space, and 3 examples in semantic and discrim-
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Figure 10: Feature selection is necessary to localize attributes. For ex-
ample, if we want to learn a “Hair” classifier we might end up learning a
skin detector instead. This figure compares localization of attributes based
on classifiers learned on selected features with those trained on whole fea-
tures. Colored points are features with high positive response for attribute
classifiers. This implies that by using whole features we may not obtain
classifiers with the semantics we expect. For more results on localization
of attributes using selected features see Figure 11

inative attribute space.
Rejection: When presented with an object from a new

category, we want our model to recognize that it is doesn’t
belong to any known category. For example, object models
trained on a-Pascal should all reject a category like “book”
as unknown. The a-Yahoo set is an extremely challeng-
ing dataset in rejection tasks for object models trained on
a-Pascal (one has “wolf”, the other “dog”, and so on). If
we reject using confidences of one-vs.-all SVM’s used to
learn a-Pascal object models, we get chance performance
(the area under the ROC curve for this rejection task using
base features is 0.5). However, by using attributes we reject
significantly better, with an AUC of 0.6.

6.3. Across Category generalization
Three tasks demand excellent across-category general-

ization: learning from very few examples; learning from
textual descriptions; and reporting unusual attributes. For
example, in learning a car category from very few example,
the “wheel” classifier has to mean “wheel” when it fires,
rather than predicting “wheel” and meaning “metallic”. Ex-
periments below show that selected features have signifi-
cantly improved performance on these tasks compared to
whole features. Furthermore, they allow us to localize at-
tributes, and predict correlations accurately.

Semantics of Learned Attributes: Any task that relies
strongly on the semantics of learned attributes seems to ben-
efit from using selected features. For example, selecting
features improves the results in learning from textual de-
scription from 25.2% to 32.5%, in reporting the absence of
typical attributes from 54.8% to 68.2%, and in reporting the
presence of atypical attributes from 24.5% to 47.3%.

Localization: Selected features can produce better re-
ports of location for the relevant attribute, something whole
features cannot do. Figure 10 compares localizations of
three different attributes using selected and whole features.

Snout

Row of windows

Flower Furniture Back

Figure 11: Attribute localization using selected features.

As expected, classifiers trained on whole features tend to
pick correlated features rather than features related directly
to the attributes. Instead, selected features can roughly lo-
calize attributes in some cases. Figure 11 shows more ex-
amples of localizations of attributes using selected features.
These figures suggest that learning classifiers on whole fea-
tures may result in classifiers that are confused about se-
mantics.

Correlation: Attribute classifiers learned using whole
features are biased to be correlated in the way the training
set is correlated. This means that, when applied to a test
set that has different statistics, the predictions of correla-
tion do not agree with ground truth. Figure 12 shows his-
tograms of differences between the correlation in predicted
attributes and the correlation in ground truth attributes using
both whole and selected features on a-Pascal and a-Yahoo
images.

7. Discussion
Suppose we train a system to recognizes horses and peo-

ple by mapping directly from image features to categories.
If our system is then faced with a centaur, it will be com-
pletely clueless. To make a sensible report under these cir-
cumstances, the object representation must be in terms that
are useful to describe many objects, even ones that do not
appear in the training set. Attributes are the natural can-
didate. If we make attributes the central representation for
object recognition, we are able to say more about an object
than just its name. We can say how it is different from the
usual member of its category (for example, noticing that a
bicycle looks like it has horns, figure 7). Even if we don’t
happen to have a model of an object, we can make useful
statements about it when we see it. We can build models
using descriptions. For instance, we can recognize a goat
based on the description “four-legged, has face, has horns,
has fur”. This means that we could learn by reading. To the
best of our knowledge, we are the first in computer vision to
provide these abilities to describe objects and learn from de-
scription. We expect further investigation of attribute-based
models in object recognition to be very fruitful. For exam-
ple, [10], which appears in the same proceedings, proposes
an interesting application of attribute based representations
for recognizing new categories of animals.



Cross-category generalization is essential to these visual
functions, because they rely on the semantics of the attribute
report being correct. The area has received little attention,
but an improved understanding of cross-category general-
ization is essential to sustained progress in object recogni-
tion. To deal with novel objects, we must be confident we
have semantically accurate reports of object properties in an
image — e.g., we must know that “wheel” means “wheel”,
not some correlated property like “metal.

We have proposed one method to achieve cross-category
generalization: select features that can predict the attribute
within each class. This helps to decorrelate the attributes
and leads to much improved learning by reading and at-
tribute localization.

Another reason to understand cross-category generaliza-
tion better is that correlation between target and other con-
cepts causes widespread problems in the object recognition
community. For instance, it is still difficult to tell whether
pedestrian detectors perform well because pedestrian data
sets are special, or because we are now excellent at de-
tecting people. Evidence that we are excellent at detecting
people would be a person detector trained on the INRIA
dataset [3] that works well on the PASCAL-08 [4]. So far,
such a detector is conspicuously absent; most current object
detectors work well only when the training and test sets are
very similar. Our work hints such detectors are likely learn-
ing as much about dataset biases as about the objects them-
selves. To distinguish between these phenomena, we should
most likely devise tasks that, while not explicitly trained,
can be accomplished if the target concept is well-learned.
We have provided two examples – cross-dataset evaluation
on new objects and looking at localization without training
to localize – but there are likely many other such tasks.

8. Acknowledgments
This work was supported in part by the National Science

Foundation under IIS− 0534837 and 0803603 and in part
by the Office of Naval Research under N00014− 01− 1−
0890 as part of the MURI program. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
those of the NSF or the ONR. Derek Hoiem was supported
by a Beckman fellowship. Ian Endres was supported by
the Richard T.Cheng fellowship. The authors would like to
thank Alexander Sorokin for insightful discussions on Me-
chanical Turk.

References
[1] Rie Kubota Ando and Tong Zhang. A high-performance semi-

supervised learning method for text chunking. In ACL05, 2005. 2

[2] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75,
1997. 2

[3] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 8

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge 2008
(VOC2008) Results. 2, 8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Difference between Correlations in Ground Truth Attributes and Predecied Attributes

Difference in Correlations for Yahoo

 

 

Whole Feature
Selected Features

Figure 12: This histogram compares the differences between correla-
tions in ground truth annotation and predicted attributes using selected and
whole features in a-Yahoo. Using Whole features introduces dataset de-
pendent correlations. Feature selection helps to reduce this correlation.

[5] A. Farhadi and Kamali. Learning to recognize activities from the
wrong view point. In ECCV, 2008. 2

[6] Ali Farhadi, David A. Forsyth, and Ryan White. Transfer learning in
sign language. In CVPR, 2007. 2, 3

[7] P. Felzenszwalb, D. Mcallester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR, 2008. 2

[8] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. In CVPR03, pages II: 264–
271, 2003. 2

[9] V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS,
2007. 2

[10] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling.
Learning to detect unseen object classes by between-class attribute
transfer. In CVPR, 2009. 7

[11] S.C. Levinson. Pragmatics. CUP, 1983. 5

[12] Nicolas Loeff, Ali Farhadi, and David Forsyth. Scene discovery by
matrix factorization. Technical Report No. UIUCDCS-R-2008-2928,
2008. 2

[13] S.M. Kosslyn (Eds.) M.A. Gluck, J.R. Anderson. Category Learn-
ing: Learning to Access and Use Relevant Knowledge, Memory and
Mind, A Festschrift for Gordon H. Bower (Chapter 15 - pp. 229-246).
MIT Press, 2008. 2

[14] Tomasz Malisiewicz and Alexei A. Efros. Recognition by association
via learning per-exemplar distances. In CVPR, 2008. 2

[15] G.L. Murphy. The big book of concepts. MIT Press, 2004. 2

[16] Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rota-
tional invariance. In ICML, 2004. 4

[17] Andreas Opelt, Axel Pinz, and Andrew Zisserman. Learning an al-
phabet of shape and appearance for multi-class object detection. In-
ternational Journal of Computer Vision, 80:16–44, 2008. 2

[18] Ariadna Quattoni, Micheal Collins, and trevor darrell. Learning vi-
sual representations using images with captions. In Proc. CVPR
2007, 2007. 2

[19] Eleanor Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and
Boyes P. Braem. Basic objects in natural categories. Cognitive Psy-
chology, 8:382–439, 1976. 2

[20] J. Sivic and A. Zisserman. Video Google: A text retrieval approach
to object matching in videos. In ICCV, volume 2, pages 1470–1477,
2003. 2

[21] A. Sorokin and D.A. Forsyth. Utility data annotation with amazon
mechanical turk. In CVPR Workshop on Internet Vision, 2008. 2

[22] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Shar-
ing features: efficient boosting procedures for multiclass object de-
tection. In CVPR. 2004. 2

[23] Manik Varma and Andrew Zisserman. A statistical approach to tex-
ture classification from single images. Int. J. Comput. Vision, 62:61–
81, 2005. 3

[24] Julia Vogel and Bernt Schiele. Natural scene retrieval based on a
semantic modeling step. In CIVR, pages 207–215, 2004. 2


