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Abstract

The popularity of wearable and mobile devices, including smartphones and smart-
watches, has generated an explosion of detailed behavioral data. These massive
digital traces provide us with an unparalleled opportunity to realize new types
of scientific approaches that enable novel insights about our lives, health, and
happiness. However, gaining actionable insights from these data requires new
computational approaches that turn observational, scientifically “weak” data into
strong scientific results and can computationally test domain theories at scale.

In this dissertation, we describe novel computational methods that leverage
digital activity traces at the scale of billions of actions taken by millions of people.
These methods combine insights from data mining, social network analysis, and
natural language processing to improve our understanding of physical and mental
well-being: (1) We show how massive digital activity traces reveal unknown health
inequality around the world, and (2) how personalized predictive models can
support targeted interventions to combat this inequality. (3) We demonstrate
that modeling the speed of user search engine interactions can improve our
understanding of sleep and cognitive performance. (4) Lastly, we describe how
natural language processing methods can help improve counseling services for
millions of people in crisis.
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Chapter 1

Introduction

1.1 Motivation

Science is revolutionized by data. For example, online social networks enabled
researchers to learn new insights about people, their peers, and their interactions.
Studies of the structure of online social networks revealed small-world [Watts
and Strogatz, 1998], powerlaw [Faloutsos et al., 1999], and bowtie [Broder et al.,
2000] topologies. Through studies of human behavior in online social networks we
learned about fundamental communication patterns [Leskovec and Horvitz, 2008],
information diffusion [Romero et al., 2011], and polarization [Adamic and Glance,
2005]. However, these lessons based on online social networks have largely been
limited to people’s online behaviors.

The purpose of this dissertation is to explore and demonstrate how data science
methods can positively impact human health and well-being. Beyond our behaviors
online, human well-being is naturally tied to our offline behaviors as well, for
instance physical activity, sleep, diet and social interactions. How can we capture
people’s offline behaviors? How can we leverage big data to improve people’s
lives?

The same way online social networks revealed what people do online, wearable
and mobile devices reveal what people do in the real world. These devices are
increasingly prevalent with 69% of adults owning a smartphone in developed
countries, and about 46% in developing countries [Anthes, 2016]. These devices can
capture how we sleep, work, eat, exercise, and communicate—major components
of people’s everyday and critical behaviors for human health [World Health
Organization, 2002]. In tracking these behaviors, wearable and mobile devices
generate massive digital traces of real-world behavior and health.

Digital traces of human offline behavior have been increasingly available over
the last decade. For instance, data from Fitbit wearable devices have been available
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2 CHAPTER 1. INTRODUCTION

since the company’s inception in 2007. However, effectively leveraging these data
for human well-being presents many challenges. Therefore, these data have been
regularly thrown away and overlooked for scientific research. New data science
methods are needed to address these challenges. This dissertation attempts to
address this need.

In this dissertation, we present new computational methods for digital activity
traces to better understand and improve human well-being. We will leverage
Terabyte-scale digital traces that capture billions of actions by millions of people
together with new data science methods to conduct massive observational studies.
We will demonstrate how this approach can lead to actionable insights into human
behavior and well-being through a series of cases studies across physical activity,
sleep, and mental health.

Digital activity traces from current mobile and wearable devices are rich and
multimodal, capturing people’s behaviors and health. They range from sensor data,
for instance from accelerometry, to device usage data, to our social interactions and
language patterns. Due to the popularity of these devices, researchers and industry
organizations have already captured digital trace data across millions of people.
In principle, this allows us to conduct research studies at massive scale, capturing
participant behavior in great detail, tracking health behavior continuously and
over long periods of time, and doing so at comparatively low cost.

Learning how to leverage fine-grained, already collected digital traces has great
potential impact, because it can address fundamental limitations of behavioral
health research today. This research is often confined to laboratory settings.
When behaviors are studied outside of laboratory settings, studies are typically
still limited to a small number of people (e.g., less than 50 subjects), tracking
behaviors only over short periods of time (e.g., less than 5 days), and with limited
resolution (e.g., binary granularity). In many cases, behavioral measurements are
collected through self-report and survey measures. Studies have shown up to 700%
discrepancies between these subjective measurements and corresponding objective
measures [Tucker et al., 2011]. In addition, studies following this traditional
approach come at relatively high cost.

Due to these limitations of current research, we know very little about human
behavior and health. For instance, we currently do not have good answers to basic
questions such as: How much do people exercise? What do people eat? What do
they struggle with? Digital traces of our activity and health present an opportunity
to advance science through a better understanding of human behavior and health,
and to help improve healthcare systems through new, actionable insights.

Leveraging large-scale digital traces for human well-being faces several unique
and fundamentally computational challenges. (1) Significant domain knowledge in
the behavioral, social, and medical sciences is based on subjective and qualitative
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measures. The challenge is how to computationally operationalize this knowledge
so that it is amenable to objective, quantitative analysis. (2) Raw sensor and
interaction data are massive, but typically do not directly measure well-being.
New, advanced computational techniques are required to infer well-being from
raw data, or from separate, heterogeneous data sources. (3) Sensor and social
interaction data are observational (i.e., non-experimental) and messy. Scientific
advances require new methods to turn this scientifically “weak” data into strong
scientific results (e.g., controlled and causal analyses beyond correlations). This
dissertation describes our attempts in addressing these computational challenges
through a combination of techniques across data mining, social network analysis,
and natural language processing.

1.2 Overview and Summary of Contributions

The purpose of this thesis is to demonstrate that novel computational methods can
derive new insights from already collected digital activity traces, that help us better
understand and improve human well-being. The overall structure of this thesis is
as follows. We consider three key aspects of human health and well-being: physical
activity, sleep, and mental health. In Chapter 2, we leverage consumer smartphone
data to study physical activity across 111 countries revealing a previously unknown
activity inequality. In Chapter 3, we propose a machine learning model to predict
human real-world actions ahead of time that can be used to drive just-in-time
adaptive interventions and potentially address activity inequality. In Chapter 4,
we demonstrate that user interactions with web search engines enable the study of
real-world variation in sleep and cognitive function. In Chapter 5, we perform a
detailed analysis of a large corpus on counseling conversations to reveal actionable
conversation strategies. We discuss related work within the relevant chapters. The
main contributions are summarized in the following chapter-by-chapter outline.

1.2.1 Physical Activity: Planetary-scale Smartphone Data Reveal
Activity Inequality (Chapter 2)

Originally published in Nature [Althoff et al., 2017c].

Understanding the basic principles that govern physical activity is needed to
curb the global pandemic of physical inactivity [Hallal et al., 2012; Kohl et al.,
2012; Lee et al., 2012; Sallis et al., 2016a; Tudor-Locke et al., 2008; UN Secretary
General, 2011; WHO, 2010] and the 5.3 million deaths per year associated with
inactivity [Lee et al., 2012]. Our knowledge, however, remains limited owing to
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the lack of large-scale measurements of physical activity patterns across free-living
populations worldwide [Hallal et al., 2012; Tudor-Locke et al., 2008].

In this chapter, we leverage the wide usage of smartphones with built-in
accelerometry to measure physical activity at planetary scale. We study a dataset
consisting of 68 million days of physical activity for 717,527 people, giving us a
window into activity in 111 countries across the globe.

We find inequality in how activity is distributed within countries and that this
inequality is a better predictor of obesity prevalence in the population than average
activity volume. Reduced activity in females contributes to a large portion of the
observed activity inequality.

Aspects of the built environment, such as the walkability of a city, are associated
with less gender gap in activity and activity inequality. In more walkable cities,
activity is greater throughout the day and throughout the week, across age, gender,
and body mass index (BMI) groups, with the greatest increases in activity for
females.

These findings have implications for global public health policy and urban
planning and highlight the role of activity inequality and the built environment
for improving physical activity and health.

1.2.2 Activity Tracking: Modeling Real-World Action Sequences
(Chapter 3)

Originally published at the 27th International Conference on the World Wide Web
[Kurashima et al., 2018].

Mobile health applications, including those that track activities such as exercise,
sleep, and diet, are becoming widely used. Accurately predicting human actions
in the real world is essential for targeted recommendations that could improve our
health and for personalization of these applications.

However, making such predictions is extremely difficult due to the complexities
of human behavior, which consists of a large number of potential actions that vary
over time, depend on each other, and are periodic. Previous work has not jointly
modeled these dynamics and has largely focused on item consumption patterns
instead of broader types of behaviors such as eating, commuting or exercising.

In this chapter, we develop a novel statistical model, called TIPAS, for Time-
varying, Interdependent, and Periodic Action Sequences. Our approach is based
on personalized, multivariate temporal point processes that model time-varying
action propensities through a mixture of Gaussian intensities. Our model captures
short-term and long-term periodic interdependencies between actions through
Hawkes process-based self-excitations.
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We evaluate our approach on two activity logging datasets comprising 12

million real-world actions (e.g., eating, sleep, and exercise) taken by 20 thousand
users over 17 months. We demonstrate that our approach allows us to make
successful predictions of future user actions and their timing. Specifically, TIPAS
improves predictions of actions, and their timing, over existing methods across
multiple datasets by up to 156%, and up to 37%, respectively. Performance
improvements are particularly large for relatively rare and periodic actions such as
walking and biking, improving over baselines by up to 256%. This demonstrates
that explicit modeling of dependencies and periodicities in real-world behavior
enables successful predictions of future actions, with implications for modeling
human behavior, app personalization, and targeting of health interventions.

1.2.3 Sleep and Cognitive Performance: Harnessing Web Search
Interactions for Population-Scale Physiological Sensing
(Chapter 4)

Originally published at the 26th International Conference on the World Wide Web [Althoff
et al., 2017a].

Human cognitive performance is critical to productivity, learning, and accident
avoidance. Cognitive performance varies throughout each day and is in part driven
by intrinsic, near 24-hour circadian rhythms. Prior research on the impact of sleep
and circadian rhythms on cognitive performance has typically been restricted to
small-scale laboratory-based studies that do not capture the variability of real-
world conditions, such as environmental factors, motivation, and sleep patterns in
real-world settings. Given these limitations, leading sleep researchers have called
for larger in situ monitoring of sleep and performance [Roenneberg, 2013].

We present the largest study to date on the impact of objectively measured real-
world sleep on performance enabled through a reframing of everyday interactions
with a web search engine as a series of performance tasks. Our analysis includes 3

million nights of sleep and 75 million interaction tasks.
We measure cognitive performance through the speed of keystroke and click

interactions on a web search engine and correlate them to wearable device-defined
sleep measures over time.

We demonstrate that real-world performance varies throughout the day and
is influenced by both circadian rhythms, chronotype (morning/evening prefer-
ence), and prior sleep duration and timing. We develop a statistical model that
operationalizes a large body of work on sleep and performance and demonstrates
that our estimates of circadian rhythms, homeostatic sleep drive, and sleep inertia
align with expectations from laboratory-based sleep studies. Further, we quantify
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the impact of insufficient sleep on real-world performance and show that two
consecutive nights with less than six hours of sleep are associated with decreases
in performance which last for a period of six days.

This study demonstrates the feasibility of using online interactions for large-
scale physiological sensing.

1.2.4 Mental Health: Identifying Successful Conversation Strate-
gies Through Large-scale Analysis of Counseling Conversa-
tions (Chapter 5)

Originally published in TACL [Althoff et al., 2016a].

Mental illness is one of the most pressing public health issues of our time.
While counseling and psychotherapy can be effective treatments, our knowledge
about how to conduct successful counseling conversations has been limited due to
lack of large-scale data with labeled outcomes of the conversations.

In this chapter, we present the largest, quantitative study to date on the dis-
course of text-message-based counseling conversations. We develop a set of novel
computational discourse analysis methods to measure how various linguistic
aspects of conversations are correlated with conversation outcomes. Applying
techniques such as sequence-based conversation models, language model compar-
isons, message clustering, and psycholinguistics-inspired word frequency analyses,
we discover actionable conversation strategies that are associated with better
conversation outcomes.

We find that more successful counselors (1) are aware of how the conversation
is going and adapt accordingly, (2) react differently to virtually identical situations
(making texters feel more comfortable through affirmation, clarify situations by
writing more and reflecting back to check understanding), (3) use less generic or
“templated” responses but instead write more creative and personalized messages.
(4) make progress getting to know the core issue quickly and moving on to collabo-
ratively solve the problem, and (5) are able to facilitate perspective change by helping
the texter to be more positive, think about the future, and consider others as well.



Chapter 2

Physical Activity: Planetary-scale
Smartphone Data Reveal Activity
Inequality

2.1 Introduction

Physical activity improves musculoskeletal health and function, prevents cognitive
decline, reduces symptoms of depression and anxiety, and helps maintain a
healthy weight [Sallis et al., 2016a; WHO, 2010]. While prior surveillance and
population studies have revealed that physical activity levels vary widely between
countries [Hallal et al., 2012], more information is needed about how activity levels
vary within countries and the relationships between physical activity disparities,
health outcomes (e.g., obesity levels), and modifiable factors such as the built
environment. For example, while much is known about how both intrinsic (e.g.,
gender, age, and weight) and extrinsic (e.g., public transportation density) factors
are related to activity levels, evidence about how these factors interact (e.g., the
influence of environmental factors on older adults or obese individuals) is more
limited [Bauman et al., 2012]. Understanding these interactions is important for
developing public policy [Chokshi and Farley, 2014; Physical Activity Guidelines
Advisory Committee, 2008], planning cities [Sallis et al., 2016b], and designing
behavior change interventions [Reis et al., 2016; Servick, 2015].

The majority of physical activity studies are based on information that is either
self-reported, with attendant biases [Prince et al., 2008], or measured via wearable
sensors, but limited in the number of subjects, observation period, and geographic
range [Van Dyck et al., 2015]. Mobile phones are a powerful tool for studying
large-scale population dynamics and health on a global scale [Servick, 2015; Walch
et al., 2016], revealing the basic patterns of human movement [González et al.,

7
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2008], mood rhythms [Golder and Macy, 2011], the dynamics of the spread of
diseases such as malaria [Wesolowski et al., 2012], and socioeconomic status in
developing countries [Blumenstock et al., 2015]. Smartphones are now being used
globally, with the adoption rate among adults at 69% in developed countries and
46% in developing economies and growing rapidly [Anthes, 2016]. With onboard
accelerometers for automatic recording of activity throughout the day, smartphones
provide a scalable tool to measure physical activity worldwide. Here, we use a
large-scale physical activity dataset to quantify disparities in the distribution of
physical activity in countries around the world, identify the relationship between
activity disparities and obesity, and explore the role of the built environment,
in particular walkability, in creating a more equal distribution of activity across
populations.

2.2 Results

2.2.1 Dataset

We study 68 million days of minute-by-minute step recordings from 717,527 anony-
mized users of the Argus smartphone application developed by Azumio. The
dataset includes recordings of physical activity for free-living individuals from
111 countries (Figure 2.1a). We focus on the 46 countries with at least 1000 users
(Table 2.1); 90% of these users were from 32 high income countries and 10% were
from 14 middle income countries (including 5 lower-middle income countries;
Methods). The average user recorded 4961 steps per day (standard deviation
σ = 2684) over an average span of 14 hours. We verified that the smartphone
application data reproduces established relationships between age, gender, weight
status, and activity (Figure 2.6), as well as country-level variations in activity and
obesity levels determined from prior surveillance data and population studies
(Figure 2.7). Recent research has further demonstrated that smartphones provide
accurate steps counts [Case et al., 2015] and reliable activity estimates in both
laboratory and free-living settings [Hekler et al., 2015]. We perform complete-
case analyses, which we accompany with sample-correction, stratification, outlier,
and balance testing to verify that our conclusions are robust to missing data (see
Table 2.1) and biases in age and gender, and hold for both high and middle income
countries (see Methods and Figures 2.11, 2.4).
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Figure 2.1 – Smartphone data from over 68 million days of activity by 717,527 individuals
reveal variability in physical activity across the world. (a) World map showing variation in
activity (mean daily steps) measured through smartphone data from 111 countries
with at least 100 users. Cool colors correspond to high activity (e.g., Japan in blue)
and warm colors indicate low levels of activity (e.g., Saudi Arabia in orange). (b)
Typical activity levels differ between countries. Curves show distribution of steps
across the population in four representative countries as a normalized probability
density (high to low activity: Japan, United Kingdom, United States, Saudi Arabia).
Vertical dashed lines indicate the mode of activity for Japan (blue) and Saudia
Arabia (orange). (c) The variance of activity around the population mode differs
between countries. Curves show distribution of steps across the population relative
to the population mode. In Japan, the activity of 76% of the population falls within
50% of the mode (i.e., between light gray dashed lines), whereas in Saudi Arabia
this fraction is only 62%. The United Kingdom and United States lie between
these two extremes for average activity level and variance. This map is based on CIA
World Data Bank II data publicly available through the R package “mapdata”.
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Table 2.1 – Summary of dataset statistics for the 46 countries with more than 1000 subjects
(693,806 subjects in total; Methods). Countries are ordered by number of subjects in
sample. Country-level analyses are restricted to these 46 countries. Percentages are
in parentheses. NA refers to missingness in data. Table continued on next page
with additional columns.

Country Name #subjects Mean
Steps

Activity
Inequal-
ity

#male #female #genderNA Median
Age

#AgeNA

United States 388124 4774 0.303 94707 (48.9) 98971 (51.1) 194446 (50.1) 34 168610 (43.4)
United Kingdom 55110 5444 0.288 15144 (54.8) 12508 (45.2) 27458 (49.8) 33 23557 (42.7)
Canada 26895 4819 0.303 7022 (49.2) 7250 (50.8) 12623 (46.9) 34 10962 (40.8)
Australia 26644 4941 0.304 6858 (51.4) 6479 (48.6) 13307 (49.9) 34 11075 (41.6)
Japan 20386 6010 0.248 6696 (76.2) 2090 (23.8) 11600 (56.9) 38 9016 (44.2)
China 17427 6189 0.245 7553 (61.3) 4769 (38.7) 5105 (29.3) 28 5097 (29.2)
Germany 12234 5205 0.266 4740 (72.8) 1775 (27.2) 5719 (46.7) 34 4666 (38.1)
India 11148 4297 0.293 4092 (79.0) 1086 (21.0) 5970 (53.6) 33 4818 (43.2)
France 8185 5141 0.268 2833 (67.2) 1384 (32.8) 3968 (48.5) 33 3435 (42.0)
Russia 7911 5969 0.262 2071 (59.9) 1385 (40.1) 4455 (56.3) 28 3104 (39.2)
Spain 6723 5936 0.261 2496 (70.8) 1027 (29.2) 3200 (47.6) 36 2538 (37.8)
Netherlands 6239 5110 0.261 2092 (64.1) 1171 (35.9) 2976 (47.7) 35 2311 (37.0)
Mexico 5695 4692 0.279 1497 (65.0) 806 (35.0) 3392 (59.6) 32 2831 (49.7)
Italy 5567 5296 0.275 1724 (68.3) 801 (31.7) 3042 (54.6) 36 2528 (45.4)
Singapore 5411 5674 0.249 1567 (62.3) 947 (37.7) 2897 (53.5) 35 2273 (42.0)
Sweden 5177 5863 0.246 1309 (52.1) 1202 (47.9) 2666 (51.5) 34 2277 (44.0)
South Korea 5022 5755 0.247 1235 (66.5) 621 (33.5) 3166 (63.0) 33 2270 (45.2)
Taiwan 4821 5000 0.262 987 (64.6) 540 (35.4) 3294 (68.3) 34 2404 (49.9)
Hong Kong SAR China 4754 6880 0.222 1288 (62.0) 789 (38.0) 2677 (56.3) 33 2015 (42.4)
Turkey 4711 5057 0.264 1197 (54.5) 1000 (45.5) 2514 (53.4) 31 2106 (44.7)
Thailand 4615 4764 0.272 1026 (62.9) 604 (37.1) 2985 (64.7) 32 2438 (52.8)
Norway 4256 5246 0.252 1061 (52.3) 967 (47.7) 2228 (52.3) 30 1803 (42.4)
United Arab Emirates 4138 4516 0.281 1315 (66.1) 673 (33.9) 2150 (52.0) 33 1723 (41.6)
Brazil 3999 4289 0.272 1127 (71.3) 453 (28.7) 2419 (60.5) 33 1946 (48.7)
Denmark 3924 5263 0.262 1000 (57.1) 750 (42.9) 2174 (55.4) 33 1804 (46.0)
Saudi Arabia 3837 3807 0.325 1153 (64.8) 626 (35.2) 2058 (53.6) 29 1650 (43.0)
Malaysia 3787 3963 0.288 937 (53.5) 814 (46.5) 2036 (53.8) 30 1589 (42.0)
Belgium 3051 4978 0.276 881 (61.9) 542 (38.1) 1628 (53.4) 33 1299 (42.6)
New Zealand 2941 4582 0.301 706 (49.3) 727 (50.7) 1508 (51.3) 33 1235 (42.0)
Philippines 2892 4008 0.298 550 (51.7) 513 (48.3) 1829 (63.2) 31 1476 (51.0)
Ireland 2758 5293 0.285 718 (50.3) 709 (49.7) 1331 (48.3) 33 1159 (42.0)
South Africa 2718 4105 0.284 900 (65.3) 479 (34.7) 1339 (49.3) 35 1124 (41.4)
Ukraine 2420 6107 0.252 507 (56.6) 388 (43.4) 1525 (63.0) 27 1015 (41.9)
Indonesia 2326 3513 0.283 760 (67.4) 368 (32.6) 1198 (51.5) 31 925 (39.8)
Switzerland 2251 5512 0.263 820 (64.9) 444 (35.1) 987 (43.8) 37 774 (34.4)
Czech Republic 2132 5508 0.248 708 (71.2) 286 (28.8) 1138 (53.4) 32 929 (43.6)
Poland 2128 5249 0.269 643 (63.5) 370 (36.5) 1115 (52.4) 31 901 (42.3)
Israel 1489 5033 0.272 458 (65.0) 247 (35.0) 784 (52.7) 34 650 (43.7)
Finland 1488 5204 0.266 388 (50.5) 381 (49.5) 719 (48.3) 31 612 (41.1)
Romania 1422 4759 0.283 380 (64.0) 214 (36.0) 828 (58.2) 31 653 (45.9)
Portugal 1418 4744 0.276 431 (64.8) 234 (35.2) 753 (53.1) 34 614 (43.3)
Egypt 1213 4315 0.303 290 (72.0) 113 (28.0) 810 (66.8) 26 647 (53.3)
Greece 1159 4350 0.295 455 (74.2) 158 (25.8) 546 (47.1) 36 452 (39.0)
Hungary 1151 5258 0.273 357 (67.1) 175 (32.9) 619 (53.8) 30 519 (45.1)
Chile 1060 5204 0.263 270 (64.0) 152 (36.0) 638 (60.2) 31 525 (49.5)
Qatar 1049 4158 0.291 370 (71.4) 148 (28.6) 531 (50.6) 33 413 (39.4)
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Table 2.1 – Summary of dataset statistics for the 46 countries with more than 1000

subjects (693,806 subjects in total; Methods). Countries are ordered by number
of subjects in sample. Country-level analyses are restricted to these 46 countries.
Percentages are in parentheses. NA refers to missingness in data. (Continued
from page 10.)

Country Name #BMI [15, 18.5) #BMI [18.5, 25) #BMI [25, 30) #BMI [30, 35) #BMI [35, 40) #BMI [40, inf) #BMI NA #obese

United States 5940 (2.3) 95959 (37.3) 83818 (32.5) 41669 (16.2) 17410 (6.8) 12129 (4.7) 130604 (33.7) 71208 (27.7)
United Kingdom 1133 (3.1) 16093 (44.4) 11696 (32.3) 4643 (12.8) 1514 (4.2) 920 (2.5) 18857 (34.2) 7077 (19.5)
Canada 533 (3.0) 7599 (42.1) 5808 (32.2) 2486 (13.8) 926 (5.1) 618 (3.4) 8847 (32.9) 4030 (22.3)
Australia 588 (3.2) 7756 (42.0) 6091 (33.0) 2487 (13.5) 912 (4.9) 563 (3.0) 8172 (30.7) 3962 (21.4)
Japan 795 (5.5) 9739 (67.2) 3151 (21.7) 632 (4.4) 118 (0.8) 42 (0.3) 5889 (28.9) 792 (5.5)
China 1040 (8.4) 8377 (67.8) 2439 (19.8) 375 (3.0) 64 (0.5) 20 (0.2) 5080 (29.2) 459 (3.7)
Germany 243 (2.7) 4399 (49.0) 3043 (33.9) 971 (10.8) 200 (2.2) 112 (1.2) 3253 (26.6) 1283 (14.3)
India 188 (2.5) 3017 (39.6) 3131 (41.1) 968 (12.7) 196 (2.6) 78 (1.0) 3528 (31.6) 1242 (16.3)
France 302 (5.2) 3384 (58.2) 1596 (27.5) 370 (6.4) 111 (1.9) 36 (0.6) 2375 (29.0) 517 (8.9)
Russia 386 (6.8) 3152 (55.2) 1545 (27.1) 480 (8.4) 100 (1.8) 33 (0.6) 2204 (27.9) 613 (10.7)
Spain 131 (2.6) 2611 (51.0) 1743 (34.0) 473 (9.2) 124 (2.4) 31 (0.6) 1600 (23.8) 628 (12.3)
Netherlands 125 (2.6) 2552 (53.6) 1572 (33.0) 363 (7.6) 94 (2.0) 37 (0.8) 1481 (23.7) 494 (10.4)
Mexico 85 (2.3) 1605 (42.8) 1363 (36.4) 501 (13.4) 132 (3.5) 46 (1.2) 1949 (34.2) 679 (18.1)
Italy 157 (3.8) 2366 (57.3) 1224 (29.6) 281 (6.8) 63 (1.5) 26 (0.6) 1437 (25.8) 370 (9.0)
Singapore 217 (5.8) 2099 (56.0) 1071 (28.6) 271 (7.2) 50 (1.3) 26 (0.7) 1666 (30.8) 347 (9.3)
Sweden 103 (3.0) 1842 (53.1) 1080 (31.1) 317 (9.1) 88 (2.5) 31 (0.9) 1705 (32.9) 436 (12.6)
South Korea 177 (4.8) 2272 (61.4) 1032 (27.9) 184 (5.0) 26 (0.7) 7 (0.2) 1320 (26.3) 217 (5.9)
Taiwan 196 (5.3) 2289 (61.7) 973 (26.2) 208 (5.6) 31 (0.8) 6 (0.2) 1114 (23.1) 245 (6.6)
Hong Kong SAR China 268 (7.7) 2235 (64.6) 744 (21.5) 148 (4.3) 25 (0.7) 21 (0.6) 1292 (27.2) 194 (5.6)
Turkey 130 (4.1) 1556 (48.6) 1071 (33.5) 333 (10.4) 78 (2.4) 22 (0.7) 1511 (32.1) 433 (13.5)
Thailand 243 (7.2) 2014 (59.5) 809 (23.9) 236 (7.0) 49 (1.4) 24 (0.7) 1228 (26.6) 309 (9.1)
Norway 113 (3.7) 1562 (51.3) 961 (31.6) 303 (10.0) 75 (2.5) 23 (0.8) 1211 (28.5) 401 (13.2)
United Arab Emirates 66 (2.3) 1043 (37.0) 1100 (39.0) 435 (15.4) 109 (3.9) 52 (1.8) 1319 (31.9) 596 (21.1)
Brazil 52 (1.9) 1175 (41.8) 1061 (37.8) 383 (13.6) 98 (3.5) 33 (1.2) 1189 (29.7) 514 (18.3)
Denmark 102 (3.7) 1459 (53.3) 813 (29.7) 246 (9.0) 78 (2.8) 26 (0.9) 1186 (30.2) 350 (12.8)
Saudi Arabia 91 (3.8) 819 (33.8) 861 (35.5) 400 (16.5) 133 (5.5) 100 (4.1) 1414 (36.9) 633 (26.1)
Malaysia 152 (5.6) 1315 (48.1) 843 (30.8) 287 (10.5) 94 (3.4) 36 (1.3) 1051 (27.8) 417 (15.2)
Belgium 93 (4.1) 1287 (57.2) 656 (29.1) 163 (7.2) 39 (1.7) 9 (0.4) 800 (26.2) 211 (9.4)
New Zealand 67 (3.3) 861 (42.9) 668 (33.3) 281 (14.0) 82 (4.1) 43 (2.1) 932 (31.7) 406 (20.2)
Philippines 77 (4.0) 980 (50.9) 590 (30.6) 191 (9.9) 44 (2.3) 28 (1.5) 967 (33.4) 263 (13.7)
Ireland 40 (2.2) 851 (47.5) 584 (32.6) 203 (11.3) 65 (3.6) 32 (1.8) 966 (35.0) 300 (16.7)
South Africa 42 (2.3) 653 (36.5) 632 (35.3) 325 (18.1) 88 (4.9) 46 (2.6) 927 (34.1) 459 (25.6)
Ukraine 150 (8.6) 999 (57.1) 444 (25.4) 122 (7.0) 21 (1.2) 8 (0.5) 671 (27.7) 151 (8.6)
Indonesia 107 (6.5) 815 (49.4) 532 (32.2) 147 (8.9) 28 (1.7) 10 (0.6) 675 (29.0) 185 (11.2)
Switzerland 58 (3.4) 964 (57.0) 513 (30.3) 122 (7.2) 25 (1.5) 7 (0.4) 559 (24.8) 154 (9.1)
Czech Republic 71 (4.3) 823 (50.0) 534 (32.4) 156 (9.5) 51 (3.1) 9 (0.5) 485 (22.7) 216 (13.1)
Poland 73 (4.6) 843 (52.6) 508 (31.7) 133 (8.3) 29 (1.8) 11 (0.7) 526 (24.7) 173 (10.8)
Israel 41 (3.9) 506 (48.6) 337 (32.4) 110 (10.6) 32 (3.1) 9 (0.9) 448 (30.1) 151 (14.5)
Finland 38 (3.6) 587 (55.0) 308 (28.9) 85 (8.0) 30 (2.8) 16 (1.5) 421 (28.3) 131 (12.3)
Romania 79 (7.6) 523 (50.6) 300 (29.0) 90 (8.7) 28 (2.7) 9 (0.9) 389 (27.4) 127 (12.3)
Portugal 43 (4.0) 595 (55.8) 318 (29.8) 94 (8.8) 10 (0.9) 4 (0.4) 351 (24.8) 108 (10.1)
Egypt 18 (2.2) 312 (38.7) 283 (35.1) 126 (15.6) 42 (5.2) 20 (2.5) 406 (33.5) 188 (23.3)
Greece 17 (1.9) 378 (42.7) 332 (37.5) 119 (13.4) 26 (2.9) 11 (1.2) 274 (23.6) 156 (17.6)
Hungary 43 (4.9) 483 (54.9) 243 (27.6) 89 (10.1) 16 (1.8) 6 (0.7) 271 (23.5) 111 (12.6)
Chile 12 (1.6) 347 (47.5) 267 (36.6) 82 (11.2) 18 (2.5) 1 (0.1) 330 (31.1) 101 (13.8)
Qatar 23 (3.3) 216 (31.3) 272 (39.4) 130 (18.8) 33 (4.8) 9 (1.3) 358 (34.1) 172 (24.9)

2.2.2 Activity Inequality

Our large-scale activity measurements enable the characterization of the full
distribution of activity within a population beyond activity level averages and
including the tails of the distribution (Figure 2.1b). Consider two countries with
divergent activity distributions, Japan and Saudi Arabia. In Japan, the mode of
recorded steps is high (Figure 2.1b, dashed blue line; 5846 steps), while in Saudi
Arabia it is low (Figure 2.1b, dashed red line; 3103 steps). In Saudi Arabia, the
mode is low, but the variance of recorded steps across the population is larger
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as well (Figure 2.1c). This larger variance means that while some individuals are
highly active, others record very little activity even relative to the low country
baseline.

We formally characterize these systematic differences in country-level activ-
ity distributions by measuring activity inequality, which we define as the Gini
coefficient of the population activity distribution [Allison, 1978; Atkinson, 1970]
(Figure 2.9). We find that not only is there inequality in how steps are distributed
within countries, but that activity inequality is associated with higher obesity levels
(Figure 2.2a). For example, Saudi Arabia has a high obesity rate in comparison to
Japan. At the same time Saudi Arabia has lower average activity (Figure 2.1b) and
a wider activity distribution (Figure 2.1c), that is, a higher activity inequality. This
finding is independent of gender and age biases (Figure 2.11) and independent
of a country’s income level (high vs. middle; no lower income countries were
included in our dataset; Figure 2.4). In fact, a country’s activity inequality is a
better predictor of obesity prevalence than the average volume of steps recorded
(R2 = 0.64 vs. 0.47; p < 0.01; Figure 2.10). For example, the United States and
Mexico have similar average daily steps (4774 vs. 4692), but the United States
exhibits larger activity inequality (0.303 vs. 0.279; 10th vs 7th deciles of country
activity inequality distribution) and higher obesity prevalence (27.7% vs. 18.1%;
10th vs 8th deciles of country obesity prevalence distribution) compared to Mexico
(Table 2.1).
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Figure 2.2 – Activity inequality is associated with obesity and increasing gender gaps in
activity. (a) Activity inequality predicts obesity (LOESS fit; R2 = 0.64). Individuals in
the five countries with highest activity inequality are 196% more likely to be obese
than individuals from the 5 countries with lowest activity inequality. (b) Activity
inequality is associated with reduced activity, particularly in females. The figure
shows the 25th, 50th, and 75th percentiles of daily steps within each country along
with 95% confidence intervals (shaded) as a linear function of activity inequality.
As activity inequality increases, median activity (50th percentile) decreases by 39%
for males (blue) and by 58% for females (red). (c) Obesity-activity relationship
differs between males and females and between high and low activity individuals.
The plot shows the prevalence of obesity as a function of daily number of steps
across all subjects in all countries (with 95% confidence intervals). For both males
(blue) and females (red), a larger number of steps recorded is associated with lower
obesity, but for females, the prevalence of obesity increases more rapidly as step
volume decreases (232% obesity increase for females vs. 67% increase for males;
comparing lowest vs. highest activity).
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We find that in countries with high activity inequality, activity in females is
reduced disproportionately compared to males, across all quartiles of activity
(Figure 2.2b). In particular, 43% of activity inequality is explained by the gender
gap in activity (Figure 2.12). Thus the larger variances we observe (Figure 2.1c)
are due to reduced activity for females in comparison to males and not just an
increase in variance overall (Figure 2.12a). While lower physical activity in females
has been reported in several countries [Brown et al., 2016; Hallal et al., 2012], we
discover that in countries with low activity and high activity inequality, the gender
gap in activity is amplified (Figure 2.12b).

By quantifying the relationship between activity and obesity at the individual
level (Figure 2.2c), we were able to determine why a country’s activity inequality is
a better predictor of obesity than average activity level. We find that the prevalence
of obesity increases more rapidly for females than males as activity decreases. And
while lower activity is associated with a significant increase in obesity prevalence
for low activity individuals, there is little change in obesity prevalence among
high activity individuals. So given two countries with identical average activity
levels, the country with higher activity inequality will have a greater fraction of
low activity individuals (Figure 2.1c), many of them female (Figure 2.2b), leading
to higher obesity than predicted from average activity levels alone. These findings
echo the phenomenon revealed in past studies of the effects of income inequality on
health [Lynch et al., 2000; Wagstaff and Van Doorslaer, 2000], whereby a relatively
small change in wealth (in our case activity) for an individual at the bottom of the
distribution can lead to significant improvements in health. Based on our model
relating activity inequality to obesity prevalence (Figure 2.2a), we also performed
a simulation experiment which, assuming perfect information (Methods), suggests
that interventions focused on reducing activity inequality could result in up to
a 4 times greater reduction in obesity prevalence compared to population-wide
approaches (Figure 2.13).

2.2.3 Activity Inequality and Walkability

We investigated the walkability of a city as a modifiable extrinsic factor that could
increase activity levels [Bauman et al., 2012] and reduce activity inequality and
the gender activity gap. Based on data from 69 United States cities (Table 2.2), we
find that higher walkability scores are associated with lower activity inequality
(Figure 2.3a) across all quartiles of median income (Figure 2.5). Examining San
Francisco, San Jose, and Fremont—California cities in close geographic proximity—
reveals that activity inequality is lowest in San Francisco, the city with the highest
walkability (Table 2.3), suggesting that the relationship between walkability and
activity inequality holds even for geographically and socioeconomically similar
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cities. Furthermore, in more walkable cities, activity is higher on weekdays during
morning and evening commute times and at lunch time and on weekends during
the afternoon (Figure 2.3bc). This indicates that walkable environments increase
physical activity during both work and leisure time.

We find that higher walkability is associated with significantly more daily steps
across all age, gender, and BMI groups (Figure 2.3d). The relationship between
walkability and activity is significantly stronger for females, whose activity was
also disproportionately reduced with higher activity inequality, with the greatest
increases for women under 50 years. For example, our linear model shows that for
40-year-old women, a 25 point increase in walkability (e.g., from Sacramento, CA
to Oakland, CA) is associated with 868 more steps per day, while for men, this 25

point increase is associated with only 622 additional daily steps. While walkability
was associated with the greatest increases in recorded steps among normal weight
individuals, even overweight and obese individuals in more walkable cities record
more steps.
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Figure 2.3 – Aspects of the built environment, such as walkability, may mitigate gender
differences in activity and overall activity inequality. (a) Higher walkability scores are
associated with lower activity inequality, based on data from 69 United States cities
(LOESS fit; R2 = 0.61). (b,c) Walkability is linked to increased activity levels. Curves
show average steps recorded throughout the day in United States cities with the
top 10 walkability scores (green) and bottom 10 walkability scores (blue). (b) On
weekdays, walkable cities exhibit a spike in activity during morning commute
(9:00), evening commute (18:00) and lunch times (12:00), while activity is relatively
constant and lower overall in less walkable cities. (c) On weekend days, people
in more walkable cities take more steps throughout the middle of the day, thus
walkability is associated with higher activity levels even when most people do not
work or commute. (d) Higher walkability is associated with more daily steps across
age, gender, and BMI groups. Bars show the steps gained per day for each point
increase in walkability score for 24 United States cities, including 95% confidence
intervals (assuming linear model; Methods). Positive values across all bars reveal
that, with increasing walkability, more steps are taken by every subgroup. The
effect is significantly larger for females overall (left), with the greatest increases for
women under 50 years (middle) and individuals with a BMI less than 30 (right).
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2.2.4 Limitations

There are limitations in the instrument we used to collect daily physical activity. For
example, our sample is cross-sectional and potentially biased towards individuals
of higher socioeconomic status, particularly in lower income countries, and people
interested in their activity and health. However, we find that activity inequality
predicts obesity in both middle and high income countries (Figure 2.4) and that
walkability predicts activity inequality across four quartiles of median income
in U.S. cities (Figure 2.5), suggesting that our findings are robust to variation in
socioeconomic status. The majority of adults in developed countries already own
a smartphone and the number of smartphone connections worldwide is expected
to increase 50% by 2020 [Anthes, 2016], so we expect any biases to diminish in
the future. While walking is the most popular aerobic physical activity [Centers
for Disease Control and Prevention, 2012], our dataset may fail to capture time
spent in activities where it is impractical to carry a phone (e.g., playing soccer) or
steps are not a major component of the activity (e.g., bicycling), and there may
exist systematic differences in wear time based on gender and age because users
must carry their phone for steps to be recorded. However, analysis of our dataset
reproduces previously established relationships between activity across geographic
locations, gender and age (Figures 2.6, 2.7). We also find that between countries,
the span of time over which steps were recorded is uncorrelated with the number
of steps (Figure 2.8), and thus systematic wear time differences are unlikely to
affect our country-level comparisons. Together, these results provide confidence
that our dataset is able to identify activity differences between countries, genders,
and age groups.
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Figure 2.4 – Relationship between activity inequality and obesity holds within countries of
similar income. Out of the 46 countries included in our main result, we have 32

high income (green) and 14 middle income (orange) countries according to the
current World Bank classification [World Bank, a]. We find that activity inequality
is a strong predictor of obesity levels in both high income countries as well as
middle income countries. While in middle income countries, iPhone users might
belong to the wealthiest in the population, in high income countries iPhones are
used by larger parts of the population. The fact that we find a strong relationship
between activity inequality and obesity in both groups of countries suggests that
our findings are robust to differences in wealth in our sample.
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Figure 2.5 – Relationship between walkability and activity inequality holds within US cities
of similar income. Walkable environments are associated with lower levels of
activity inequality within socioeconomically similar groups of cities. We group
the 69 cities into quartiles based on median household income (data from the
2015 American Community Survey [United States Census Bureau, b]). We find
that walkable environments are associated with lower levels of activity inequality
for all four groups. The effect appears attenuated for cities in the lowest median
household income quartile. These results suggest that our main result—activity
inequality predicts obesity and is mediated by factors of the physical environment—
is independent of any potential socioeconomic bias in our sample.
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2.2.5 Summary and Implications

This study presents a new paradigm for population activity studies by demon-
strating that smartphones can deliver new insights about key health behaviors. We
examine the distribution of activity in 46 countries around the world, including
rarely studied countries such as Saudi Arabia and Mexico. Our findings high-
light activity inequality as an important indicator of activity disparities in the
population and identify “activity poor” subpopulations, such as women, who
could most benefit from interventions to promote physical activity. We further
find that walkability is associated with reduced activity inequality and greater
activity across age, gender, and BMI groups, which indicates the importance of the
built environment to global activity levels and health. Our findings can help us
to understand the prevalence, spread, and effects of inactivity and obesity within
and across countries and subpopulations and to design communities, policies, and
interventions that promote greater physical activity.

2.3 Methods

2.3.1 Dataset Description

We analyzed anonymized, retrospective data collected between July 2013 and
December 2014 from Apple iPhone smartphone users of the Azumio Argus app,
a free application for tracking physical activity and other health behaviors. Data
is available at http://activityinequality.stanford.edu. We define a step as a unit
of activity as determined through iPhone accelerometers and Apple’s proprietary
algorithms for step-counting. The app records step measurements on a minute-by-
minute basis. We considered only users with at least 10 days of steps data. The
dataset contains 111 countries with 100 users or more (717,527 users; 68 million
days of data; Figure 2.1a). We restricted further analyses to the 46 countries with
at least 1000 or more users (693,806 users; 66 million days of data). We aggregated
data from all of these users to the country level. A user’s country was assigned
based on the most common country identified through the user’s IP addresses.
In the United States, users were assigned to a city based on the most commonly
occurring location of weather updates in the user’s activity feed. Weather updates
are automatically added to the feed of each user according to the nearest cell phone
tower. The user enters gender, age, height, and weight in the app settings, and can
change these values at any time; we used the most recent recorded values. 28.9% of
users report multiple values for their weight; among these users, weight changed
by 0.24 kg on average between the first and last recorded weight. Users had
on average 95 days with recorded steps, although variation was large (standard

http://activityinequality.stanford.edu


2.3. METHODS 21

deviation σ = 313 days). Subjects were excluded from a particular analysis if
information was unreported (e.g., subjects with no reported height or weight
were excluded from the analysis of Figure 2.2a). The amount of data for each
country can be found in Table 2.1. To verify that subjects with missing data on
gender, age, or BMI are not different from those who report data, we computed
the standardized mean difference in age, gender, BMI, and average steps per day
between groups with and without missing data. Across all combinations of missing
variables (age, gender, BMI) and outcomes (age, gender, BMI, daily steps), the
groups were balanced [Stuart, 2010], with all standard mean differences lower than
0.25. Data handling and analysis was conducted in accordance with the guidelines
of the Stanford University Institutional Review Board.

2.3.2 Verifying Established Physical Activity Trends

To determine the ability of our dataset to identify relationships between physical
activity and gender, age, BMI, and geographic location, we confirmed that the
activity measure (daily steps) in our dataset reproduces trends established in prior
work. We find that activity decreased with increasing age [Bassett et al., 2010;
Bauman et al., 2012; Hallal et al., 2012; Troiano et al., 2008] and BMI [Bauman et al.,
2012; Troiano et al., 2008; Van Dyck et al., 2015], and is lower in females than in
males [Bassett et al., 2010; Bauman et al., 2012; Hallal et al., 2012; Troiano et al., 2008;
Tudor-Locke et al., 2009], which is consistent with previous reports (Figure 2.6).
We compared our physical activity estimates to physical activity data aggregated
by the World Health Organization (WHO) [World Health Organization, b]. The
comparison between recorded steps in our dataset and the WHO data is limited
for the following reasons. The WHO’s dataset is based on self-reports instead of
accelerometer-defined measures as in our dataset. It contains the percentage of the
population meeting the WHO guidelines for moderate to vigorous physical activity
rather than recorded steps, and there is no published direct correspondence be-
tween the WHO data and daily steps. Furthermore, the confidence intervals in the
WHO dataset are often very large and make a comparison complicated (e.g., Japan:
28-89% meeting guidelines). Yet, we do observe moderate correlation between
the two measures (r=0.3194; p=0.0393, Figure 2.7a). Similarly, we determined the
correlation between obesity prevalence in a country in our dataset and comparable
WHO estimates from 2014 [World Health Organization, a] (r=0.691; p < 10−6;
Figure 2.7b). In addition, we find a significant correlation between the gender gap
in activity in our dataset and that reported by the WHO (Pearson r=0.52, p < 10−3;
Figure 2.7c). For these analyses we used the 46 countries with 1000 users in our
dataset that also had WHO data [World Health Organization, a,b] (that excludes
Hong Kong and Taiwan).
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Figure 2.6 – Activity and obesity data gathered with smartphones exhibit well established
trends. (a) Daily step counts across age and (b) BMI groups for all users. Error
bars correspond to bootstrapped 95% confidence intervals. Observed trends in
the dataset are consistent with previous findings; that is, activity decreases with
increasing age [Bassett et al., 2010; Bauman et al., 2012; Hallal et al., 2012; Troiano
et al., 2008] and BMI [Bassett et al., 2010; Bauman et al., 2012; Van Dyck et al.,
2015], and is lower in females than in males [Bassett et al., 2010; Bauman et al.,
2012; Hallal et al., 2012; Troiano et al., 2008; Tudor-Locke et al., 2009].
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Figure 2.7 – Activity and obesity data gathered with smartphones are significantly correlated
with previously reported estimates based on self-report. (a) WHO physical activity
measure [World Health Organization, b] versus smartphone activity measure. The
WHO measure corresponds to the percentage of the population meeting the WHO
guidelines for moderate to vigorous physical activity based on self-report. The
smartphone activity measure is based on accelerometer-defined average daily steps.
We find a correlation of r=0.3194 between the two measures (p < 0.05). Note that
this comparison is limited because there is no direct correspondence between the
two measures—values of self-report and accelerometer-defined activity can dif-
fer [Prince et al., 2008], and the WHO confidence intervals are very large for many
countries (Methods). (b) WHO obesity estimates [World Health Organization, a],
based on self-reports to survey conductors, versus obesity estimates in our dataset,
based on height and weight reported to the activity-tracking app. We find a
significant correlation of r=0.691 between the two estimates (p < 10−6). (c) Gender
gap in activity estimated from smartphones is strongly correlated with previously
reported estimates based on self-report. We find that the difference in average
steps per day between females and males is strongly correlated to the difference in
the fraction of each gender who report being sufficiently active according to the
WHO (Pearson r=0.52, p < 10−3).
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Figure 2.8 – Differences in country level daily steps are not explained by differences in
estimated wear time. Users have an average span of 14.0 hours between the first
and last recorded step, our proxy for daily wear time (Methods). While on an
individual level, longer estimated wear time is associated with more daily steps
(r=0.427, p < 10−10), on a country level, there is no significant association between
wear time and daily steps (r=-0.086, p = 0.57). Line shows linear fit using the 46

countries with at least 1000 users. This suggests that differences in recorded steps
between countries are due to actual differences in physical activity behavior and
are not explained by differences in wear time.

2.3.3 Daily Recorded Steps and Wear Time

We define a proxy for wear time of the activity-tracking smartphone as daily span
of recorded activity; that is, the time between the first and the last recorded step
each day. We find that users have an average wear time of 14.0 hours per day. To
verify that differences in recorded steps between countries are not confounded by
differences in wear time from country to country, we compared the average wear
time in each country versus the average number of daily steps (Figure 2.8). We find
no significant correlation (r=-0.086, p=0.57). Across the 46 countries, males have a
30 minute longer average wear time than women (14.2 vs. 13.7 hours), which is
consistent with longer average sleep duration of females [Basner et al., 2007; Walch
et al., 2016].
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2.3.4 Defining Activity Inequality

We used the Gini coefficient [Allison, 1978; Atkinson, 1970] to compute activity
inequality, as it is the most commonly used measure to quantify inequality and
statistical dispersion [De Maio, 2007]. The Gini coefficient is based on the Lorenz
curve, which plots the share of the population’s total average daily steps that
is cumulatively recorded by the bottom x% of the population (Figure 2.9). The
Gini coefficient is the ratio of the area that lies between the line of equality and
the Lorenz curve (marked A in the diagram) to the total area under the line
of equality (marked A and B in the diagram): Gini Coefficient = A / (A + B).
The Gini coefficient ranges from 0 (complete equality) to 1 (complete inequality),
since physical activity is non-negative. Several other measures have been used
to quantify inequality and statistical dispersion including the coefficient of varia-
tion [Allison, 1978; Atkinson, 1970], decile ratio [Kawachi and Kennedy, 1997], and
others [De Maio, 2007; Kawachi and Kennedy, 1997]; we find that these measures
are all highly correlated with the Gini coefficient (r=0.96 or higher) when applied
to step counts within countries.
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Figure 2.9 – Graphical definition of activity inequality measure using the Gini coefficient.
The Lorenz curve plots the share of total physical activity of the population on
the y-axis that is cumulatively performed by the bottom x% of the population,
ordered by physical activity level. The diagonal line at 45 degrees represents
perfect equality of physical activity (i.e., everyone in the population is equally
active). The Gini coefficient is defined as the ratio of the area that lies between
the line of equality and the Lorenz curve (marked A in the diagram) over the
total area under the line of equality (marked A and B in the diagram). The Gini
coefficient for physical activity can range from 0 (complete equality) to 1 (complete
inequality).
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Figure 2.10 – Activity inequality is a better predictor of obesity than the the average activity
level. (a) Obesity is significantly correlated with the average number of daily
steps in each country (LOESS fit; R2 = 0.47). (b) However, activity inequality is
the better predictor of obesity (LOESS fit; R2 = 0.64). The difference is significant
according to Steiger’s Z-Test (p < 0.01; Methods). This shows that there is value to
measuring and modeling physical activity across countries beyond average activity
levels. Activity inequality captures the variance of the distribution; that is, how
many activity rich and activity poor people there are, allowing for better prediction
of obesity levels. Figure repeated from Figure 2.2a for comparison.

2.3.5 Correlation between Activity Inequality and Obesity

We computed the Pearson correlation coefficient of activity inequality and the
prevalence of obesity in a country (Figure 2.2a; r=0.79; p < 10−10; R2 = 0.64) using
local polynomial regression fitting (LOESS; R statistical software package with a re-
descending M estimator and Tukey’s biweight function). We included all subjects
with reported height and weight. We additionally correlated obesity with average
daily steps for users in a country and compared the Pearson correlation coefficient
for average daily steps with that for activity inequality (r=-0.62; p < 10−5; R2 =
0.47; Figure 2.10). Steiger’s Z-Test [Steiger, 1980] shows that activity inequality is
more strongly correlated with obesity than the average volume of steps recorded
in a country (r = 0.79 vs. -0.62; N = 46; t = 2.86; p < 0.01). For example, even
though the United Kingdom has higher average daily steps than Germany and
France (5444 vs. 5205 and 5141), it exhibits higher obesity prevalence (19.5% vs.
14.3% and 8.9%). However, the high obesity levels in the United Kingdom are
matched to their high activity inequality (0.288 vs. 0.266 and 0.268).
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2.3.6 Robustness of Correlation between Activity Inequality and
Obesity

While for some countries the gender ratio in our sample closely matched official
estimates (e.g., the United States, Canada, and Australia) in other countries our
sample is more biased (e.g., Japan, Germany, and India; Table 2.1). There is also
a bias towards younger subjects in many countries (e.g., median age for U.S. is
34 years vs. 37 years; United Kingdom is 33 vs. 40; Japan is 38 years vs. 46

years; Brazil is 33 years vs. 31 years). Our sample further includes both middle
and high income countries, as classified by the World Bank [World Bank, a]. To
verify the robustness of our results, we calculated gender-unbiased estimates
for activity inequality and obesity prevalence for each country by reweighting
males and females in our sample to exactly match World Bank estimates [World
Bank, b] using a bootstrap [Efron and Tibshirani, 1994] with 500 replications. In
addition, we computed activity inequality separately for males and females in each
country and then correlated the activity inequality for each gender with obesity
prevalance for that gender. We also computed the correlation between obesity and
activity inequality for specific age groups in our dataset — [10,20), [20,30), [30,40),
[40,50) and [50,100), again using only subjects with a reported age. In addition,
we stratified countries by middle vs. high income status. In all cases, activity
inequality remains a strong predictor of obesity (Figures 2.11, 2.4), which makes
our findings independent of the exact age and gender distributions in our sample
and suggests our results are not confounded by middle vs. high income status
of countries or isolated to high income countries. Note that the results of these
robustness analyses also show that our findings are not explained by patterns
of missing data in our sample. We find similar results in analyses that include
all subjects (Figure 2.2a) or only those that report gender (Figure 2.11a) or age
(Figure 2.11b). We further verified that the relationship between activity inequality
and obesity is not unduly driven by outliers. We removed the potential outliers of
Indonesia, Malaysia, and the Philippines from our dataset and found that activity
inequality was still a better predictor of obesity than average volume of steps
recorded (R2 was 0.69 for activity inequality vs. 0.56 for average steps).
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Figure 2.11 – Activity inequality remains a strong predictor of obesity levels across countries
when reweighting the sample based on officially reported gender distributions and when
stratifying by gender or age. (a) Obesity versus activity inequality on country level
where subjects are reweighted to accurately reflect the official gender distribution
in each country (Methods). The gender-unbiased estimates are very similar to
estimates using all data (r=0.953 for activity inequality and r=0.986 for obesity).
(b) Obesity versus activity inequality on a country level for males and females.
Activity inequality predicts obesity for both genders. (c) Obesity versus activity
inequality on a country level across different age groups. We find associations
between activity inequality and obesity persists within every single age groups.
Older people are more likely to be obese (see y-axis ranging from 5% to 45% obesity
for subjects older than 50 years) and more likely to get little activity (i.e., higher
activity inequality on x-axis). These results indicate that our main result—activity
inequality predicts obesity—is independent of any potential gender and age bias
in our sample.
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2.3.7 Gender Gaps in Activity and Obesity

To determine how activity varies with increasing activity inequality across coun-
tries, we calculated the 25th, 50th, and 75th percentile of daily steps in each country,
with separate calculations for males and females. We then fitted a linear model
based on each country’s activity inequality to each percentile/gender group, along
with 95% confidence intervals (Figure 2.2b). We determined the relationship be-
tween obesity prevalence and average daily steps for males and females in our
sample by measuring the fraction of obese subjects who recorded a certain amount
of activity (1-2k daily steps, 2-3k, ..., 10-11k) and then computing bootstrapped
95% confidence intervals (Figure 2.2c). This analysis included all subjects in the
dataset who reported height and weight (N=297,268). We computed the propor-
tion of variability explained by the gender gap in activity using the R2 measure
(Figure 2.12b).
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Figure 2.12 – Female activity is reduced disproportionately in countries with high activity
inequality. (a) Distribution of daily steps for females, males, and all users in
representative countries of increasing activity inequality (Japan, United Kingdom,
United States, and Saudi Arabia). While in countries with low activity inequality
females and males get very similar amounts of activity (e.g., Japan), the distribu-
tions of female and male activity differ greatly for countries with high activity
inequality (e.g., Saudi Arabia and United States). Activity distributions in these
countries demonstrate that larger variances in activity (Figure 2.1c) are due to a
disproportionate reduction in the activity of females and not just an increase in
variance overall. (b) Activity inequality increases with the relative activity gender
gap on a country level (Methods). We find that the relative gender gap ranges
between 0.041 (Sweden) and 0.380 (Qatar). The average daily steps for females
is lower than for males in all 46 countries. The gender gap explains 43% of the
observed variance in activity inequality (linear fit: R2 = 0.43). This suggests
that activity inequality could be reduced significantly through increases in female
activity alone.
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2.3.8 City Walkability Analysis

Walkability scores were obtained from Walk Score [Walk Score, 2016]. Scores are
on a scale of 1 to 100 (100 = most walkable) and are based on amenities (e.g., shops
and parks) within a 0.25 to 1.5 mile radius (a decay function penalizes more distant
amenities) and measures of friendliness to pedestrians, such as city block length
and intersection density. At a city level, the score shows good correlation with
gold standard, GIS-determined measures of walkability [Duncan et al., 2011]. For
the 69 United States cities with at least 200 Azumio users (Table 2.2), we correlated
walkability scores with the activity inequality on a city-level (i.e., using the within-
city distribution of average daily step counts). We verified that correlations between
walkability and activity inequality are similar when controlling for the median
income level of the city by grouping the 69 cities used in Figure 2.3a into quartiles
based on median household income data from the 2015 American Community
Survey [United States Census Bureau, b]. We find that walkable environments
are associated with lower levels of activity inequality for all four median income
groups (Figure 2.5). We next analyzed activity in our dataset throughout the day
on weekdays and weekend days in the 10 cities with the highest walkability scores,
and the 10 cities with the lowest walkability score. We only considered cities with
at least 20,000 weekdays of tracked steps across all users for this analysis. We
aggregated steps taken over time within each city to the the average number of
steps per 30 minute interval. We only considered days with (1) at least 60 minutes
with nonzero steps, (2) first and last recorded step at least 8 hours apart, and (3)
recorded total steps between 500 and 100,000. We examined a subset of similar
cities in close geographic proximity to show that our results cannot be explained
by simple differences in geographic variation or city populations (Table 2.3).
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Table 2.2 – United States Cities sorted by their walk scores (only showing cities with at least
20,000 weekdays of data; Methods). We use the top 10 and bottom 10 cities for our
analysis (Figure 2.3bc).

City Walkability
Score

City Walkability
Score

1 New York, NY 87.6 29 Madison, WI 47.4
2 Jersey City, NJ 84.4 30 Tampa, FL 46.3
3 San Francisco, CA 83.9 31 Atlanta, GA 45.9
4 Boston, MA 79.5 32 Houston, TX 44.2
5 Philadelphia, PA 76.5 33 Irvine, CA 43.9
6 Miami, FL 75.6 34 Dallas, TX 43.6
7 Chicago, IL 74.8 35 Sacramento, CA 43.4
8 Washington, DC 74.1 36 Omaha, NE 41.1
9 Seattle, WA 70.8 37 Columbus, OH 40.0

10 Oakland, CA 68.5 38 Albuquerque, NM 39.6
11 Arlington, VA 67.1 39 Orlando, FL 39.3
12 Baltimore, MD 66.2 40 Tucson, AZ 38.9
13 Long Beach, CA 65.8 41 El Paso, TX 38.7
14 Minneapolis, MN 65.4 42 Las Vegas, NV 38.6
15 Los Angeles, CA 63.9 43 Phoenix, AZ 38.3
16 Portland, OR 62.8 44 Austin, TX 35.4
17 Honolulu, HI 62.6 45 San Antonio, TX 33.7
18 Saint Louis, MO 59.8 46 Colorado Springs, CO 33.0
19 Pittsburgh, PA 59.8 47 Kansas City, MO 32.1
20 Milwaukee, WI 59.4 48 Fort Worth, TX 31.6
21 Cleveland, OH 56.8 49 Oklahoma City, OK 31.6
22 New Orleans, LA 56.3 50 Louisville, KY 31.2
23 Saint Paul, MN 56.0 51 Raleigh, NC 28.8
24 Denver, CO 55.7 52 Indianapolis, IN 28.7
25 Cincinnati, OH 50.1 53 Nashville, TN 26.5
26 Richmond, VA 49.2 54 Jacksonville, FL 25.5
27 San Diego, CA 48.5 55 Charlotte, NC 24.4
28 San Jose, CA 48.1
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Table 2.3 – Three United States cities in close geographic proximity. Increased walkability
is associated with decreased activity inequality in this set of otherwise similar cities. For
example, San Jose and Fremont are similar to San Francisco in terms of age,
race distribution, and median household income. However, San Francisco has
a higher walkability rating, lower activity inequality, and lower obesity levels.
Therefore, we find that the discovered relationship between walkability and activity
inequality holds even for cities that are geographically and socioeconomically
similar. Walkability scores are from WalkScore.com [Walk Score, 2016], activity
inequality and obesity are estimated from our dataset (marked *), and all other
variables are taken from United States Census 2010 and the American Community
Survey 2006-2010 [United States Census Bureau, a].

City Walkability
Score

Activity
Inequality*
(Per-
centile)

%Obese* %White %Asian %Hispanic/
Latino

%Black/
African
Ameri-
can

Median
Age

Median
Household
Income ($)

San Francisco, CA 83.9 0.227

(0.07)
13.4 48.5 33.3 15.1 6.1 38.5 71,304

San Jose, CA 48.1 0.264

(0.33)
18.7 42.8 32.0 33.2 3.2 35.2 79,405

Fremont, CA 44.5 0.268

(0.48)
18.2 32.8 50.6 14.8 3.3 36.8 96,287

2.3.9 Impact of Walkability on Daily Steps

We computed the relationship between walkability and average daily steps for
several subgroups of our sample. We used data from United States cities that had
at least 25 Azumio users in each subgroup (Age 0-29, Age 30-49, Age 50+, normal
BMI, overweight, obese, all; for both males and females). There are 24 such cities
in the dataset (Table 2.4). The number of subjects for each group and city is shown
in Table 2.4. For each group, we ran independent linear regressions of steps on
walkability on a per-subject level. The models include an intercept coefficient. We
determined the estimated coefficient of walkability (i.e., the increase in daily steps
for each one point increase in walkability of a city) along with 95% confidence
intervals (based on Student’s t-distribution) for each subgroup (Figure 2.3d). We
refer to the set of these coefficients as our linear model in the main text.
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Table 2.4 – Number of subjects for each city and group used in the walkability analysis
(Figure 2.3d). We use the 24 United States cities with at least 25 subjects across all
groups (N=13,498 total; Methods).

female male
City Age

0-29

Age
30-49

Age
50+

normal
BMI

over-
weight

obese all Age
0-29

Age
30-49

Age
50+

normal
BMI

over-
weight

obese all

Atlanta, GA 114 109 51 147 56 55 288 83 171 67 120 106 78 330

Austin, TX 106 109 48 138 71 46 283 83 142 72 109 99 74 309

Charlotte, NC 58 60 27 77 38 27 147 49 95 34 49 75 41 190

Chicago, IL 228 236 77 268 126 126 572 182 314 102 237 229 111 624

Cleveland, OH 51 53 36 53 35 43 145 29 48 35 27 52 28 119

Dallas, TX 95 80 50 93 61 62 235 69 129 67 96 104 62 279

Houston, TX 160 197 97 170 141 120 477 145 255 131 149 212 147 556

Indianapolis, IN 57 51 33 57 37 39 146 50 56 48 35 65 47 156

Jacksonville, FL 43 60 28 48 31 43 139 26 66 51 39 44 53 148

Las Vegas, NV 62 79 51 80 62 40 203 71 158 68 76 125 82 305

Los Angeles, CA 138 139 46 173 86 54 340 108 188 55 127 131 70 365

Miami, FL 84 87 56 103 60 42 233 70 144 83 68 130 73 305

New York, NY 240 222 92 322 131 62 583 168 288 100 230 200 91 573

Orlando, FL 67 64 46 81 44 39 188 58 116 48 64 73 74 231

Philadelphia, PA 132 119 42 126 68 89 311 95 100 36 67 91 59 238

Phoenix, AZ 59 65 37 71 44 33 171 43 105 48 55 75 52 203

Pittsburgh, PA 72 44 27 70 36 31 146 41 59 36 46 53 29 141

Portland, OR 70 117 37 103 66 47 234 43 114 57 74 75 57 224

Raleigh, NC 59 50 30 61 33 38 145 28 69 32 36 53 36 133

San Antonio, TX 90 116 38 84 70 85 259 77 147 64 65 99 113 299

San Diego, CA 115 129 52 140 80 57 308 86 191 77 113 148 80 372

San Francisco, CA 98 133 35 183 47 26 283 100 220 87 194 141 54 423

San Jose, CA 80 86 51 106 61 37 226 68 195 86 131 137 70 366

Seattle, WA 92 115 35 133 60 39 253 60 173 49 106 111 53 294

Total 2370 2520 1122 2887 1544 1280 6315 1832 3543 1533 2313 2628 1634 7183
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2.3.10 Simulating population-level changes in activity

We used our model relating activity inequality to obesity prevalence to simulate
how changes in activity might affect a country’s obesity prevalence. We consider an
activity budget of 100 additional daily steps per person in a country to distribute
across the population (we found similar results for different activity budgets). We
compared two strategies for distributing the steps–a population-wide distribution
and an inequality-centric distribution. Both strategies result in the same shift
in the average activity level of a country. For the population-wide distribution
strategy, we increased each individual’s daily activity by 100 steps. We then
recomputed the country’s activity inequality after the redistribution and estimated
the country’s new obesity prevalence based on our inequality-obesity model (line
fit in Figure 2.2a). We next tested an activity inequality-centric strategy, where
we distributed the activity budget equally among the activity-poorest X% of the
population (e.g., the bottom 20% of the population would increase their daily steps
by 500). For the inequality-centric strategy, we computed the optimal fraction
X for each country that results in the greated reduction in the country’s activity
inequality. Optimal values for X across all countries ranged from 5-9%. Further,
assuming a fixed X (e.g., X=10%) yielded similar results. Our simulation assumes
perfect knowledge of population activity levels and perfect compliance; that is, any
user targeted in this simulation would increase their activity levels according to the
available budget. We also assume that other factors affecting weight would be held
constant when activity levels change. In our simulations, the inequality-centric
intervention resulted in reductions in obesity prevalence of up to 8.3% (median
4.0%; Figure 2.13), whereas the population-wide approach led to reductions of up
to 2.3% (median 1.0%). Thus, activity inequality-centric interventions could result
in up to a 4 times greater median reduction in obesity prevalence compared to the
population-wide approach.
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Figure 2.13 – Activity inequality-centric interventions could result in up to 4 times greater
reductions in obesity prevalence than population-wide approaches. Given a fixed activity
budget (100 daily steps per individual) to distribute across the population, we
compare an inequality-centric strategy which equally distributes this budget to
minimize activity inequality (100/X% daily steps increase for the activity-poorest
X% where X minimizes the country’s resulting activity inequality; Methods) and a
population-wide strategy which equally distributes the budget across the entire
population (100 daily steps per individual; Methods). Based on our simulations,
we find that the inequality-centric strategy would lead to predicted reductions
in obesity prevalence of up to 8.3% (median 4.0%), whereas the population-wide
approach would lead to predicted reductions of up to 2.3% (median 1.0%).
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Chapter 3

Activity Tracking: Modeling
Real-World Action Sequences

3.1 Introduction

Activity tracking applications for mobile health have become an important part of
people’s daily lives. A US-nationwide study in 2013 found that 69% of adults keep
track of a health indicator, and 21% among them used an app or device to do so [Fox
and Duggan, 2013]. In activity logging applications such as Fitbit, Under Armour
Record, and Argus, users might take one of many possible actions from a large and
diverse space of potential actions at any point in time. Users continuously track
many actions of their lives including exercise, diet, sleep, and commuting behavior
with the goal of improving self-knowledge and personal well-being [Althoff et al.,
2017b; Shameli et al., 2017; Swan, 2013] (see Chapter 2). User modeling is critical
to making activity logging applications more useful by providing users with
personalized experiences matching their specific objectives [Berkovsky et al., 2008;
Du et al., 2016; Fischer, 2001; Gorniak and Poole, 2000; Zukerman and Albrecht,
2001]. This has the potential to significantly improve people’s health, for instance by
preventing negative health outcomes and promoting the adoption and maintenance
of healthy behaviors [Althoff, 2017; Freyne and Berkovsky, 2010; Nahum-Shani
et al., 2016; Thomas and Bond, 2015]. However, successful personalization of
systems rests on the ability to predict the user’s next actions and when they will
occur [Davison and Hirsh, 1998; Du et al., 2015b; Zukerman and Albrecht, 2001].

Predicting actions is important because these predictions facilitate personal-
ization of the user interface and user experience in order to provide users with
what they need, without them asking for it explicitly [Mulvenna et al., 2000]. For
example, in activity logging applications we can predict when the user will eat
dinner and their future location in order to provide relevant recommendations [Yu
et al., 2016]. Accurate and contextualized predictions could further help users to

39
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realize their personal goals by reminding them to measure their weight or notifying
them about the exercise the next morning [Swan, 2013]. Besides predicting the
action itself, it is also critical to predict its timing, so that recommendations and
reminders can be made at the right time. For instance, diet reminders ideally
are delivered just before meal choices are made [Freyne et al., 2017; Nahum-Shani
et al., 2016; Thomas and Bond, 2015]. More generally, predicting user actions also
enables digital personal assistants that support users with relevant information
including local recommendations, traffic, weather, events, and news [Du et al.,
2016].

However, human behavior is extremely complex, which makes accurate pre-
dictions very challenging. In particular, human behavior is (1) time-varying, (2)
interdependent, and (3) periodic. First, real-world actions vary over time, for exam-
ple based on time of day (e.g., spending time with friends in the evenings) and
day of week (e.g., going hiking on weekends) [Cheng et al., 2017; Koren, 2009].
Second, actions are also interdependent in the short-term and the long-term (e.g.,
brushing teeth before going to bed, or drinking water after workouts). Third,
humans are creatures of habit [Davison and Hirsh, 1998] and exhibit periodic be-
haviors [Das Sarma et al., 2012; Drutsa et al., 2017] (also see Chapter 4), such as
brushing teeth every morning and evening.

Current user modeling techniques (e.g., [Anderson et al., 2014; Benson et al.,
2016; Davison and Hirsh, 1998; Gorniak and Poole, 2000; Kapoor et al., 2015; Koren,
2009; Lane, 1999; Trouleau et al., 2016; Zukerman et al., 1999]) do not jointly model
all these key aspects (time variation, interdependence, periodicity) of real-world
action sequences. However, failing to account for any of them results in decreased
predictive performance. For example, consider the task of predicting the time of a
user’s next meal. When not accounting for periodicity, one would miss the fact
that the user’s early lunch might lead to an earlier dinner as well. However, this
could be a critical mistake if the user relies on timely diet reminders.

While great advances have been made in modeling specific aspects of behavior
in narrow application domains, in particular in the space of recommender sys-
tems [Koren, 2009] or information retrieval [Adar et al., 2008; Agichtein et al., 2006;
Teevan et al., 2006], these lines of work have largely focused on consumption of
items such as specific videos, songs, or websites [Anderson et al., 2014; Benson
et al., 2016; Kapoor et al., 2015; Koren, 2009; Trouleau et al., 2016]. In all these cases,
users repeat the same high-level actions such as watching one video after another.
In contrast, we consider predicting which higher-level action, out of many, the user
will take next; for example, whether they will watch a movie or go for a run (not
which specific movie or run). Furthermore, previous work has often focused on
predicting short-term actions such as the next unix command [Davison and Hirsh,
1998], web page request [Zukerman et al., 1999], or TV episode watched [Trouleau
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et al., 2016]. Instead, we are interested in predicting longer-term actions such as a
commute in the evening or a run the next morning.

This work. We present a new model for the task of predicting future user actions
and their timing. First, we empirically demonstrate that action sequences exhibit
time-varying, interdependent, and periodic patterns and that modeling them is
critical to accurate predictions of user actions. Our model extends prior work
on multivariate temporal point processes and is the first model to account for
all three key properties. The model addresses (1) time-varying propensities of
actions through mixture of Gaussians, (2) short-term dependencies between actions
through a Hawkes process, and (3) long-term periodicity with time-dependent
Weibull distributions. We call this model TIPAS referring to Time-varying In-
terdependent Periodic Action Sequences. TIPAS is personalized to each user
through learning user-specific action preferences. We further develop an EM-based
algorithm to fit this model using maximum likelihood estimation.

We demonstrate that TIPAS can scale to real-world datasets from Argus and
Under Armour activity logging applications that capture 12 million actions taken
by 20 thousand users over 17 months. We evaluate our model on these two activity
logging datasets capturing ten different real-world actions, and demonstrate that
we can predict the user’s next logged activity (e.g., run, eat, or sleep) and the
timing of that activity (continuous, non-discretized timestamp) based on the user’s
previous actions and their timing.

Further, we show that TIPAS accurately captures all three fundamental behav-
ioral patterns in real-world data. Using several domains of real-world actions, we
demonstrate that our model outperforms eleven existing approaches on tasks of
predicting actions by up to 156% as well as predicting when they will occur by
up to 37%. Further, we show that performance improvements over baselines are
particularly large for rare actions, increasing prediction accuracy over baselines by
up to 256%. We find that these performance improvements are crucially enabled
by modeling time-varying propensities of actions and their dependencies, and by
modeling long-term periodicities of actions. Empirically, modeling time-varying
propensities of actions yields 53% and 40% accuracy on the two activity logging
datasets. Modeling short-term dependencies between actions improves this to 59%
and 49%, respectively. Also capturing long-term periodicities of actions further
improves this to 61% and 51%, respectively. Thus, capturing these three properties
is essential to predicting periodic and interdependent human action sequences.
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3.2 Related Work

Predicting the next action. Much work has focused on predictions of next actions,
including unix commands [Davison and Hirsh, 1998], user interface actions to
enable interface adaption [Gorniak and Poole, 2000], web page requests allow-
ing for prefetching and latency reduction [Zukerman et al., 1999], clicks on web
search [Agichtein et al., 2006], user behavior anomalies [Lane, 1999], product
item preferences [Koren, 2009; Rendle et al., 2010], online purchases [Kooti et al.,
2016], mobile apps used [Baeza-Yates et al., 2015], and future location-based check-
ins [Ashbrook and Starner, 2003; Bohnert et al., 2008; Liu et al., 2016]. Many
of these works (e.g., [Ashbrook and Starner, 2003; Bohnert et al., 2008; Kapoor
et al., 2015; Lane, 1999]) have formulated the problem as a discrete-time sequence
prediction task and used Markov models. However, Markov models assume unit
time steps and are further unable to capture long-range dependencies since the
overall state-space will grow exponentially in the number of time steps consid-
ered [Du et al., 2016]. Other works have used LSTM models [Hochreiter and
Schmidhuber, 1997], which also assume discrete time steps and are limited in their
interpretability.

In contrast, we also model and predict when the next action will occur, which is
critical to surface recommendations and reminders at the right time. In addition,
instead of specific web queries or item consumption, we consider a broader set of
higher-level actions such as watching a movie, going for a run, or going to sleep.

Patterns of repeat consumption. Another line of work has studied repeated
actions, in particular in the space of item consumption, including video binge
watching [Trouleau et al., 2016], music listening [Kapoor et al., 2015], web page
revisitation patterns [Adar et al., 2008], and repeated web search queries [Teevan
et al., 2006]. More recent work has focused on modeling these behaviors and
proposed models based on patterns of boredom [Benson et al., 2016; Kapoor et al.,
2015] and recency [Anderson et al., 2014].

Importantly, patterns of human actions in the real world, which are modeled in
this chapter, are fundamentally different from patterns of item consumption due
to their higher-level notion (e.g., watching a movie, not which specific one). For
example, patterns of boredom [Benson et al., 2016; Kapoor et al., 2015] suggest that
the probability of repeating an action within a short amount of time is unlikely.
In contrast, we empirically observe the opposite in some cases, such as users
commuting one way being extremely likely to commute back in the near future.
More generally, real-world actions are characterized by more complex dynamics
including time-varying behavior, interdependence, and periodicity of actions.
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Temporal point processes. Recent work has considered temporal point pro-
cesses [Cox and Isham, 1980] including Poisson and Hawkes [Hawkes, 1971]
process-based models to predict the timing of future actions. Temporal point pro-
cesses have been used to predict continuously time-varying item preferences [Du
et al., 2015b], and to model user influence in a social network [Iwata et al., 2013;
Tanaka et al., 2016; Zhou et al., 2013], the co-evolution of information and net-
work structure [Farajtabar et al., 2015], competition between products [Valera and
Gomez-Rodriguez, 2015], mobility patterns in space and time [Du et al., 2016], user
return times [Kapoor et al., 2014], and temporal document clustering [Du et al.,
2015a; Mavroforakis et al., 2017]. Perhaps the closest works to ours are by Du et
al. [Du et al., 2016, 2015b], which also attempt to predict both future user actions
and their timing.

We extend this line of work by explicitly modeling time-varying action propen-
sities as well as developing a novel combination of Exponential and Weibull kernels
to model short-term and long-term periodic dependencies between actions. Fur-
ther, we demonstrate that these aspects are critical when predicting real-world
user actions and their timing across two real-world activity logging datasets.

3.3 Task Description

The task considered in this chapter is, given a user and her history, a timestamped
sequence of her actions in the past, to predict the user’s future actions and the
timing of these actions.

Formally, let U be a set of users. Each user u ∈ U has an action sequence, which
we represent as a user history Hu = {(aun, tun)}Nu

n=1 with a total of Nu events. Each
element in Hu is an event consisting of an action and timestamp representing that
user u takes action aun ∈ A at time tun ∈ R+ (0 ≤ tun ≤ T). T denotes the end of
our observation period. For example, aun could correspond to watching a movie
or going for a run (but not which specific movie or run). We assume that events
are sorted by their timestamps, tun ≤ tun′ for n < n′. We denote the set of events
before time t in user history Hu as Hut = {(a′, t′)|(a′, t′) ∈ Hu and t′ < t}.

The task of predicting future user actions and when they will occur can now
be formalized as follows. Given user history Hut up until time t, predict the next
K actions the user will take and their timing {(ak, t′k)}K

k=1, where t′k > t (i.e., these
are the actions with the smallest t′k > t among all possible future user actions).

Here, we propose a novel multivariate temporal point process model for this
prediction task and focus on the case of K = 1.
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3.4 Empirical Observations

Next we make a series of empirical observations about important properties of real-
world action sequences that will provide the basis for our statistical model TIPAS
(Section 3.5). Accounting for these observations will lead to superior predictive
models (Section 3.6).

3.4.1 Dataset Description

To illustrate critical properties of real-world actions we use a dataset of logged
activities from a mobile activity logging application, Argus by Azumio, used in
previous work on activity logging [Althoff et al., 2017b; Shameli et al., 2017] (also
see Chapter 2). This smartphone app allows users to track their various daily
activities including drink, sleep, heart rate, running, weight, food, walking, biking,
workout, and stretching actions. For example, the drink action is logged to keep
track of the user’s daily fluid intake and the workout action is used to log various
indoor exercises such as weightlifting or indoor-cycling. This dataset includes
over four thousand active users taking 1.2 million actions over the course of seven
months (all users logged at least two unique actions per day on average). Due to
the popularity of the app, this set of users is very diverse in terms of age, gender,
health status, country of origin, and other features (see Chapter 2). We note that
the following properties of real-world actions also hold in other datasets including
Under Armour activity logging app data (Section 3.6.1).

3.4.2 Properties of Real-World Action Sequences

Next, we describe three important properties of real-world action sequences and
present empirical justification for each. TIPAS will explicitly address all three
properties (Section 3.5).

Time-varying propensities of actions. Human real-world actions vary over time,
for example based on time of day (e.g., having meals in the morning, at mid-
day, and in the evening) and day of week (e.g., working out on the weekends).
This dynamic is evident in real-world data of human activities as illustrated in
Figure 3.1. The figure shows the distribution of the timing of three types of
actions throughout the day: wake-up (from sleep), food, and bike. First, we
observe that all three distributions are clearly non-uniform over time. For example,
wake-up actions are clustered at around 07:00 hours (7 am). Second, we observe
significant differences in the propensities to take different actions. While for sleep
we observe a uni-modal distribution concentrated in the early morning, we observe
a bi-modal distribution for biking. The two modes in the morning and evening
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Figure 3.1 – Fraction of events within each time-of-day window. Notice that action
propensity is clearly non-uniform and sometimes multi-modal.

likely correspond to commute activity where users log their rides to and from
work. We also observe two clear modes for food during lunch and dinner times.
However, breakfast times seem to vary more widely across users and are more
dispersed. Summarizing, we observe non-uniform, temporal distributions with
varying number of modes that vary across actions.

Short-term dependencies between actions. Certain actions make it more likely
that some other actions will follow shortly. For example, people might drink
water right after exercising or stretch right before running. In order to examine
the short-term correlations between actions, we extract interarrival times between
pairs of actions (i.e., the elapsed time between the two actions) from a set of action
histories. Figure 3.2 shows the distribution of interarrival times for several pairs
of user actions after run actions (left) and sleep actions (right). We make two
important observations. First, the monotonically decreasing curves show that the
likelihood of other actions is largest right after an action has happened. After this,
the likelihood declines very quickly in a monotonic manner (note the log scale of
the Y-axis). This points to a self-excitation dynamic of logged human actions. For
example, users are very likely to follow up on runs or waking up from sleep with
drinking water or measuring their heart rate or weight. Specifically, about 50% of
the weight measurements which happen within 6 hours of waking up occur right
within the first 30 minutes. Second, we find that the action dependency patterns
vary across actions. For example, drinking is more common after runs than after
waking up and heart rate measurements fall off more sharply right after waking
up than after runs. In summary, human actions in the real world often trigger
other actions within a short period but these patterns are different across actions.
We can leverage these correlations among actions when predicting future events.
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Figure 3.2 – Fraction of interarrival times at each time window (log scale). Figure shows
drink, weight, and heart rate measurement actions taken after run (left) and wake-
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actions declines quickly after both run and wake-up actions. However, note that
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Figure 3.3 – Density describing when the next biking action will occur (interarrival time)
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(red dashed line) after midnight (timing, not duration). Notice the multiple and different
modes of the two distributions indicating that biking actions recur periodically but
that the period timing depends on the time of day.
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Long-term periodic effects. Humans exhibit periodic behaviors such as waking up
at about the same time every morning or commuting back home after about 8 hours
of work. Therefore, logged real-world actions likely follow periodic recurrence
patterns in which the same action tends to recur at certain, regular intervals. While
some of these periodic behaviors are rooted in intrinsic biological rhythms such
as sleep (Chapter 4), others are dictated by extrinsic factors (e.g., when does one
have to be in the office in the morning), or based on personal habits [Davison
and Hirsh, 1998] (e.g., measuring one’s weight before breakfast). We illustrate
these dynamics using interarrival times between bike events in real-world data.
Figure 3.3 shows the distribution of interarrival times up to a maximum of 30h,
where the two curves represent observed dynamics when the first of the two bike
actions occurred during specific times of day (6-12h in solid black and 12-18h in
dashed red line; note that these correspond to the timing and not the duration of
the bike action).

We make two important observations. Previously, we had observed that short-
term dependencies between actions exhibit monotonic decay. Here, we observe
that this strong monotonic decay only holds within the first few hours and that
we observe multiple additional peaks for both distributions after this initial phase.
Second, we observe that these peaks occur at different times based on when the
first action occurred. In the case of the distribution for bike actions following a
6-12h bike ride, we observe peaks at around 9 and 24 hours (interarrival times),
and peaks at around 14 and 24 hours for bike actions following a 12-18h bike ride.
This behavior is not unexpected. When biking in the morning (6-12h), the next
bike ride will likely be a commute back around 9h later. However, if the bike ride
happens in the evening (12-18h), the next bike ride is likely not during the middle
of the night, but after 14 hours or at around 8:00h in the morning. In addition,
both curves exhibit a daily, 24h, periodicity. Modeling these periodicities allows us
to capture user-specific timing of, for example, a late evening commute signaling a
later start the next morning. In conclusion, two important dynamics could help
predicting future real-world actions: actions display periodic recurrence and the
time of recurrence can depend on the time of day.

3.5 Proposed Model

In this section, we operationalize the insights gained from empirical observations
(Section 3.4) in a probabilistic model based on temporal point processes, called
TIPAS.
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3.5.1 Background on Temporal Point Processes

A temporal point process is a random process whose realization consists of a
list of discrete events localized in time, {tn}n∈N with tn ∈ R+. We introduce
univariate temporal point processes for ease of exposition, though we will be
using multivariate point processes to model the joint occurrence dynamics of
multiple different actions (description inspired by [Farajtabar et al., 2015]; more
background in [Aalen et al., 2008]). Let Ht be the history of events before time
t. Temporal point processes can be characterized via the conditional intensity
function representing a stochastic model for the time of the next event given all
the times of previous events. Formally, the conditional intensity function λ(t) is
the conditional probability of observing an event in a small window [t, t + dt)
given the history Ht; that is, λ(t)dt = P{event in[t, t + dt)|Ht}. The conditional
probability that no event happens during [t, t′) is S(t′) = exp(−

∫ t′

t λ(τ)dτ) and
the conditional density that an event occurs at time t′ is f (t′) = λ(t′)S(t′) [Aalen
et al., 2008]. Thus, the log-likelihood of a list of events t1, t2, . . . , tn in an observation
window [0, T), where T > tn, can be expressed as

L(t1, t2, . . . , tn) =
n

∑
i=1

log λ(ti)−
∫ T

0
λ(τ)dτ .(3.1)

The intensity λ can take various functional forms leading to a homogeneous
Poisson process if λ(t) is constant, to an inhomogeneous Poisson process if λ(t)
is time-varying but independent of the event history Ht, or to a Hawkes process
if the intensity models mutual self-excitations between events [Aalen et al., 2008].
Our TIPAS model is based on multivariate Hawkes processes [Hawkes, 1971].

3.5.2 Model Definition

We model user actions as a multivariate temporal point process with a time-varying
intensity based on three factors based on our empirical observations (Section 3.4).
The following intensity function models the rate that action a occurs at time t in
user history u,

λu(t, a)=αua+Timeu(t, a)+ShortTermu(t, a)+LongTermu(t, a).(3.2)

Here, we use an additive decomposition of the intensity instead of modeling more
complex interaction effects, because this approach is simple yet powerful and has
been proven empirically successful as well [Farajtabar et al., 2015; Iwata et al., 2013;
Tanaka et al., 2016]. This model is conceptually visualized in Figure 3.4. The figure
shows how the overall intensity function λu(t, a) (blue; here, a = food) is the sum of
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Figure 3.4 – Conceptual model overview. Intensity function of “food” for user u
is modeled by the sum of three types of influences; time-varying background
intensity (A; black), short-term dependencies (B; green), and long-term periodic
effects (C; red). (A) Time-varying background intensity models typical times for
food (e.g., having lunch around 12:00h). (B) Events of “walking” and “water”
might trigger “food” action within a short period of time. (C) Due to the early
breakfast (6:00h), we might expect an earlier lunch.

the time-varying propensity Timeu(t, a) (black), short-term dependencies between
actions ShortTermu(t, a) (green), and long-term periodic effects LongTermu(t, a) (red)
between actions (for simplicity, we assume no personalization, i.e. αua = 0). Note
that our model does account for randomness, in the sense that not all actions may
strictly conform to short-term and long-term patterns, through the personalized
and time-varying baserates. In fact, learning model parameters from real data tries
to account for all actions and will adapt distributional parameters to best explain
all occurring actions. Next, we formally define each of the four factors in turn.

Personalized action preferences: αua. We include personalized user preferences
for specific actions through a constant additive factor αua ≥ 0 for each action and
user. Note that one could also model user preferences to be time-varying instead.
However, this would lead to a very large number of parameters and we show in
Section 3.6 that this simple model works well in practice.

Time-varying propensities of actions: Timeu(t, a). Events can occur without in-
fluence from preceding events according to the background intensity function
Timeu(t, a). Having observed that the propensity of actions varies across time of
day (Section 3.4.2), we model the background intensity of action a as a function of
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time-of-day through a Gaussian mixture model. We define:

Timeu(t, a) = ∑
z∈Z

βaz√
2πσ2

az
exp

(
−
(
lt − µaz

)2

2σ2
az

)
,(3.3)

where z ∈ Z represents the latent class of Gaussian mixture model (the number of
mixtures can be determined through cross-validation). For each action a and latent
mixture class z, µaz > 0 and σaz > 0 denote the mean and standard deviation of
the Gaussian distribution. The importance of that mixture on the overall intensity
function Timeu(t, a) is captured by βaz ≥ 0. lt corresponds to the time of day of
timestamp t (i.e., elapsed time since midnight). We show in Section 3.6.3 that
Gaussian mixtures fit temporal variation in real-world data well.

Short-term dependencies between actions: ShortTermu(t, a). To model short-term
dependencies between actions, we consider how the rate at which action a occurs
at time t (Equation 3.2) is influenced by actions a′ which occurred at previous
time t′ < t. We model these influences as a Hawkes process exhibiting self-
excitations using Exponential decay functions starting at the time of previous
actions. As demonstrated in Section 3.4.2, the short-term influence of previous
actions diminishes quickly and monotonically, making the Exponential distribution
a natural choice for the decay function. We define:

ShortTermu(t, a) = ∑
(t′,a′)∈Hut

θa′aωa′a exp(−ωa′a∆t′t) ,(3.4)

where Hut = {(t′, a′)|(t′, a′) ∈ Hu and t′ < t} is the set of events before time t
in history u, and ∆t′t = t − t′ is the time difference between time t′ and time
t > t′. Further, ωa′a ≥ 0 determines how quickly action a′ triggers action a
(shape of Exponential distribution), and θa′a ≥ 0 determines how likely action
a′ triggers action a (scaling of distribution). We estimate these parameters for
each pair of actions (a′, a). Therefore, this component of the model captures the
interdependencies between different actions (e.g., drinking after running), as well
as the self-exciting effects of actions (e.g., running after running). We show in
Section 3.6.3 that a Hawkes process with Exponential decay function fits short-term
action dependencies in real-world data well.

Long-term periodic effects: LongTermu(t, a). We model the long-term periodic
effects between identical actions (e.g., run to run) using Weibull distributions. The
Weibull distribution is a continuous distribution with positive support (i.e., for
∆t′t > 0) that is well suited to model long-term effect patterns at different points
in time and with different variance around its mean. We model the rate at which
action a occurs at time t influenced by a previous event of action a at time t′ as



3.5. PROPOSED MODEL 51

follows:

LongTermu(t, a) = ∑
(t′,a′)∈Ha

ut

φct′ aγct′ aκct′ a∆
κct′ a
−1

t′t exp(−γct′ a∆
κct′ a
t′t )(3.5)

where Ha
ut = {(t′, a′)|(t′, a′) ∈ Hu and t′ < t and a′ = a} is the set of events of

action a before time t in history u, and ∆t′t = t− t′ is again the time difference
between time t′ and time t > t′. As shown in Section 3.4.2, long-term effects vary
based on the time of day of action a′. This is captured through the parameter
ct′ ∈ C that represents discretized time-of-day windows (e.g., using four classes as
0-6h, 6-12h, 12-18h, and 18-24h). This allows us to learn time-of-day-dependent
distributions modeling different periodicities. Parametrized by this time-of-day
category ct′ and by action a, γct′ a ≥ 0, φct′ a ≥ 0 determine how quickly and how
likely (influence) action a′ (which occurred in time-of-day window ct′) triggered
its following event of action a. κct′ a ≥ 0 determines the shape of the Weibull
distribution. In Section 3.6.3, we demonstrate that the Weibull distribution closely
match periodic dynamics in real-world data.

3.5.3 Model Inference

We use maximum likelihood estimation to infer the parameters of our proposed
model (Equation 3.2). The unknown parameters are α = {{αua}u∈U}a∈A, β =
{{βaz}a∈A}z∈Z , µ = {{µaz}a∈A}z∈Z , σ = {{σaz}a∈A}z∈Z , Θ = {{θa′a}a∈A}a′∈A,
Ω = {{ωa′a}a∈A}a′∈A, Φ = {{φca}c∈C}a∈A, Γ = {{γca}c∈C}a∈A, andK = {{κca}c∈C}a∈A.
The set of all parameters is denoted by Ψ = {α,β,µ,σ, Θ, Ω, Φ, Γ,K}.

The log-likelihood function (Equation 3.1), given a set of user histories H =
{Hu}u∈U, can be expressed as:

L(Ψ|H) = ∑
u∈U

Nu

∑
n=1

log λu(tun, aun)− ∑
u∈U

∫ T

0
∑
a∈A

λu(t, a)dt ,(3.6)

where the last term, the expectation function, represents the expected number
of events in the time period from 0 to T. Combining Equations (3.2)-(3.6), the
log-likelihood can be written as follows:
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L(Ψ|H) =

∑
u∈U

Nu

∑
n=1

log

{
αuaun + ∑

z∈Z

βaunz√
2πσ2

aunz

exp
(
−
(
ltun − µaunz

)2

2σ2
aunz

)
+

n−1

∑
m=1

θaumaun ωaumaun exp(−ωaumaun ∆tumtun)

+
n−1

∑
l=1

(
I(aul = aun)φcul aun γcul aun κcul aun ∆

κcul aun−1
tul tun

× exp(−γcul aun ∆
κcul aun
tul tun

)
)}
− ∑

u∈U

∫ T

0
∑
a∈A

λu(t, a)dt ,(3.7)

where cul ∈ C represents time-of-day category of l-th event of u, and I(·) is the
indicator function. The integral in Equation 3.7 can be analytically calculated.

Inspired by previous work [Farajtabar et al., 2015; Zhou et al., 2013], we develop
an efficient inference algorithm to maximize the log-likelihood based on the EM
algorithm. By iterating the E-step and the M-step until convergence, we obtain a
local optimum solution for Ψ.

E-step. Conceptually, we introduce latent variables p, q, r to capture why each
event was triggered either through user preference, time-varying background inten-
sity, short-term action interdependencies, or long-term periodic effects. Let p0,un be
the probability that the n-th event of user u was triggered by user preference, pz,un
be the probability that the n-th event of user u was triggered by the time-varying
background intensity function of latent class z, qum,un be the probability that the
n-th event of user u was triggered by the short-term effect of the m-th event of user
u, and rul,un be the probability that the n-th event of user u was triggered by the
long-term effect of the l-th event of user u.

In E-step, k-th estimate of pk
0,un, pk

z,un, qk
um,un, and rk

ul,un are calculated by:

pk
0,un =

αk
uaun

Run
,(3.8)

pk
z,un =

1
Run

βk
aunz√

2π(σk
aunz)

2
exp

(
−
(
ltun − µk

aunz
)2

2(σk
aunz)

2

)
,(3.9)

qk
um,un =

1
Run

θk
aumaun

ωk
aumaun

exp(−ωk
aumaun

∆tumtun) ,(3.10)
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rk
ul,un =

{
1

Run
φk

cul aun
γk

cul aun
κk

cul aun

× ∆
κk

cul aun−1
tul tun

exp(−γk
cul aun

∆
κk

cul aun
tul tun

)

}
,(3.11)

where Ψk = {αk,βk,µk,σk, Θk, Ωk, Φk, Γk,Kk} is the k-th estimate of parameters
in the EM procedure, and Run is the normalization factor in order to satisfy
pk

0,un + ∑z∈Z pk
z,un + ∑n−1

m=1 qk
um,un + ∑n−1

l=1 rk
ul,un = 1.

M-step. We use Jensen’s inequality to provide a lower bound for the log-likelihood
(Equation 3.7); this lower bound is often called the Q function. We obtain the next
estimate of the parameters by taking the derivative of the Q function with respect
to each parameter and setting them to zero:

αk+1
ua =

∑Nu
n=1 I(aun = a)pk

0,un

T
,(3.12)

βk+1
az =

2T
|U|T ×

∑u∈U ∑Nu
n=1 I(aun = a)pk

z,un

erf ( µk
az√

2σk
az
) + erf ( T −µk

az√
2σk

az
)

,(3.13)

θk+1
a′a =

∑u∈U ∑Nu
n=1 ∑n−1

m=1 I(aum = a′, aun = a)qk
um,un

∑u∈U ∑Nu
n=1 I(aun = a′)

(
1− exp

(
−ωk

a′a(T − tun)
)) ,(3.14)

φk+1
ca =

∑u∈U ∑Nu
n=1 ∑n−1

l=1 I(aul = a, aun = a, cul = c)rk
ul,un

∑u∈U ∑Nu
n=1 I(aun = a, cun = c)

(
1− exp

(
−γk

ca(T − tun)κk
ca
)) ,(3.15)

where T is the time period of a day (i.e., 24 hours), T
T is the number of days

representation of the observed period T, and where erf denotes the Gauss error
function erf (x) = 1√

π

∫ x
−x e−t2

dt. Because of the exponentials (exp and erf ) within

the expectation function (Equation 3.7), ωk+1
a′a , γk+1

ca , κk+1
ca , µk+1

az , and σk+1
az cannot be

solved in closed form. However, by further considering a lower bound for these
exponentials ωk+1

a′a and γk+1
ca can be solved in closed form. Their update rules are

as follows:
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ωk+1
a′a =

{
∑

u∈U

Nu

∑
n=1

n−1

∑
m=1

I(aum = a′, aun = a)qk
um,un

}

/

{
∑

u∈U

Nu

∑
n=1

n−1

∑
m=1

I(aum = a′, aun = a)qk
um,un∆tumtun

+ ∑
u∈U

Nu

∑
n=1

I(aun = a′)θk
a′a(T − tun) exp

(
−ωk

a′a(T − tun)
)}

,(3.16)

γk+1
ca =

{
∑

u∈U

Nu

∑
n=1

n−1

∑
l=1

I(aul = a, aun = a, cul = c)rk
ul,un

}

/

{
∑

u∈U

Nu

∑
n=1

n−1

∑
l=1

I(aul = a, aun = a, cul = c)rk
ul,un∆κk

ca
tul tun

+ ∑
u∈U

Nu

∑
n=1

I(aun = a, cun = c)φk
ca(T − tun)

κk
ca exp

(
−γk

ca(T − tun)
κk

ca
)}

.(3.17)

The other three parameters, κk+1
ca , µk+1

az and σk+1
az , are estimated by maximizing the

Q function through the use of a gradient-based numerical optimization method;
we used the Newton method. For more details on model inference see the Online
Appendix [Kurashima et al., 2018].

3.6 Experiments

This section evaluates the predictive performance of our proposed model on two
real-world datasets on predicting the next user action and when it will occur.
We compare against eleven different baselines on each dataset. However, since
many baseline models are unable to make joint predictions of action and timing,
we evaluate these two tasks separately. Importantly, this process allows us to
identify the individual sources of error that would impact joint predictions. Our
implementation is available at snap.stanford.edu/tipas.

3.6.1 Datasets

Our experiments use two real-world activity logging datasets. In total, these
datasets comprise 12 millions real-world actions taken by 20 thousand users over
17 months.

Argus dataset. We use the activity logging data from the Argus mobile app
described in Section 3.4.1. Users in this dataset can log 10 different actions (drink,
sleep, heart rate, running, weight, food, walking, biking, workout, and stretching)
and our goal is to predict which of these 10 actions a user will take next (and

snap.stanford.edu/tipas
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Dataset Statistics Argus Under Armour

Observation period 7 months 10 months
Jan-July ’15 Jan-Oct ’16

# unique actions 10 8

# total users 4,708 15,221

# total actions 2,140,757 9,733,645

Avg. # actions per user 454.7 639.5
Avg. # unique actions per user 6.3 6.8
Avg. # unique actions per user day 2.7 4.4

Table 3.1 – Basic dataset statistics.

when). Our analyses include users who logged at least two unique actions per day
on average (other users might only use the app to for example track their sleep
making predictions of actions and their timing almost trivial; we find that our
results are robust to different choices of this threshold). We consider 7 months of
data from the app in a rolling window evaluation, where we use one month for
training and the next for testing (i.e., making out-of-sample predictions; without
retraining). As shown in Table 3.1, the dataset includes 2.1 million actions by over
4 thousand users within the 7 month observation period.

Under Armour dataset (UA). We also use activity logging data from Under Ar-
mour mobile apps (i.e., MapMyFitness and MyFitnessPal; focusing on users that
are active in both apps). Users in this dataset can log 8 different types of actions
(running, walking, biking, workout, breakfast, lunch, dinner, and snacks). Our
analyses include users who logged at least four unique actions per day on average,
leading to a similar number of unique actions per user on average compared to the
Argus dataset (again, our results are robust to different choices of this threshold).
We consider 10 months of data from the app and again perform a rolling window
evaluation where we train on one month and test on the next. In total, this dataset
comprises 15 thousand users taking 9.8 million actions (Table 3.1).

3.6.2 Model Learning

Note that our model has few core model parameters. In the context of the datasets
described above, we have about 500 core model parameters (β,µ,σ, Θ, Ω, Φ, Γ,K)
and about 25 thousand personalization parameters (α). This small, non-redundant
set of parameters allows us to train the model efficiently and robustly, and explain
model predictions through inspection and visualization of model parameters
(Section 3.6.6), while performing competitively (Section 3.6.4). However, during
training time (but not test time) we also have latent variables (p, q, r) that allow us
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(a) Time-varying propensity (bike)
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Figure 3.5 – Validation of parametric modeling assumptions (Section 3.5.2). (a) Mixture
of Gaussian closely fits observed time-varying action propensity (here, for bike
action). (b) Exponential and Weibull distributions collectively well-approximate
short-term dependencies and long-term periodic effects of previous bike actions.

to learn the core model parameters. These latent variables represent which actions
trigger which other actions, leading to O(|U|(maxu∈U Nu)2) variables in the worst
case. On both datasets, inference of both core model and latent parameters involves
solving an optimization problem with over 200 million total variables (Section 3.5.3;
we randomly initialize all parameters). Using our EM-based inference procedure
we can robustly infer these parameters in less than ten hours using a single-
threaded C++ implementation on a single machine. We find that one month of
training data is enough to reliably train our model.

3.6.3 Validating Parametric Assumptions

In Section 3.5.2 we developed a model consisting of three parts: time variation
modeled using a mixture of Gaussians (Timeu(t, a)), short-term dependencies
between actions modeled by a Hawkes process with Exponential decay function
(ShortTermu(t, a)), and long-term periodicity modeled through Weibull distribu-
tions (LongTermu(t, a)). Here, we test empirically whether these parametric as-
sumptions hold true in real data. Using the Argus dataset, we inferred appropriate
parameters for these distributions.

We demonstrate qualitatively in Figure 3.5 that the chosen distributions fit
real-world dynamics well. Figure 3.5 (a) shows the time-varying propensity with
superimposed mixture of Gaussian fit and (b) shows that, collectively, Exponential
and Weibull distribution closely approximate the influence of previous actions
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(example data is for bike action as seen in Figure 3.1).
We have further quantitatively evaluated our parametric assumptions and

compared our choices to alternative distributions (e.g., Rayleigh and Power-law)
through goodness-of-fit tests which have shown that the suggested distributions
best fit real-world data.

3.6.4 Predicting the Next Action

First, we evaluate our proposed model in terms of its accuracy in predicting actions
at a given time. The task is to predict the n+1-st action aun+1 of user u, given time
tun+1 and past user history Hu = {(au1, tu1), · · · , (aun, tun)}. For each two month
period in both datasets, we use the first month for training and the second month
for testing and perform a rolling window evaluation, where we predict each test set
event given all events that happened before it (without retraining). We use accuracy,
the percentage of correct predictions, over all test events as our evaluation measure
(the most common measure to evaluate recommender systems [Herlocker et al.,
2004]). We also report macro-averaged recall [Manning et al., 2008] corresponding
to averaging prediction accuracy equally weighted across all action types. This
measure highlights differences in predictive performance on rare actions that do
not affect the standard accuracy measure very much. We find very similar results
using other classification metrics (e.g., ROC AUC, F1). The number of mixtures
for the time-varying action propensity (Equation 3.3) is set via cross-validation.
We compare our proposed model against the following seven baseline models,
which have proven competitive across a wide variety of prediction tasks and
recommender systems:

• Copy Model: Simply repeats the user’s last action. Several repeat consump-
tion models are variants of this copy model (e.g., [Anderson et al., 2014;
Benson et al., 2016]).

• Markov Model: Predicts the next action based on the most recent actions of
the user. We report first to fifth-order Markov models (sixth-order models
did not significantly improve performance). Markov models have been used
widely to predict next actions (e.g., [Ashbrook and Starner, 2003; Kapoor
et al., 2015]).

• Hidden Markov Model (HMM): This is a Markov model with hidden (un-
observed) states. It predicts the next action based on the current, inferred
state of the action sequence [Lane, 1999].

• Factorizing Personalized Markov Chains (FPMC): This is based on under-
lying Markov chains where the transitions matrices are user-specific. Matrix
factorization models are used to address sparsity issues of these user-specific
Markov chains [Rendle et al., 2010].
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(a) Baseline Comparison (Argus)
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(b) Baseline Comparison (UA)
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Figure 3.6 – Accuracy when predicting actions. Higher is better. Comparing proposed
TIPAS model (red) to baselines (gray). Error bars in all plots correspond to standard
errors.

• Recurrent Neural Network (RNN): Feedforward neural network structure
using outputs from the hidden units at the prior time step as the inputs
as the current time step. Assumes discrete time steps and no ready-to-use
generalizations to continuous time domain exist.

• PP-Global: A global Poisson process model. The intensity function is con-
stant over time and defined by λu(t, a) = αa.

• PP-User: A user-specific Poisson process model. The intensity function is
constant over time and defined by λu(t, a) = αua.

Note that Hawkes process models (e.g., [Du et al., 2015a; Farajtabar et al., 2015;
Hawkes, 1971]) are closely related to the ShortTermu(t, a) component of our model
(Equation 3.4). Our proposed model TIPAS uses the intensity function of Eq. 3.2.
We predict the most likely user action as â = argmaxa λu(tun+1, a). We also
compare the individual model components in an ablation study below.

Results: Comparison to baseline models. Figure 3.6 compares accuracy of next
action prediction. We observe that the eleven baselines achieve accuracies of 36-57%
on the Argus dataset and 20-46% on the Under Armour dataset with the RNN
baseline performing best in both datasets. The limited predictive performance of
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these competitive baselines shows that this prediction task is non-trivial. TIPAS
outperforms all baselines on both Argus (60.9%; 6-69% rel. improvement) and
Under Armour datasets (50.9%; 11-156% rel. improvement). The small standard
error across multiple dataset splits in the rolling window evaluation (Figure 3.6)
demonstrates that our training procedure is robust and consistently shows good
performance. We note that TIPAS performs particularly well on rare actions leading
to 9-256% relative improvement in macro-averaged recall over baseline models
(Online Appendix [Kurashima et al., 2018]).

Results: Comparison of individual model components. Note that TIPAS has
three components (Equation 3.2): time-varying action propensities (Time), short-
term interdependencies between actions (Short), and long-term periodic effects
(Long). Here, we evaluate the performance of each of these components in
an ablation study by comparing Time, Time+Short, and the full TIPAS model
combining Time+Short+Long (Figure 3.7; all models include user personalized
preferences αua). We find that modeling time-varying action propensities achieves
an accuracy of 53% and 40% on the two datasets, respectively. Further, modeling
short-term dependencies between actions improves this to 59% and 49%, and
capturing long-term periodicities of actions further improves this to 61% and 51%,
respectively. This demonstrates that capturing all three properties is essential to
predicting actions in both datasets of human real-world action sequences. Further,
we observe a bigger difference between the full Time+Short+Long model and the
Time+Short model in terms of macro-averaged recall (7% and 5% relative MAR
improvements compared to 3% and 4% in terms of accuracy on the Argus and
Under Armour datasets, respectively). This indicates that modeling long-term
periodicities is especially important for more rare actions such as walking and
biking. In addition, we find that modeling long-term periodic effects discretized
by time of day (0-6h, 6-12h, 12-18h, 18-24h) performs significantly better than not
discretizing by time of day on both datasets. For example, actions such as biking
and walking are periodic but vary based on time of day (Figure 3.3). Our full model
captures these time-of-day dependent long-term effects and relatively improves
macro-averaged recall of predicting biking and walking actions by 491-556% over
Time model and 2-4% over Time+Short model.

3.6.5 Predicting the Time of the Next Action

We now focus on the second aspect of modeling real-world actions: Predicting
the time of the next action. Specifically, the task is the predict the n+1-th time-
stamp tun+1 in history u, given past events Hu = {(au1, tu1), ..., (aun, tun)} (we do
not assume that the next action aun+1 is given). Mean absolute error (MAE) is
used as the evaluation metric. We use the same train/test paradigm as before
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(a) Model components (Argus)
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(b) Model components (UA)

0
.3

8
0

.4
2

0
.4

6
0

.5
0

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

T
im

e

T
im

e
+

S
h

o
rt

T
IP

A
S

Figure 3.7 – Ablation study comparing different model components on accuracy when
predicting actions. Higher is better.

(rolling window evaluation training one month and testing on the next). We
restrict predictions to only events that will occur within the next 12 hours (i.e., the
time interval tun+1 − tun ≤ 12 hours) because these are the most important and
actionable inferences (e.g., predicting a sleep time many days from now may have
large error, but it is also less relevant). In order to make time predictions based
on TIPAS, we simulate the multivariate temporal point process using Ogata’s
modified thinning algorithm [Ogata, 1981]. We simulate 100 samples and return
the average time.

We compare our model to the following five baseline methods:
• Time Copy Model: Predicts the next time, tun+1, based on the most recent

time-interval of user u (tun+1 = tun + (tun − tun−1)).
• Average Time Interval: Predicts the next time tun+1 using the global average

of time-intervals.
• User Average Time Interval: Predicts the next time tun+1 using the average

of time-intervals for user u.
• PP-Global: A global Poisson process model. The intensity function is con-

stant over time and defined by λu(t, a) = αa.
• PP-User: A user-specific Poisson process model. The intensity function is

constant over time: λu(t, a) = αua.
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(a) Baseline Comparison (Argus)
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(b) Baseline Comparison (UA)
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Figure 3.8 – Mean absolute error (MAE) when predicting time of next actions. Lower is
better. Comparison to baselines.

We note that the other baselines (Markov models, HMM, FPMC, and RNN)
used in Section 3.6.4 are unable to make any time predictions.

Results. Experimental results are shown in Figure 3.8. We observe that all baselines
perform similarly except the Time Copy model which performs significantly worse
on both datasets. TIPAS significantly outperforms all baselines across both datasets
by 22-35% in the Argus dataset and 11-37% in the Under Armour dataset (relative
improvement). Restricting predictions to events within the next 6 hours (instead of
12h as before), TIPAS outperforms the baselines even more significantly, improving
upon them by 44-58% and 37-41% on the two datasets. TIPAS is able to make
better timing predictions because it is able to leverage three key components. First,
it is aware that certain actions only happen during certain parts of the day. For
example, it will predict longer delays in the middle of the night when actions are
unlikely to occur. Second, the model can exploit dependencies between actions.
For instance, it might predict a very short time after a run because many users
will drink water or check their heart rate soon after. Third, TIPAS is able to exploit
periodicities in the data. For example, it might predict an evening time commute
because it observed a commute in the morning. In summary, modeling these three
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(a) Inferred food periodicity
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Figure 3.9 – Visualization of inferred TIPAS model parameters for (a) periodicity of food
actions and (b) interdependent actions following food actions. The learned dependencies
allow to explain why specific actions are being predicted.

key aspects of human behavior allows us to make better predictions of actions and
their timing.

3.6.6 Model Explainability

TIPAS also allows for visualization of model parameters, which enables expla-
nations of why certain predictions are made. This is especially important in the
mobile health context, where model predictions may impact users’ real-world
health behaviors and therefore need to be explained and monitored.

The inferred model parameters for Equation 3.5 are shown in Figure 3.9a (specif-

ically, f (∆t′t) = γct′ aκct′ a∆
κct′ a
−1

t′t exp(−γct′ a∆
κct′ a
t′t ) for a = food). These distributions

correspond to when food events likely trigger other food events. The distributions
show that meals are extremely periodic and that meals sharply determine the
timing of the next meal, except for dinners after 18:00h, which do not precisely
determine the timing of the next meal (18-24h, green). The periodicities vary
between 5h after breakfast (6-12h) and 6h after lunch (12-18h). This is consistent
with a typical schedule of meals at 7:00h, 12:00h, and 18:00h. Importantly, this
enables us to correctly predict that earlier lunches may lead to earlier dinners.
Such predictions are critical for correctly timed interventions, for instance making
sure that diet reminders do not come to late.

Furthermore, TIPAS allows us to explain why an activity was predicted, based
on the relative contributions of model components to the overall intensity function
(Section 3.5.2). For example, after food actions users are likely to log other foods
and drinks (Figure 3.9b; showing f (∆t′t) = ωa′a exp(−ωa′a∆t′t) for a′ = food). This
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makes sense as typical meals include both food and drinks, and users may choose
to log parts of each meal separately. Interestingly, users also often log their weight
right after food, indicating that they might be conscious of how their meal might
have impacted their weight. Lastly, we observe walking actions right after meals.
Users may walk back from a restaurant, or they might attempt to walk off some of
their meal’s calories.

While these results and examples are specific to mobile activity logging applica-
tions, the utility of our model may generalize other domains where behaviors are
time-varying, interdependent, or periodic. Distributional choices for the individual
may vary across domains but can easily be adapted in our model.

3.7 Conclusion

Accurately predicting the user’s future actions is essential for personalization, user
modeling, and timely interventions in mobile health applications. In this chap-
ter we demonstrated that real-world user behavior exhibits several complexities
including a large number of potential actions, time-varying action propensities,
dependencies between actions, and periodic behaviors. We proposed a novel sta-
tistical model based on multivariate temporal point processes that jointly models
all these complexities of human behaviors. Empirically, we demonstrate that our
model successfully captures these dynamics in two real-world datasets and that
it significantly outperforms nine baselines on tasks of predicting the next user
action and when this action will occur. Our model can serve as a foundation to
predict more fine-gained attributes of real-world actions such as their duration,
intensity, or exact location. Our results further have implications for modeling
human behavior, app personalization, and targeting of health interventions.
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Chapter 4

Sleep and Cognitive Performance:
Harnessing Web Search Interactions
for Population-Scale Physiological
Sensing

4.1 Introduction

Maintaining optimal cognitive performance has been found to be important in
learning [Kelley et al., 2015], productivity [Colten and Altevogt, 2006], and avoiding
industrial and motor vehicle accidents [Colten and Altevogt, 2006; Dinges, 1995].
Studies have demonstrated that cognitive performance varies throughout the
day [Van Dongen and Dinges, 2000], likely influencing the quality of our efforts and
engagements–including how we use and interact with vehicles, devices, resources,
and applications. Furthermore, cognitive performance is decreased significantly
after loss of sleep [Dinges, 1995]. Understanding the real-world impact of sleep
deficiency is critical. It has been estimated that the cost of fatigue to U.S. businesses
exceeds $150 billion a year in absenteeism, presenteeism, workplace accidents,
poor and delayed decision-making and other lost productivity on top of the
increased health care costs and risk of disease [Hemp, 2004]. Despite the important
influences, temporal variations of real-world performance are not well understood
and have never been characterized on a large scale [Roenneberg, 2013].

Models of daily patterns in human cognitive performance rely typically on
representations of three biological processes: circadian rhythms (time-dependent,
behavior-independent, near 24-hour oscillations) [Van Dongen and Dinges, 2000],
homeostatic sleep pressure (the longer awake, the more tired you become) [Borbély,
1982], and sleep inertia (performance impairment experienced immediately after

65
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waking up) [Åkerstedt and Folkard, 1997; Dinges, 1990].
While models of these biological processes capture well the patterns of cogni-

tive performance in the laboratory [Åkerstedt and Folkard, 1997; Borbély, 1982],
they are based on experimental studies in which participants are deprived of
sleep and undertake regular, artificial tasks to measure performance instead of
non-intrusively capturing performance through everyday tasks in real-world envi-
ronments. In addition, these studies typically include participants that fit a specific
physical and psychological profile (e.g., those with depressed mood are often
excluded). Further, participants in an artificial setting can be influenced by their
understanding of the study and subconsciously change their behavior to fit the
interpretation of its motivation and goals [Orne, 1962]. While laboratory studies
have been critical in developing understandings of the basic biological processes
that underlie cognitive performance, they fail to account for myriad influences
in the real-world, including motivation, mood, illness, environmental conditions,
behavioral compensation including caffeine intake, and sleep patterns in the wild
that are far more complicated than those enforced in research studies. How these
and other factors alter real-world cognitive performance is not well understood.
Therefore, sleep scientists have called for large-scale real-world measurements of
performance and sleep as a necessary step to “to transform our understanding of
sleep” and “to establish how to manage sleep to improve productivity, health and
quality of life” [Roenneberg, 2013].

This Work. We respond to the appeal from the sleep research community with a
large-scale study of sleep and performance enabled through reframing everyday
interactions with a web search engine as a series of performance tasks. In particular,
we use individual keystrokes when typing a search query and the clicks on search
results as a source of precisely timed interactions. We demonstrate that the timing
of these interactions varies based on biological processes and can be used to
study the influence of different quantities of sleep on performance. Search engine
interactions offer insight about real-world cognitive performance as they are an
integral part of many people’s lives and work every day. More than 90% of US
online adults use web search engines, which now handle billions of searches each
day [Purcell, 2011].

Our dataset comprises over 3 million nights of sleep tracked by wearable sensors
from 31 thousand users over a period of 18 months and 75 million subsequent
real-world performance measurements based on keystrokes and clicks within a
web search engine (Section 4.3). This constitutes the largest prospective study of
real-world human performance and sleep to date (more than 400 times larger than
the second largest comparable study which had only 76 participants [Lim and
Dinges, 2010]).

We first demonstrate that real-world human cognitive performance captured
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through search engine interactions varies throughout the day in a daily rhythm
(Section 4.4). We find that performance is lowest during habitual sleep times when
it is reduced by up to 31%. Both the shape and magnitude of this temporal variation
are consistent with controlled laboratory-based studies, providing validation of
our large-scale performance measures. We also show that performance varies
based on chronotype (morning/evening preference) with early risers performing
slowest at 04:00 h (4am) and late risers performing slowest at 07:00 h.

We then develop a statistical model based on chronobiological research and
demonstrate that it successfully disentangles circadian rhythms, homeostatic sleep
drive, sleep inertia, and prior sleep duration—key factors considered in the sleep
literature (Section 4.5). We quantify that performance varies by 23% based on time
of day, by 19% based on time since wake up, and by 5% based on sleep duration
(Section 4.5.3). We validate our methodology by demonstrating close agreement be-
tween our model estimates based on a large amount of performance measurements
in the wild and smaller controlled sleep studies in artificial laboratory settings.

After validating our approach, we extend prior laboratory-based sleep research
through estimates of how sleep impacts performance in real-world settings. In
particular, we quantify the impact of one or multiple nights of insufficient sleep on
real-world performance (Section 4.6). We demonstrate that very short and very
long sleep durations, and irregular timing of sleep are associated with 3%, 4% and
7% lower performance, respectively. We also show that two consecutive nights
with fewer than six hours of sleep are associated with significantly decreased
performance for a period of six days.

Our study is also the first to demonstrate that ambient streams of data, such
as patterns of interactions with devices, can be harnessed as large-scale physio-
logical sensors to study and continuously and non-intrusively monitor human
performance at population scale. The insights and methodology developed in
this chapter are relevant to sleep scientists in pursuit of larger-scale real-world
measurements of performance, to computer scientists who build tools and ap-
plications that may be affected by variations in human performance, and to the
growing community of researchers who have been exploring uses of data from
online activities to address questions and challenges in the realm of public health.

4.2 Related Work

Circadian Processes in Sleep and Performance. Empirical studies have found
daily rhythms in human performance including alertness, attention, reaction time,
memory, and higher executive functions such as planning [Blatter and Cajochen,
2007]. The daily variations in performance have been found to be modulated
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primarily by two processes [Dijk et al., 1992]: a circadian rhythm (time-dependent,
behavior-independent, near 24-hour oscillations) [Van Dongen and Dinges, 2000]
and a homeostatic sleep drive (the longer awake, the more tired we become and the
more we sleep, the less tired we become) [Borbély, 1982]. The circadian rhythm
acts in opposition to the homeostatic drive for sleep that accumulates across the
day, enabling a single, consolidated period of wakefulness throughout the day.
A third process has been proposed called sleep inertia [Van Dongen and Dinges,
2000], which corresponds to the performance impairment experienced immediately
after waking up [Åkerstedt and Folkard, 1997; Dinges, 1990]. In addition to the
influence of daily rhythms on the structure of sleep and performance, there are
also shorter, 90-minute oscillations, ultradian rhythms, that organize the occurrence
of NREM and REM stages during sleep. Ultradian rhythms, circadian rhythms,
and homeostatic sleep pressure can all impact the structure, and likely function, of
sleep [Dijk and Czeisler, 1995].

Human preferences and natural tendency in the relative timing of sleep and
wake are called chronotypes and are at least partly based on genetics [Roen-
neberg et al., 2003]. Cognitive performance depends on chronotype and time
of day [Matchock and Mordkoff, 2009]; that is, early/morning types (“lark”) tend
to be higher performing earlier in the day while late/evening types (“owl”) are
higher performing later. Sleep deprivation has been linked to significant de-
creases in cognitive performance that lead to increased risk for accidents and
injury [Dinges, 1995].

A recent study correlated performance on cognitive exercises with a sleep
measure based on retrospective self-reports of “typical sleep” in 160 thousand
users [Sternberg et al., 2013]. However, this measure suffers from potential bi-
ases [Lauderdale et al., 2008] and does not enable the study of performance
variation over time based on time of day and sleep timing. Another study showed
that insomnia with short sleep is associated with cognitive deficits in 678 sub-
jects [Fernandez-Mendoza et al., 2010] but only measured a single night of sleep to
characterize typical sleep patterns after taking performance measurements, leading
to similar limitations. According to a recent meta-analysis [Lim and Dinges, 2010],
the largest study that measured both sleep and performance concurrently had 76

participants.

Technology Use and Interaction Patterns. Interaction patterns of different devices
and applications have been studied on small scale to better understand mobile
device usage [Böhmer et al., 2011], to detect stress [Vizer et al., 2009], used as
biometric signals for authentication [Monrose and Rubin, 1997], and linked to
biological processes [Murnane et al., 2015, 2016] including alertness [Abdullah
et al., 2016]. For example, less sleep was linked to shorter duration of focus of
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attention in a study with 40 participants [Mark et al., 2016]. Large-scale interac-
tion data have been used to gain insights into human behavior in the areas of
mood rhythms [Golder and Macy, 2011], diet [West et al., 2013], conversation
strategies (Chapter 5), social networks and mobile games encouraging health
behaviors [Althoff et al., 2017b, 2016b; Shameli et al., 2017], and health and disease-
related search behaviors [Paparrizos et al., 2016; White et al., 2016].

This Work. Existing research on sleep and performance is either small-scale and
laboratory-based [Lim and Dinges, 2010] or relies on subjective measures such as
surveys capturing “typical” sleep [Sternberg et al., 2013] which do not allow for
temporal coordination of sleep and performance measurements. As a complement
and extension of research to date on performance in artificial laboratory settings, we
study real-world cognitive performance which we measure through interactions
with a web search engine. We use objective measurements of sleep (time in
bed) from wearable devices which are preferred to subjective self-reports that
can be significantly biased [Lauderdale et al., 2008] and that enable us to study
performance variation over time in reference to sleep timing. This work represents
the largest study of objectively measured sleep and real-world performance to
date, employing a subject pool that is orders of magnitude larger than the largest
comparable prior study [Lim and Dinges, 2010]. Our study demonstrates on a
large scale that interactions with devices are influenced by biological processes
and sleep.

4.3 Dataset

Our dataset contains over 75 million search engine interactions and sleep mea-
surements for 31,793 US users of Microsoft products who agreed to link their
Bing searches and Microsoft Band data for use in generating additional insights
or recommendations about their sleep or activity. Basic dataset statistics and
demographic information on the users are summarized in Table 4.1. Demographic
variables (age, gender, body mass index) are self-reported through the Microsoft
Health app. While the user age and overweight/obesity status closely track official
estimates in the United States, we note that our sample is predominantly male.

Performance. We measure performance through the timing of two types of
interactions with a search engine (Microsoft Bing): (1) individual keystrokes
within the search box that are tracked by the search engine so it can automatically
suggest query completions, and (2) clicks on the result page after a search query.
Section 4.4.1 provides more details on each of these measures and we discuss
how to account for potential confounds such as the type of query in Section 4.5.1.
We exclude search engine interactions originating from mobile devices since such
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Dataset Statistics

Observation period 18 months
# users 31,793

# nights of sleep tracked 3,102,209

# queries 24,590,345

# filtered queries with clicks 6,906,791

# keystrokes extracted 68,779,113

# total interactions 75,685,904

Average keystroke time 225ms
Average click time 9.28s
Median age 38

% female 6.1%
% underweight (BMI < 18.5) 1.4%
% normal weight (18.5 ≤ BMI < 25) 32.4%
% overweight (25 ≤ BMI < 30) 39.2%
% obese (30 ≤ BMI) 27.0%
Median time in bed 7.26h

Table 4.1 – Dataset statistics. BMI refers to body mass index.

interaction patterns and timing are fundamentally different from those on desktop
devices. While users could potentially access the search engine from multiple
machines, we note that for most users this is unlikely to be the case and that using
different keyboards and mice throughout the day is unlikely to explain the timing
differences observed in this chapter.

Sleep. Sleep data from wearable devices provides objective measurements which
have been preferred to subjective self-reports that may be significantly biased [Laud-
erdale et al., 2008]. To estimate sleep, we consider signals from wrist-worn activity
trackers (Microsoft Band) that include a 3-axis accelerometer, gyrometer, and opti-
cal heart rate sensor. The Microsoft Band employs internally validated proprietary
algorithms for estimation of sleep and we focus on duration of time in bed (herein
referred to as “sleep duration”). Time in bed is delineated either by manual input
of the user (i.e., explicit taps on the device before going to sleep and immediately
after waking up) or automatically based on movement if the user does not provide
manual input. The use of an event marker to denote bed timing is widely used in
sleep research in lieu of or in concert with sleep diaries [Ancoli-Israel et al., 2003].
Following standard practice [Walch et al., 2016], we exclude any sleep duration
measurements below 4 and above 12 hours of time in bed.
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Figure 4.1 – Average sleep duration across age and gender. Our measurements are
consistent with previous estimates [Basner et al., 2007; Bureau of Labor Statistics,
American Time Use Survey, 2015; Walch et al., 2016] (Section 4.3). Error bars in
all figures correspond to 95% confidence intervals of the corresponding mean
estimates.

As evidence that our sleep measurements have face validity, we show that they
match published sleep estimates. Figure 4.1 illustrates average time in bed across
age and gender. Time in bed decreases with age and is higher in females than
males consistent with published estimates [Basner et al., 2007; Bureau of Labor
Statistics, American Time Use Survey, 2015; Walch et al., 2016]. Walch et al. [Walch
et al., 2016] report very similar times and a difference of 17 minutes between
females and males. With the exception of 60 to 70 year old subjects, we find
differences between 12 and 17 minutes. There is no difference for older subjects,
which matches survey-based estimates by Basner et al. [Basner et al., 2007]. We
take these alignments with published research as evidence for the validity of using
wearable device-based sleep data for large-scale population studies of sleep and
performance.
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Figure 4.2 – Time of day-dependent variation in keystroke (a) and click timing (b). Higher
values indicate worse performance. Both the shape of temporal variation with
fastest performance a few hours after wake and slowest performance during
habitual sleep times as well as the magnitude of variation are consistent with
controlled laboratory-based studies [Ackerman, 2008; Dijk et al., 1992; Dinges,
1995; Wise et al., 2009] (Section 4.4.2).

4.4 Performance Measures Based on Interactions dur-
ing Search

Next, we describe two human performance measures derived from search engine
interactions that we use to study daily variation in performance. We show how
these measures exhibit variations in performance over time and based on chrono-
type (morning/evening preference) consistent with findings from laboratory-based
sleep studies. This demonstrates that performance signals generated from everyday
search engine interactions vary based on biological processes. We model these
processes and influences explicitly in Section 4.5.

4.4.1 Performance Measures

We study two real-world performance measures in this chapter since it is possible
that different measures would respond differently to sleep deprivation as sleep
studies have shown differential effects of sleep deprivation on different measures
of cognition.

Keystroke Time. The first measure is based on keystroke timing. The search
engine’s search box registers every single keystroke and sends a request for query
completions to the search engine’s servers. We use the timing between two such
requests as the time of a single keystroke if the two queries are different by exactly
one character (not every request is received on the server side) and within two
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Figure 4.3 – Variation in keystroke time throughout the day varies with chronotype (morn-
ing/evening preference) which is defined based on the average point of mid sleep (Sec-
tion 4.4.3). Users that typically sleep early (light color) perform slowest at about
04:00 h, while medium or late sleepers (darker colors) perform slowest at 05:00 h
and 06:00-07:00 h, respectively. This closely matches their habitual sleep time and
is consistent with controlled laboratory-based studies [Matchock and Mordkoff,
2009].

seconds (larger times indicate longer thought processes or separate sessions). This
threshold is sensible as an average keystroke by an average typist takes about 240

milliseconds (50 words per minute at 5 characters per word [Card et al., 1980]).

Click Time. The second measure is based on the time to click on a search result
after a search result page is displayed. We measure the time between the search
query and the first click on any result on the first page. Click times over two
minutes are excluded since they might stem from interrupted sessions. We account
for click position and query type as described in Section 4.5.1.

We believe that investigating measures that capture performance on two differ-
ent tasks provides robustness and breadth to our analyses. The two tasks rely on
different mixes of sensing, reflection, planning, and formulating, executing, and
monitoring of motor plans [Pilcher and Huffcutt, 1996]. Studies of the potential
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subprocesses for each task and how they might be differentially influenced by sleep
is beyond the scope of this paper. However, our search engine interactions capture
performance in everyday tasks that are highly relevant to many occupations, as
captured by typing and searching for information [Purcell, 2011], and allow us to
non-intrusively measure changes in real-world performance throughout the day.

Note that all timing measurements are taken on the server side and not the
client side. Therefore, it is important to consider the potential influence of network
latency factors. We found that the network latency changes only very little between
two consecutive requests (less than 1 millisecond) and thus any latency effects
cancel out when we take the time difference between two requests (details in online
appendix [Althoff et al., 2017a]). This demonstrates that variation in network
latency does not affect our analyses. Furthermore, variations in site rendering time
(i.e., measuring time from first script till page load completed including dynamic
contents) are much smaller (order of milliseconds) compared to variation in click
times.

The temporal variation sensed in performance could potentially be an artifact of
different users contributing timings at different time points instead of actual within
user variation throughout the day. However, we verified that the temporal variation
we observe is due to within user variation throughout the day by confirming that
the patterns of temporal variation are effectively identical for raw measurements
and within-user normalized variants (Z-scores; online appendix [Althoff et al.,
2017a]). We also verified that performance variation during the weekend is similar
to variation during the week (online appendix [Althoff et al., 2017a]) and we
therefore do not further differentiate between performance during weekdays and
weekends in this chapter. Finally, we considered alternative performance measures
based on backspace usage in keystrokes and spelling errors in search queries. Since
we found results to be similar to keystroke and click timing but more noisy due to
less frequent measurements, we report results on keystroke and click timing in
this chapter.

4.4.2 Temporal Variation of Keystroke and Click Times

Next, we validate our methodology by considering the findings obtained from
small-scale controlled sleep studies. It is well established that human performance
varies over time and follows a circadian rhythm [Ackerman, 2008; Wise et al., 2009].
Keystroke and click timing also vary throughout the day in a daily rhythm as
illustrated in Figure 4.2. Keystroke times (Figure 4.2a) are on the order of 240

milliseconds which closely matches the expected typing speed of an average typist
(240 milliseconds; 50 words per minute at 5 characters per word, see [Card et al.,
1980]). Click times (Figure 4.2b) are on the order of 10 seconds. Note that both
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measures follow a similar pattern throughout the day. Users are fastest to type
and click a few hours after typical wake times and the timing increases again in
the evening hours (in particular for click times). Performance is slowest during
habitual sleep times (e.g., 04:00 h) closely matching accident risk rates [Dinges,
1995] and the anticipated circadian nadir (i.e., the time of greatest circadian sleep
drive) [Dijk et al., 1992]. Furthermore, controlled laboratory experiments have
shown that performance typically varies by 15 to 30 percent over the course of a
day across a variety of simple motor and cognitive tasks [Ackerman, 2008; Wise
et al., 2009]. For keystrokes we measure a variation of 31% and for click times a
variation of 12%.

The consistent agreement in shape and magnitude of variation with controlled
lab experiments on human performance and for two different tasks suggest that
these large-scale measures based on search engine interactions can be used to study
sleep and performance. The proposed measures can be collected non-intrusively
at unprecedented scale and shine light on how real-world performance varies
throughout the day and with changes in sleep.

4.4.3 Performance Variation by Chronotype

A person’s chronotype encompasses the propensity for the individual to sleep
at a particular time during a 24-hour period and is at least partly based on
genetics [Roenneberg et al., 2003]. Studies have shown that performance depends
on the alignment of chronotype and time of day [Matchock and Mordkoff, 2009];
early types tend to be higher performing earlier in the day while late types are
higher performing later. The individual chronotype of each user can be defined
based on the mid-sleep point on free days (MSF) which is the halfway point
between going to sleep and waking up [Juda et al., 2013; Roenneberg et al.,
2003]. Many people compensate for slept debt accumulated during work days
by sleeping longer on free days; that is, the sleep midpoint we observe is later
than the internal biological clock would dictate on the free days. Therefore,
sleep scientists use a midsleep point that is corrected for oversleep (indicated by
SC) [Juda et al., 2013]: MSFSC = MSF− 0.5(SDF− (5 ∗ SDW + 2 ∗ SDF)/7), where
SDF and SDW are sleep duration and free days and work days, respectively, and
SDF − (5 ∗ SDW + 2 ∗ SDF)/7 corresponds to the difference in sleep duration on
free days and the average day. We compute this corrected midpoint for every
user in the dataset using weekdays as work days and weekend days as free days
(Median MSFSC = 4.70).

We show that keystroke times throughout the day vary with chronotype (Fig-
ure 4.3), matching results from previous sleep studies [Matchock and Mordkoff,
2009] and thus providing further validation of our methods. We find that early
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sleepers are slowest at about 04:00 h, while medium or late sleepers are slowest at
05:00 h and 06:00-07:00 h, respectively. This closely matches each group’s habitual
sleep time and demonstrates the validity and power of this large dataset; for each
chronotype group, we have millions of measurements even during typical sleep
times that allow us to estimate these performance curves. We find similar results
for click times.

4.5 Modeling Performance

Having demonstrated that performance of search engine interactions vary over
time and based on biological processes (Section 4.4), we now operationalize and
extend a conceptual model of sleep and performance from chronobiology [Åk-
erstedt and Folkard, 1997; Borbély, 1982] to explain the variation observed in
performance measurements. Classic sleep models are based on circadian rhythms
and homeostatic sleep drive [Borbély, 1982]. In addition, we consider sleep inertia
and sleep duration [Åkerstedt and Folkard, 1997; Van Dongen and Dinges, 2000].
Background on relevant biological processes is covered in Section 4.2.

4.5.1 Conceptual Model

We model the keystroke and click timing based on (1) time of day in local time, (2)
time in hours after wake up, and (3) sleep duration the previous night. We know
(1) from the time of the keystroke or click time measurement, and (2) and (3) from
wearable device-defined sleep measurements (Section 4.3).

Since many people wake up during the same morning hours every day, time of
day and time since wake up are naturally correlated and challenging to disentangle.
In laboratory-based sleep studies, the goal of exploring the distinct influences of
the factors is achieved by “forced desynchrony” protocols [Van Dongen and Dinges,
2000], where subjects are deprived of sleep for extended periods of time. Instead
of similar interventions, we employ mathematical modeling with a large-scale
dataset of real-world sleep and performance measurements and use the variation
observed across millions of observations to disentangle the relative contributions
of circadian and homeostatic factors. The large-scale dataset contains numerous
performance measurements during usual (day) and unusual (late night) times
(e.g., Figure 4.3) that we can use to understand the relative contributions of these
factors to performance in the open world (see formulation of additive model in
Section 4.5.2).

Potential Confounding Factors. We control for several factors in our model to
avoid confounding. For keystrokes, we control for the exact character typed or
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Figure 4.4 – Contributions to keystroke (a,c,e; blue) and click time (b,d,f; red) performance
of different factors included in our model.. Results are similar for both performance
measures and match estimates from controlled sleep studies in the laboratory
(Section 4.5). For example, variation over the time of day ct (a,b) shows that
performance is slowest during habitual sleep times near the presumptive circadian
nadir (04:00 h; see main text). Variation across time after wake up cw (c,d) shows
effects of sleep inertia during the first two hours after wake. There is relative
stability for around eight hours in keystroke time but a steady decline in click
time after that point. Sleep durations cd (e,f) of 7.0-7.5 hours are associated with
optimal performance according to our measures. However, note that the impact
on overall variation is smaller compared to time of day (a,b) and time since wake
up (c,d).
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removed since different characters might take a varying amount of time (e.g.,
typing an “a”, or a capital “A”, or hitting backspace). For click times, it is expected
that clicking on results further down the list of results will take more time, which
holds true in our data (online appendix [Althoff et al., 2017a]). We therefore control
for the click position in our model.

Clicking on a result link is preceded by a cognitive process–interpreting the
words displayed on links and deciding which link to click–which can be quick in
the case of navigational queries (e.g., “facebook”) or much slower in the case of
informational queries (e.g., “What is the homeostatic sleep drive?”). Formally, this
distinction can be captured through the concept of click entropy, which measures
how “surprising” the distribution over clicked URLs for a given query is [Dou
et al., 2007]. We find that informational queries take about two seconds longer than
navigational queries on average (online appendix [Althoff et al., 2017a]). Therefore,
we control for the click entropy of the query preceding the click in our model.

An extreme way of controlling for varying queries is to compare click times for
exactly identical queries (e.g., popular queries such as “facebook”). We verified
that this yields very similar results, albeit with larger confidence intervals since
the sample size is reduced dramatically compared to including all queries and
controlling for click entropy, demonstrating that the observed patterns are not due
to a particular mix of query types.

In addition, we tested for learning effects as issuing the same query multiple
times might lead to improved performance. However, most queries, 73.1%, are
unique in the dataset and only 4.1% of queries occur more than three times. Further,
we did not find any evidence for improving performance over time for frequently
occurring queries. This is likely because most users were fairly proficient at typing
before the start of our observation period.

4.5.2 Mathematical Formulation

We now describe the formulation of the model for keystroke timing. The model
for click times is parallel, where we control for the click position and click entropy
instead of the keystroke type. We are interested in estimating how (1) time of
day, (2) time after wake up, and (3) sleep duration influence performance. We
assume that all these effects are additive as supported by evidence presented
in [Achermann and Borbély, 1994]. Mathematically, we formulate a fixed-effects
model

yi = α + f k(xk
i ) + f t(xt

i) + f w(xw
i ) + f d(xd

i ) + εi ,

where yi is the keystroke time for observation i, α is a constant intercept, and
f k, f t, f w, f d are the unknown functions of interest for keystroke type, time of day,
time since wake up, and sleep duration, respectively, with corresponding input
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features xk
i , xt

i , xw
i , xd

i , and εi is the i-th residual.
Instead of estimating arbitrary functions, we use fine-grained piecewise con-

stant approximations. We discretize each input space (e.g., between midnight
and 01:00 h, or between 01:00 h and 02:00 h, or between 0 and 15 minutes after
waking up, etc.). We denote the functions mapping input features xt

i , xw
i , xd

i to their
respective bins as bt, bw, bd (note that keystroke type xk

i is already discrete). Further,
we use the functions ck, ct, cw, cd to map the discretized features to a constant value.
The simplified model then becomes

yi = α + ck(xk
i ) + ct(bt(xt

i)) + cw(bw(xw
i )) + cd(bd(xd

i )) + εi .

The outcome of interest in this modeling task are the functions ct, cw, cd which
express the independent impact of (1) time of day, (2) time since wake up, and
(3) sleep duration on performance timings the next day. We estimate all param-
eters (α, ck, ct, cw, cd) including 95% confidence intervals through least squares
optimization. We also experimented with mixed effects models controlling for
variation across users and across queries through random effects. While standard
mixed model libraries do not scale well to the size of our dataset, we found that
these models lead to very similar estimates compared to the fixed effects model
described above when using subsets of the data.

4.5.3 Results

The functions ct, cw, cd modeling the influence on cognitive performance of time of
day, time since wake up, and sleep duration are illustrated in Figure 4.4. Impact
on keystroke timings are shown in blue (Figure 4.4a,c,e) and impact on click times
are shown in red (Figure 4.4b,d,f). Note that the shapes of these functions for
keystrokes and click times are very similar and smooth, even though there are no
constraints that would force this to occur. Furthermore, we note that the temporal
variation in cognitive performance is not explained by variation in different users
that contribute timings at different points throughout the day (i.e., population
differences) but are due to within user variation (online appendix [Althoff et al.,
2017a]).

Time of Day. Cognitive performance on both keystroke and click tasks varies
with time of day (Figure 4.4a,b) and is slowest during habitual sleep time around
04:00-06:00 h. Performance quickly improves after typical wake times and becomes
slightly slower in the evening for both keystroke and click times (19:00 h). The
two curves consistently match estimates of circadian rhythm processes in sleep
obtained through controlled laboratory experiments [Dijk et al., 1992; Wright Jr
et al., 2012]. Note that the magnitude of variation is substantial at around 40
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milliseconds for keystrokes and over 2.1 seconds for click times, which are changes
of 18% and 23%, respectively, relative to average timing for each (Table 4.1).

Time after Awakening. Cognitive performance also varies substantially with the
time after wake up (Figure 4.4c,d). The magnitude of the variation is relatively
large at about 42 milliseconds or 19% for keystrokes about slightly over 1.6 seconds
or 17% for click times. Within the first two hours, performance rapidly improves
(i.e., lower timings). This demonstrates a well-known effect in sleep studies called
sleep inertia (Section 4.2). After this point, performance is best and slowly worsens
until a point of poorest performance is reached at around 16 hours of wake time,
consistent with the homeostatic sleep drive [Borbély, 1982]. This corresponds
exactly to the point when most people would go to sleep again (i.e., a typical sleep
duration of 8 hours). We excluded data beyond the typical wake period of 16 hours
because the data becomes more sparse and to avoid potential selection effects with
regard to the people who choose to stay awake for exceptionally long periods of
time. However we found similar patterns between both keystrokes and click times
even beyond this point. We note that keystroke time is relatively stable for about
six hours while click times continuously increase, likely due to the differences
in cognitive and motor competencies for the tasks, and due to differences in
the sensitivities of those competencies to status of sleep and circadian rhythm.
In summary, the estimates derived from our model closely capture the initial
sleep inertia and the increasing homeostatic sleep drive first discovered through
laboratory-based studies [Åkerstedt and Folkard, 1997; Van Dongen and Dinges,
2000; Wright Jr et al., 2012].

Time in Bed. Keystrokes and click time vary with the amount of time in bed
during the previous night (Figure 4.4e,f). However, we note that this variation, 12

milliseconds for keystrokes (5%) and 0.25 seconds for click times (3%), is much
smaller than the previous two factors. For both measures, we find a clear U-shaped
curve with its center, indicating optimal performance, at 7.0-7.5 hours of sleep.
Both sleeping too little (under 7 hours) or too much (more than 8-9 hours) are
associated with decreased performance. U-shaped relationships with respect to
sleep duration have been reported for several outcomes (e.g., mortality [Kripke
et al., 1979]). We further investigate the impact of insufficient sleep on performance
in Section 4.6.

4.6 Influence of Insufficient Sleep on Performance

Following our studies to validate the methodology (Section 4.4 and Section 4.5),
we now extend prior laboratory-based sleep research with estimates of how sleep
influences performance in real-world settings. In particular, we study the impact
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Figure 4.5 – The impact of sleep duration (a) and timing (b) on performance the next day.
Sleep timing is measured through difference from the typical sleep midpoint and
we control for sleep duration. We find that sleeping less than 7 or more than 9

hours is associated with slower performance (a). Sleeping earlier than usual does
not make a large difference but going to bed an hour or more later than usual is
associated with significantly worse performance the next day (b).

of one or multiple nights of insufficient sleep on performance over the following
days.

4.6.1 Single Nights of Insufficient Sleep

We first consider single nights of sleep and analyze how very short or very long
sleep durations, as well as differences in sleep timing from the usual patterns within
a user, impact performance. We only show results for keystroke timing here; the
results are similar for click times (e.g., Figure 4.2 and Figure 4.4). Figure 4.5a shows
that users performed significantly slower when in bed fewer than 6 or more than 9

hours, consistent with the results described in Section 4.5.3. In those conditions, the
average keystroke times were about four and seven milliseconds longer compared
to sleeping between 7 and 9 hours (increases of 2.7% and 4.0%, respectively; both
p � 10−10; Mann–Whitney U-test, which is used for all hypothesis tests in this
section).

Timing of sleep is also a significant factor for performance the next day (Fig-
ure 4.5b). While sleeping earlier than usual makes only a difference of about 1

milliseconds or 0.5% (p� 10−10), going to bed an hour or more later than usual is
associated with significantly worse average performance of about 14 milliseconds
or 7.3% longer keystrokes (p� 10−10). Note that we limited the sleep duration to
be between 7 and 8 hours long for this analysis so that these results demonstrate
the impact of timing independent of differences in duration (i.e., those going to
sleep later had a normal length of time in bed despite going to sleep late). We
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Figure 4.6 – Comparing the impact on performance of zero (SS), one (SI), or two (II)
consecutive insufficient nights of sleep (less than six hours of time in bed). One night
of insufficient sleep is associated with significantly slower keystroke times and
two insufficient nights in a row exhibit a significantly larger effect. Judging by
when average keystroke time drops below the horizontal dashed line representing
the slowest performance for the group with two nights of sufficient sleep (SS), we
observe that it takes six nights of sleep to return to baseline performance levels
after two nights of insufficient sleep (day 7) and three nights to return to baseline
performance levels after one night of insufficient sleep (day 4) given real-world
sleep schedules.
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further verified that these results are not due to people sleeping later and longer
on weekends when they might be typing slower due to less work pressure as we
find similar patterns and effect sizes using just weekday data. Thus, these results
could point to an interaction between the circadian clock and the ultradian rhythm
of sleep (i.e., the cycling of sleep stages): sleeping at different phases can result in
different sleep organization [Dijk and Czeisler, 1995]. Our findings suggest that
sleeping later in one’s circadian cycle does not satisfy the neural recovery needed
for proper daytime performance, while sleeping earlier does not have the same
negative effects.

4.6.2 Multiple Nights of Insufficient Sleep

Above, we reported on the effect of a single night of sleep with particular duration
and timing on the next day. Here, we examine whether multiple insufficient nights
of sleep measurably affect performance and how long this effect appears to persist.
For purposes of this analysis, we define an “insufficient” night of sleep (“I”) to
have a time in bed of under six hours (as in [Fernandez-Mendoza et al., 2010]),
and a “sufficient” night of sleep (“S”) to have a time in bed of at least six hours.
We consider three different scenarios: two nights of sleep with more than six
hours each (SS), one night over and the next night under six hours (SI), and two
nights under six hours of sleep (II). We measure the performance after those two
nights of sleep for a period of seven days, reducing the performance on each of
these seven days to a single value—the average performance during the first 16

hours after wake up (i.e., typical wake period). We do not consider longer sleep
patterns here due to the large number of possible combinations and data reduction
associated with individual sleep patterns (e.g., a person might not track their sleep
every single night). Intentionally not controlling for sleep both preceding and
following the two nights of interest, we are addressing how insufficient sleep
impacts real-world performance given real-world choices. We are not, however,
examining the underlying biological processes of recovery from sleep loss. We
note that the start of the sleep patterns was distributed all throughout the week;
for example, two nights of sufficient sleep (SS) did occur both during the week as
well as over the weekend. We define recovery time as the number of days it takes
to reach performance levels comparable to those after a sufficient sleep schedule
(SS).

Results. Multiple insufficient nights of sleep have a significant impact on average
keystroke timing (Figure 4.6). Performance is best after two sufficient nights of
sleep, slightly but measurably worse after one insufficient night of sleep, and
significantly worse after two insufficient nights in a row. Over the first 24 hours,
having one insufficient night of sleep is associated with 1.2% slower performance
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(p � 10−10) and two insufficient nights of sleep are 4.8% slower (p � 10−10)
compared to two nights with longer than six hours of sleep each (2.7% and
7.3% increases for click times, respectively; both p � 10−10). Note that these
effect estimates take into account any real-world behavioral compensation such
as increased caffeine intake that will help improve performance after sleep loss.
The horizontal dashed line in Figure 4.6 corresponds to the slowest keystroke
time after two nights of sufficient sleep (SS), which we use as a conservative point
of reference to judge when performance after insufficient sleep (SI and II) has
returned to a performance below this point. We find that, on average, it takes three
nights to make up one insufficient night of sleep (SI crosses dashed line on day 4)
and six nights two make up two insufficient nights of sleep in a row (II crosses
dashed line on day 7). We find very similar results for the impact on the variance
(i.e., instead of mean) of keystroke timing as well as for click times. A version of
Figure 4.6 that visualizes average performance throughout each of the seven days
is included in the online appendix [Althoff et al., 2017a].

Note that these results are not simply due to having fundamentally different
users contribute to each of the the curves (SS, SI, II). While some users are more
likely to get fewer than six hours of sleep than others, we do find similar effects by
restricting each of the three curves to be estimated from the exact same set of users.
We note that, since we enforce no constraints on time in bed during the seven
days following the sleep pattern, additional nights of insufficient sleep could occur
during the follow-up period, contributing to the duration of the recovery period.
Thus, we need to explore whether there is a higher likelihood of sleep deficiencies
on days following the initial observed two-day period of insufficient sleep. We
find that, on average, SS is followed by 0.4 nights of insufficient sleep during the
following seven days, whereas SI and II are followed by 1.2 and 2.5 such nights.
Thus, additional days of insufficient sleep for the SI and II cases may have an
influence on the overall time to returning to baseline performance. Nevertheless,
our findings show real-world timing of return to baseline performance. We leave
to future work the study of more complex real-world patterns of sleep and sleep
deficit and the influences of sleep deficits on performance.

4.7 Conclusion

Understanding human performance and its relation to sleep is critical to produc-
tivity [Colten and Altevogt, 2006], learning [Kelley et al., 2015], and avoiding
accidents [Colten and Altevogt, 2006; Dinges, 1995]. Human performance is not
constant but exhibits daily variations [Van Dongen and Dinges, 2000]. Existing
research on sleep and performance has typically been restricted to small-scale
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laboratory-based studies involving artificial performance tasks in an artificial en-
vironment. Therefore, novel methods of large-scale real-world monitoring, like
we have presented, are necessary to advance our understanding of sleep and
performance [Roenneberg, 2013].

Summary of Results. We presented the largest study to date on sleep and per-
formance in the wild. Using a new approach to non-intrusive measurement for
both cognitive performance and sleep we were able to study more than 400 times
the number of users compared to the second largest study. We correlated human
performance based on interactions with a web search engine to sleep measures
detected by a wearable device. We demonstrated that real-world performance
varies throughout the day and based on chronotype and prior sleep, in close
agreement with small-scale laboratory-based studies. We developed a statistical
model that operationalizes recent chronobiological research and showed that our
estimates of circadian rhythms, homeostatic sleep drive, and sleep inertia closely
match published results of controlled sleep studies. Further, we contribute to
existing sleep research through quantifying extended periods of lower real-world
performance that are associated with single and multiple nights of insufficient
sleep.

Implications. We have demonstrated that human performance can be measured
in a real-world setting without any additional hardware or explicit testing by
exploiting existing search engine interactions that occur billions of times per day.
We have validated our methodology and shown that human performance, as mea-
sured through these signals, varies throughout the day and based on chronotype
and sleep, in close agreement with controlled laboratory-based studies. Beyond
the relevance of the results to extending insights about sleep and performance,
our findings more generally highlight the potential power of harnessing online
activities to study human cognition, motor skills, and public health. Large-scale
physiological sensing from online data enables

• studies of sleep and performance outside of small laboratory settings, and
without actively inducing sleep deprivation,

• non-intrusive measurement of cognitive performance without forcing individ-
uals to interrupt their work to perform separate artificial tasks [Roenneberg,
2013],

• the identification of realistic measures of real-world cognitive performance
based on frequent tasks and interactions,

• and continuous monitoring of such measures.
Suitable examples for such data include continuous usage patterns from computing
applications such as email, programming environments, bug report systems, office
suites, and others. Any insights on performance and productivity gained through



86 CHAPTER 4. SENSING OF SLEEP AND COGNITIVE PERFORMANCE

monitoring these applications could be used to improve the user’s awareness of
such patterns and to adapt the user experience appropriately (e.g., scheduling tasks
intelligently in order to prevent or minimize human error; scheduling meetings
based on participants performance and chronotype profiles). There are great
opportunities ahead to investigate how such insights could be used to personalize
applications based on relevant biological processes and chronotypes.



Chapter 5

Mental Health: Identifying
Successful Conversation Strategies
Through Large-scale Analysis of
Counseling Conversations

5.1 Introduction

Mental illness is a major global health issue. In the U.S. alone, 43.6 million adults
(18.1%) experience mental illness in a given year [National Institute of Mental
Health, 2015]. In addition to the person directly experiencing a mental illness,
family, friends, and communities are also affected [Insel, 2008].

In many cases, mental health conditions can be treated effectively through
psychotherapy and counseling [World Health Organization, 2015]. However, it
is far from obvious how to best conduct counseling conversations. Such conver-
sations are free-form without strict rules, and involve many choices that could
make a difference in someone’s life. Thus far, quantitative evidence for effective
conversation strategies has been scarce, since most studies on counseling have been
limited to very small sample sizes and qualitative observations (e.g., Labov and
Fanshel, (1977); Haberstroh et al., (2007)). However, recent advances in technology-
mediated counseling conducted online or through texting [Haberstroh et al., 2007]
have allowed counseling services to scale with increasing demands and to collect
large-scale data on counseling conversations and their outcomes.

Here we present the largest study on counseling conversation strategies pub-
lished to date. We use data from an SMS texting-based counseling service where
people in crisis (depression, self-harm, suicidal thoughts, anxiety, etc.), engage in
therapeutic conversations with counselors. The data contains millions of messages

87
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from eighty thousand counseling conversations conducted by hundreds of coun-
selors over the course of one year. We develop a set of computational methods
suited for large-scale discourse analysis to study how various linguistic aspects of
conversations are correlated with conversation outcomes (collected via a follow-up
survey).

We focus our analyses on counselors instead of individual conversations be-
cause we are interested in general conversation strategies rather than properties of
specific issues. We find that there are significant, quantifiable differences between
more successful and less successful counselors in how they conduct conversations.

Our findings suggest actionable strategies that are associated with successful
counseling:

i. Adaptability (Section 5.5): Measuring the distance between vector represen-
tations of the language used in conversations going well and going badly, we
find that successful counselors are more sensitive to the current trajectory of
the conversation and react accordingly.

ii. Dealing with Ambiguity (Section 5.6): We develop a clustering-based method
to measure differences in how counselors respond to very similar ambiguous
situations. We learn that successful counselors clarify situations by writing
more, reflect back to check understanding, and make their conversation
partner feel more comfortable through affirmation.

iii. Creativity (Section 5.6.3): We quantify the diversity in counselor language
by measuring cluster density in the space of counselor responses and find
that successful counselors respond in a more creative way, not copying the
person in distress exactly and not using too generic or “templated” responses.

iv. Making Progress (Section 5.7): We develop a novel sequence-based unsu-
pervised conversation model able to discover ordered conversation stages
common to all conversations. Analyzing the progression of stages, we deter-
mine that successful counselors are quicker to get to know the core issue and
faster to move on to collaboratively solving the problem.

v. Change in Perspective (Section 5.8): We develop novel measures of perspec-
tive change using psycholinguistics-inspired word frequency analysis. We
find that people in distress are more likely to be more positive, think about
the future, and consider others, when the counselors bring up these con-
cepts. We further show that this perspective change is associated with better
conversation outcomes consistent with psychological theories of depression.

Further, we demonstrate that counseling success on the level of individual conversa-
tions is predictable using features based on our discovered conversation strategies
(Section 5.9). Such predictive tools could be used to help counselors better progress
through the conversation and could result in better counseling practices. The
dataset used in this chapter has been released publicly and more information on
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dataset access can be found at http://snap.stanford.edu/counseling.
Although we focus on crisis counseling in this chapter, our proposed methods

more generally apply to other conversational settings and can be used to study
how language in conversations relates to conversation outcomes.

5.2 Related Work

Our work relates to two lines of research:

Therapeutic Discourse Analysis & Psycholinguistics. The field of conversation
analysis was born in the 1960s out of a suicide prevention center [Sacks and
Jefferson, 1995; Van Dijk, 1997]. Since then conversation analysis has been applied
to various clinical settings including psychotherapy [Labov and Fanshel, 1977].
Work in psycholinguistics has demonstrated that the words people use can reveal
important aspects of their social and psychological worlds [Pennebaker et al.,
2003]. Previous work also found that there are linguistic cues associated with
depression [Campbell and Pennebaker, 2003; Ramirez-Esparza et al., 2008] as well
as with suicude [Pestian et al., 2012]. These findings are consistent with Beck’s
cognitive model of depression (1967; cognitive symptoms of depression precede the
affective and mood symptoms) and with Pyszczynski and Greenberg’s self-focus
model of depression (1987; depressed persons engage in higher levels of self-focus
than non-depressed persons).

In this chapter, we propose an operationalized psycholinguistic model of
perspective change and further provide empirical evidence for these theoretical
models of depression.

Large-scale Computational Linguistics Applied to Conversations. Large-scale
studies have revealed subtle dynamics in conversations such as coordination
or style matching effects [Danescu-Niculescu-Mizil, 2012; Niederhoffer and Pen-
nebaker, 2002] as well as expressions of social power and status [Bramsen et al.,
2011; Danescu-Niculescu-Mizil et al., 2012]. Other studies have connected writ-
ing to measures of success in the context of requests [Althoff et al., 2014], user
retention [Althoff and Leskovec, 2015], novels [Ashok et al., 2013], and scientific
abstracts [Guerini et al., 2012]. Prior work has modeled dialogue acts in conver-
sational speech based on linguistic cues and discourse coherence [Stolcke et al.,
2000]. Unsupervised machine learning models have also been used to model
conversations and segment them into speech acts, topical clusters, or stages. Most
approaches employ Hidden Markov Model-like models [Barzilay and Lee, 2004;
Paul, 2012; Ritter et al., 2010; Yang et al., 2014] which are also used in this chapter
to model progression through conversation stages.

Very recently, technology-mediated counseling has allowed the collection of

http://snap.stanford.edu/counseling
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large datasets on counseling. Howes et al. (2014) find that symptom severity
can be predicted from transcript data with comparable accuracy to face-to-face
data but suggest that insights into style and dialogue structure are needed to
predict measures of patient progress. Counseling datasets have also been used
to predict the conversation outcome [Huang, 2015] but without modeling the
within-conversation dynamics that are studied in this chapter. Other work has
explored how novel interfaces based on topic models can support counselors
during conversations (Dinakar et al., 2014a; 2014b; 2015; Chen, 2014).

Our work joins these two lines of research by developing computational dis-
course analysis methods applicable to large datasets that are grounded in thera-
peutic discourse analysis and psycholinguistics.

5.3 Dataset Description

In this chapter, we study anonymized counseling conversations from a not-for-
profit organization providing free crisis intervention via SMS messages. Text-based
counseling conversations are particularly well suited for conversation analysis
because all interactions between the two dialogue partners are fully observed (i.e.,
there are no non-textual or non-verbal cues). Moreover, the conversations are
important, constrained to dialogue between two people, and outcomes can be
clearly defined (i.e., we follow up with the conversation partner as to whether they
feel better afterwards), which enables the study of how conversation features are
associated with actual outcomes.

Counseling Process. Any person in distress can text the organization’s public
number. Incoming requests are put into a queue and an available counselor picks
the request from the queue and engages with the incoming conversation. We refer
to the crisis counselor as the counselor and the person in distress as the texter. After
the conversation ends, the texter receives a follow-up question (“How are you
feeling now? Better, same, or worse?”) which we use as our conversation quality
ground-truth (we use binary labels: good versus same/worse, since we care about
improving the situation). In contrast to previous work that has used human judges
to rate a caller’s crisis state [Kalafat et al., 2007], we directly obtain this feedback
from the texter. Furthermore, the counselor fills out a post-conversation report
(e.g., suicide risk, main issue such as depression, relationship, self-harm, suicide,
etc.). All crisis counselors receive extensive training and commit to weekly shifts
for a full year.

Dataset Statistics. Our dataset contains 408 counselors and 3.2 million messages
in 80,885 conversations between November 2013 and November 2014 (see Table 5.1).
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Dataset statistics
Conversations 80,885

Conversations with survey response 15,555 (19.2%)
Messages 3.2 million
Messages with survey response 663,026 (20.6%)
Counselors 408

Messages per conversation* 42.6
Words per message* 19.2

Table 5.1 – Basic dataset statistics. Rows marked with * are computed over conversa-
tions with survey responses.

NA Depressed Relationship Self harm Family Suicide Stress Anxiety Other
Success rate 0.556 0.612 0.659 0.672 0.711 0.573 0.696 0.671 0.537

Frequency 0.200 0.200 0.089 0.074 0.071 0.063 0.041 0.039 0.035

Frequency with more
successful counselors 0.203 0.199 0.089 0.067 0.072 0.061 0.048 0.042 0.030

Frequency with less
successful counselors 0.223 0.208 0.087 0.070 0.067 0.056 0.030 0.032 0.028

Table 5.2 – Frequencies and success rates for the nine most common conversation issues
(NA: Not available). On average, more and less successful counselors face the same
distribution of issues.

All system messages (e.g., instructions), as well as texts that contain survey re-
sponses (revealing the ground-truth label for the conversation) were filtered out.
Out of these conversations, we use the 15,555, or 19.2%, that contain a ground-truth
label (whether the texter feels better or the same/worse after the conversation)
for the following analyses. Conversations span a variety of issues of different
difficulties (see rows one and two of Table 5.2). Approval to analyze the dataset
was obtained from the Stanford IRB.

5.4 Defining Counseling Quality

The primary goal of this paper is to study strategies that lead to conversations with
positive outcomes. Thus, we require a ground-truth notion of conversation quality.
In principle, we could study individual conversations and aim to understand
what factors make the conversation partner (texter) feel better. However, it is
advantageous to focus on the conversation actor (counselor) instead of individual
conversations.

There are several benefits of focusing analyses on counselors (rather than
individual conversations): First, we are interested in general conversation strategies
rather than properties of main issues (e.g., depression vs. suicide). While each
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conversation is different and will revolve around its main issue, we assume that
counselors have a particular style and strategy that is invariant across conversations.
Second, we assume that conversation quality is noisy. Even a very good counselor
will face some hard conversations in which they do everything right but are still
unable to make their conversation partner feel better. Over time, however, the “true”
quality of the counselor will become apparent. Third, our goal is to understand
successful conversation strategies and to make use of these insights in counselor
training. Focusing on the counselor is helpful in understanding, monitoring, and
improving counselors’ conversation strategies.

More vs. Less Successful Counselors. We split the counselors into two groups and
then compare their behavior. Out of the 113 counselors with more than 15 labeled
conversations of at least 30 messages each, we use the most successful 40 counselors
as “more successful” counselors and the bottom 40 as “less successful” counselors.
Their average success rates are 66.3-85.5% and 42.1-58.6%, respectively. While the
counselor-level analysis is of primary concern, we will also differentiate between
counselor behavior in “positive” versus “negative” conversations (i.e., those that
will eventually make the texter feel better vs. not). Thus, in the remainder of the
paper we differentiate between more vs. less successful counselors and positive vs.
negative conversations. Studying the cross product of counselors and conversations
allows us to gain insights on how both groups behave in positive and negative
conversations. For example, Figure 5.1 illustrates why differentiating between
counselors and as well as conversations is necessary: differences in counselor
message length over the course of the conversation are bigger between more and
less successful counselors than between positive and negative conversations.

Initial Analysis. Before focusing on detailed analyses of counseling strategies
we address two important questions: Do counselors specialize in certain issues?
And, do successful counselors appear successful only because they handle “easier”
cases?

To gain insights into the “specialization hypothesis” we make use the counselor
annotation of the main issue (depression, self-harm, etc.). We compare success
rates of counselors across different issues and find that successful counselors have
a higher fraction of positive conversations across all issues and that less successful
counselors typically do not excel at a particular issue. Thus, we conclude that
counseling quality is a general trait or skill and supporting that the split into more
and less successful counselors is meaningful.

Another simple explanation of the differences between more and less successful
counselors could be that successful counselors simply pick “easy” issues. However,
we find that this is not the case. In particular, we find that both counselor groups
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Figure 5.1 – Differences in counselor message length (in #tokens) over the course of the
conversation are larger between more and less successful counselors (blue circle/red square)
than between positive and negative conversations (solid/dashed). Error bars in all
plots correspond to bootstrapped 95% confidence intervals using the member
bootstrapping technique from Ren et al. [2010].

are very similar in how they select conversations from the queue (picking the top-
most in 60.1% vs. 60.3%, respectively), work similar shifts, and handle a similar
number of conversations simultaneously (1.98 vs. 1.83). Further, we find that both
groups face similar distributions of issues over time (see Table 5.2). We attribute
the largest difference, “NA” (main issue not reported), to the more successful
counselors being more diligent in filling out the post-conversation report and
having fewer conversations that end before the main issue is introduced.

5.5 Counselor Adaptability

In the remainder of the paper we focus on factors that mediate the outcome of a
conversation. First, we examine whether successful counselors are more aware
that their current conversation is going well or badly and study how the counselor
adapts to the situation. We investigate this question by looking for language
differences between positive and negative conversations. In particular, we compute
a distance measure between the language counselors use in positive conversations
and the language counselors use in negative conversations and observe how this
distance changes over time.
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Figure 5.2 – More successful counselors are more varied in their language across posi-
tive/negative conversations, suggesting they adapt more. All differences between more
successful and less successful counselors except for the 0-20 bucket were found to
be statistically significant (p < 0.05; bootstrap resampling test).

We capture the time dimension by breaking up each conversation into five
even chunks of messages. Then, for each set of counselors (more successful or
less successful), conversation outcome (positive or negative), and chunk (first 20%,
second 20%, etc.), we build a TF-IDF vector of word occurrences to represent the
language of counselors within this subset. We use the global inverse document
(i.e., conversation) frequencies instead of the ones from each subset to make the
vectors directly comparable and control for different counselors having different
numbers of conversations by weighting conversations so all counselors have equal
contributions. We then measure the difference between the “positive” and “neg-
ative” vector representations by taking the cosine distance in the induced vector
space. We also explored using Jensen-Shannon divergence between traditional
probabilistic language models and found these methods gave similar results.

Results. We find more successful counselors are more sensitive to whether the
conversation is going well or badly and vary their language accordingly (Figure 5.2).
At the beginning of the conversation, the language between positive and negative
conversations is quite similar, but then the distance in language increases over time.
This increase in distance is much larger for more successful counselors than less
successful ones, suggesting they are more aware of when conversations are going
poorly and adapt their counseling more in an attempt to remedy the situation.



5.6. REACTING TO AMBIGUITY 95

[4, 9] (9, 16] (16, 24] (24, 33] (33, 632]
Length of situation setter (#tokens)

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n 
of

 p
os

iti
ve

 c
on

v.

More successful
Less successful

Figure 5.3 – More ambiguous situations (length of situation setter) are less likely to result in
positive conversations..

5.6 Reacting to Ambiguity

Observing that successful counselors are better at adapting to the conversation,
we next examine how counselors differ and what factors determine the differences.
In particular, domain experts have suggested that more successful counselors
are better at handling ambiguity in the conversation [Levitt and Jacques, 2005].
Here, we use ambiguity to refer to the uncertainty of the situation and the texter’s
actual core issue resulting from insufficiently short or uncertain descriptions. Does
initial ambiguity of the situation negatively affect the conversation? How do more
successful counselors deal with ambiguous situations?

Ambiguity. Throughout this section we measure ambiguity in the conversation
as the shortness of the texter’s responses in number of words. While ambiguity
could also be measured through concreteness ratings of the words in each message
(e.g., using concreteness ratings from Brysbaert et al. [2014]), we find that results
are very similar and that length and concreteness are strongly related and hard to
distinguish.
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Figure 5.4 – All counselors react to short, ambiguous messages by writing more (relative
to the texter message) but more successful counselors do it more than less successful
counselors. .

5.6.1 Initial Ambiguity and Situation Setter

It is challenging to measure ambiguity and reactions to ambiguity at arbitrary
points throughout the conversation since it strongly depends on the context of
the entire conversation (i.e., all earlier messages and questions). However, we can
study nearly identical beginnings of conversations where we can directly compare
how more successful and less successful counselors react given nearly identical
situations (the texter first sharing their reason for texting in). We identify the
situation setter within each conversation as the first long message by the texter
(typically a response to a “Can you tell me more about what is going on?” question
by the counselor).

Results. We find that ambiguity plays an important role in counseling conversa-
tions. Figure 5.3 shows that more ambiguous situations (shorter length of situation
setter) are less likely to result in successful conversations (we obtain similar results
when measuring concreteness [Brysbaert et al., 2014] directly). Further, we find
that counselors generally react to short and ambiguous situation setters by writing
significantly more than the texters (Figure 5.4; if counselors wrote exactly as much
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as the texter, we would expect a horizontal line y = 1). However, more success-
ful counselors react more strongly to ambiguous situations than less successful
counselors.

5.6.2 How to Respond to Ambiguity

Having observed that ambiguity plays an important role in counseling conversa-
tions, we now examine in greater detail how counselors respond to nearly identical
situations.

We match situation setters by representing them through TF-IDF vectors on
bigrams and find similar situation setters as nearest neighbors within a certain
cosine distance in the induced space.1 We only consider situation setters that are
part of a dense cluster with at least 10 neighbors, allowing us to compare follow-up
responses by the counselors (4829/12770 situation setters were part of one of 589

such clusters). We also used distributed word embeddings (e.g., [Mikolov et al.,
2013]) instead of TF-IDF vectors but found the latter to produce better clusters.

Based on counselor training materials we hypothesize that more successful
counselors

• address ambiguity by writing more themselves,
• use more check questions (statements that tell the conversation partner that

you understand them while avoiding the introduction of any opinion or
advice [Labov and Fanshel, 1977]; e.g.“that sounds like...”),

• check for suicidal thoughts early (e.g., “want to die”),
• thank the texter for showing the courage to talk to them (e.g., “appreciate”),
• use more hedges (mitigating words used to lessen the impact of an utterance;

e.g., “maybe”, “fairly”),
• and that they are less likely to respond with surprise (e.g., “oh, this sounds

really awful”).
A set of regular expressions is used to detect each class of responses (similar to the
examples above).

Results. We find several statistically significant differences in how counselors
respond to nearly identical situation setters (see Table 5.3). While situation set-
ters tend to be slightly longer for more successful counselors (suggesting that
conversations are not perfectly randomly assigned), counselor responses are signif-
icantly longer and also spur longer texter responses. Further, the more successful
counselors respond in a way that is less similar to the original situation setter

1 Threshold manually set after qualitative analysis of matches from randomly chosen clusters.
Results were not overly sensitive to threshold choice, choice of representation (e.g., word vectors),
and distance measure (e.g., Euclidean).
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More S. Less S. Test
% conversations successful 70.7 51.7 ***
#messages in conversation 57.0 46.7 ***
Situation setter length (#tokens) 12.1 10.7 ***
C response length (#tokens) 15.8 11.8 ***
T response length (#tokens) 20.4 18.8 ***
% Cosine sim. C resp. to context 11.9 14.8 ***
% Cosine sim. T resp. to context 7.6 7.3 –
% C resp. w check question 12.6 4.1 ***
% C resp. w suicide check 13.5 10.3 ***
% C resp. w thanks 6.3 2.4 ***
% C resp. w hedges 41.4 36.8 ***
% C resp. w surprise 3.3 2.8 –

Table 5.3 – Differences between more and less successful counselors (C; More S. and Less
S.) in responses to nearly identical situation setters (Sec. 5.6.1) by the texter (T).. Last
column contains significance levels of Wilcoxon Signed Rank Tests (*** p < 0.001, –
p > 0.05).

(measured by cosine similarity in TF-IDF space) compared to less successful coun-
selors (but the texter’s response does not seem affected). We do find that more
successful counselors use more check questions, check for suicide ideation more
often, show the texter more appreciation, and use more hedges, but we did not
find a significant difference with respect to responding with surprise.

5.6.3 Response Templates and Creativity

In Section 5.6.2, we observed that more successful counselors make use of certain
templates (including check questions, checks for suicidal thoughts, affirmation,
and using hedges). While this could suggest that counselors should stick to such
predefined templates, we find that, in fact, more successful counselors do respond
in more creative ways.

We define a measure of how “templated” the counselors responses are by
counting the number of similar responses in TF-IDF space for the counselor
reaction (c.f., Section 5.6.2; again using a manually defined and validated threshold
on cosine distance).

Figure 5.5 shows that more successful counselors use less common/templated
questions. This suggests that while more successful counselors questions follow
certain patterns, they are more creative in their response to each situation. This
tailoring of responses requires more effort from the counselor, which is consistent
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Figure 5.5 – More successful counselors use less common/templated responses (after the
texter first explains the situation). This suggests that they respond in a more creative
way. There is no significant difference between positive and negative conversations.

with the results in Figure 5.1 that showed that more successful counselors put in
more effort in composing longer messages as well.

5.7 Ensuring Conversation Progress

After demonstrating content-level differences between counselors, we now explore
temporal differences in how counselors progress through conversations. Using an
unsupervised conversation model, we are able to discover distinct conversation
stages and find differences between counselors in how they move through these
stages. We further provide evidence that these differences could be related to
power and authority by measuring linguistic coordination between the counselor
and texter.

5.7.1 Unsupervised Conversation Model

Counseling conversations follow a common structure due to the nature of conversa-
tion as well as counselor training. Typically, counselors first introduce themselves,
get to know the texter and their situation, and then engage in constructive problem
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Figure 5.6 – Our conversation model generates a particular conversation Ck by first generat-
ing a sequence of hidden states s0, s1, ... according to a Markov model. Each state si then
generates a message as a bag of words wi,0, wi,1, ... according a unigram language
model Wsi .

solving. We employ unsupervised conversation modeling techniques to capture
this stage-like structure within conversations.

Our conversation model is a message-level Hidden Markov Model (HMM).
Figure 5.6 illustrates the basic model where hidden states of the HMM represent
conversation stages. Unlike in prior work on conversation modeling, we impose a
fixed ordering on the stages and only allow transitions from the current stage to
the next one (Figure 5.7). This causes it to learn a fixed dialogue structure common
to all of the counseling sessions as opposed to conversation topics. Furthermore,
we separately model counselor and texter messages by treating their turns in the
conversation as distinct states. We train the conversation model with expectation
maximization, using the forward-backward algorithm to produce the distributions
during each expectation step. We initialized the model with each stage producing
messages according to a unigram distribution estimated from all messages in the
dataset and uniform transition probabilities. The unigram language models are
defined over all words occurring more than 20 times (over 98% of words in the
dataset), with other words replaced by an unknown token.

Results. We explored training the model with various numbers of stages and
found five stages to produce a distinct and easily interpretable representation of
a conversation’s progress. Table 5.4 shows the words most unique to each stage.
The first and last stages consist of the basic introductions and wrap-ups common
to all conversations. In stage 2, the texter introduces the main issue, while the
counselor asks for clarifications and expresses empathy for the situation. In stage
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Figure 5.7 – Allowed state transitions for the conversation model. Counselor and texter
messages are produced by distinct states and conversations must progress through
the stages in increasing order.

Stage Interpretation Top words for texter Top words for counselor
1 Introductions hi, hello, name, listen, hey hi, name, hello, hey, brings
2 Problem introduction dating, moved, date, liked, ended gosh, terrible, hurtful, painful, ago
3 Problem exploration knows, worry, burden, teacher, group react, cares, considered, supportive, wants
4 Problem solving write, writing, music, reading, play hobbies, writing, activities, distract, music
5 Wrap up goodnight, bye, thank, thanks, appreciate goodnight, 247, anytime, luck, 24

Table 5.4 – The top 5 words for counselors and texters with greatest increase in likelihood
of appearing in each stage. The model successfully identifies interpretable stages
consistent with counseling guidelines (qualitative interpretation based on stage
assignment and model parameters; only words occurring more than five hundred
times are shown).

3, the counselor and texter discuss the problem, particularly in relation to the other
people involved. In stage 4, the counselor and texter discuss actionable strategies
that could help the texter. This is a well-known part of crisis counselor training
called “collaborative problem solving."

5.7.2 Analyzing Counselor Progression

Do counselors differ in how much time they spend at each stage? In order to
explore how counselors progress through the stages, we use the Viterbi algorithm
to assign each conversation the most likely sequence of stages according to our
conversation model. We then compute the average duration in messages of each
stage for both more and less successful counselors. We control for the different
distributions of positive and negative conversations among more successful and
less successful counselors by giving the two classes of conversations equal weight
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Figure 5.8 – More successful counselors are quicker to get to know texter and issue (stage
2) and use more of their time in the “problem solving” phase (stage 4)..

and control for different conversation lengths by only including conversations
between 40 and 60 messages long.

Results. We find that more successful counselors are quicker to move past the
earlier stages, particularly stage 2, and spend more time in later stages, particularly
stage 4 (Figure 5.8). This suggests they are able to more quickly get to know the
texter and then spend more time in the problem solving phase of the conversation,
which could be one of the reasons they are more successful.

5.7.3 Coordination and Power Differences

One possible explanation for the more successful counselors’ ability to quickly
move through the early stages is that they have more “power” in the conversation
and can thus exert more control over the progression of the conversation. We
explore this idea by analyzing linguistic coordination, which measures how much
the conversation partners adapt to each other’s conversational styles. Research
has shown that conversation participants who have a greater position of power
coordinate less (i.e., they do not adapt their linguistic style to mimic the other
conversational participant as strongly) [Danescu-Niculescu-Mizil et al., 2012].

In our analysis, we use the “Aggregated 2” coordination measure C(B, A) from
Danescu-Niculescu-Mizil [2012], which measures how much group B coordinates
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to group A (a higher number means more coordination). The measure is computed
by counting how often specific markers (e.g., auxiliary verbs) are exhibited in
conversations. If someone tends to use a particular marker right after their
conversation partner uses that marker, it suggests they are coordinating to their
partner.

Formally, let set S be a set of exchanges, each involving an initial utterance u1
by a ∈ A and a reply u2 by b ∈ B. Then the coordination of b to A according to a
linguistic marker m is:

Cm(b, A) = P(Em
u2→u1

|Em
u1
)− P(Em

u2→u1
)

where Em
u1

is the event that utterance u1 exhibits m (i.e., contains a word from
category m) and Em

u2→u1
is the event that reply u2 to u1 exhibits m. The probabilities

are estimated across all exchanges in S. To aggregate across different markers, we
average the coordination values of Cm(b, A) over all markers m to get a macro-
average C(b, A). The coordination between groups B and A is then defined as the
mean of the coordinations of all members of group B towards the group A.

We use eight markers from Danescu-Niculescu-Mizil (2012), which are consid-
ered to be processed by humans in a generally non-conscious fashion: articles,
auxiliary verbs, conjunctions, high-frequency adverbs, indefinite pronouns, per-
sonal pronouns, prepositions, and quantifiers.

Results. Texters coordinate less than counselors, with texters having a coor-
dination value of C(texter, counselor)=0.019 compared to the counselor’s larger
C(counselor, texter)=0.030, suggesting that the texters hold more “power” in the
conversation. However, more successful counselors coordinate less than their less
successful counterparts (C(more succ. counselors, texter)=0.029 vs. C(less succ.
counselors, texter)=0.032). All differences are statistically significant (p < 0.01;
Mann-Whitney U test). This suggests that more successful counselors act with
more control over the conversation, which could explain why they are quicker to
make it through the initial conversation stages.

5.8 Facilitating Perspective Change

Thus far, we have studied conversation dynamics and their relation to conversation
success from the counselor perspective. In this section, we show that perspective
change in the texter over time is associated with a higher likelihood of conversation
success. Prior work has shown that day-to-day changes in writing style are
associated with positive health outcomes [Campbell and Pennebaker, 2003], and
existing theories link depression to a negative view of the future [Pyszczynski
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Figure 5.9 – Perspective change throughout the conversation. A: Throughout the con-
versation there is a shift from talking about the past to future, where in positive
conversations this shift is greater; B: Texters that talk more about others more
often feel better after the conversation; C: More positive sentiment by the texter
throughout the conversation is associated with successful conversations.

et al., 1987] and a self-focusing style [Pyszczynski and Greenberg, 1987]. Here,
we propose a novel measure to quantify three orthogonal aspects of perspective
change within a single conversation: time, self, and sentiment. Further, we show
that the counselor might be able to actively induce perspective change.

Time. Texters start explaining their issue largely in terms of the past and present
but over time talk more about the future (see Figure 5.9A; each plot shows the
relative amount of words in the LIWC past, present, and future categories [Tausczik
and Pennebaker, 2010]). We find that texters writing more about the future are
more likely to feel better after the conversation. This suggests that changing the
perspective from issues in the past towards the future is associated with a higher
likelihood of successfully working through the crisis.

Self. Another important aspect of behavior change is to what degree the texter
is able to change their perspective from talking about themselves to considering
others and potentially the effect of their situation on others [Campbell and Pen-
nebaker, 2003; Pyszczynski and Greenberg, 1987]. We measure how much the
texter is focused on themselves by the relative amount of first person singular
pronouns (I, me, mine) versus third person singular/plural pronouns (she, her,
him / they, their), again using LIWC. Figure 5.9B shows that a smaller amount
of self-focus is associated with more successful conversations (providing support
for the self-focus model of depression [Pyszczynski and Greenberg, 1987]). We
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hypothesize that the lack of difference at the end of the conversation is due to
conversation norms such as thanking the counselor (“I really appreciate it.”) even
if the texter does not actually feel better.

Sentiment. Lastly, we investigate how much a change in sentiment of the texter
throughout the conversation is associated with conversation success. We measure
sentiment as the relative fraction of positive words using the LIWC PosEmo and
NegEmo sentiment lexicons. The results in Figure 5.9C show that texters always
start out more negative (value below 0.5), but that the sentiment becomes more
positive over time for both positive and negative conversations. However, we find
that the separation between both groups grows larger over time, which suggests
that a positive perspective change throughout the conversation is related to higher
likelihood of conversation success. We find that both curves increase significantly
at the very end of the conversation. Again, we attribute this to conversation norms
such as thanking the counselor for listening even when the texter does not actually
feel better. Together with the result on talking about the future, these findings are
consistent with the theory of Pyszczynski et al. (1987) that depression is related to
a negative view of the future.

Role of a Counselor. Given that positive conversations often exhibit perspective
change, a natural question is how counselors can encourage perspective change
in the texter. We investigate this by exploring the hypothesis that the texter will
tend to talk more about something (e.g., the future), if the counselor first talks
about it. We measure this tendency using the same coordination measures as
Section 5.7.3 except that instead of using stylistic LIWC markers (e.g., auxiliary
verbs, quantifiers), we use the LIWC markers relevant to the particular aspect of
perspective change (e.g., Future, HeShe, PosEmo). In all cases we find a statistically
significant (p < 0.01; Mann-Whitney U-test) increase in the likelihood of the texter
using a LIWC marker if the counselor used it in the previous message (~4-5%
change). This link between perspective change and how the counselor conducts
the conversation suggests that the counselor might be able to actively induce
measurable perspective change in the texter.

5.9 Predicting Counseling Success

In this section, we combine our quantitative insights into a prediction task. We
show that the linguistic aspects of crisis counseling explored in previous sections
have predictive power at the level of individual conversations by evaluating their
effectiveness as features in classifying the outcome of conversations. Specifically,
we create a balanced dataset of positive and negative conversations more than 30

messages long and train a logistic regression model to predict the outcome given
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Figure 5.10 – Prediction accuracies vs. percent of the conversation seen by the model
(without texter features).

the first x% of messages in the conversation. There are 3619 such negative conver-
sations and and we randomly subsample the larger set of positive conversations.
We train the model with batch gradient descent and use L1 regularization when
n-gram features are present and L2 regularization otherwise. We evaluate our
model with 10-fold cross-validation and compare models using the area under the
ROC curve (AUC).

Features. We include three aspects of counselor messages discussed in Section 5.6:
hedges, check questions, and the similarity between the counselor’s message and
previous texter message. We add a measure of how much progress the counselor
has made (Section 5.7) by computing the Viterbi path of stages for the conversation
(only for the first x%) with the HMM conversation model and then adding the
duration of each stage (in #messages) as a feature. Additionally, we add average
message length and average sentiment per message using VADER sentiment [Hutto
and Gilbert, 2014]. Further, we add temporal dynamics to the model by adding
feature conjunctions with the stages HMM model. After running the stages
model over the x% of the conversation available to the classifier, we add each
feature’s average value over each stage as additional features. Lastly, we explore
the benefits of adding surface-level text features to the model by adding unigram
and bigram features. Because the focus of this work is on counseling strategies, we
primarily experiment with models using only features from counselor messages.
For completeness, we also report results for a model including texter features.

Prediction Results. The model’s accuracy increases with x, and we show that the
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Features ROC AUC
Counselor unigrams only 0.630

Counselor unigrams and bigrams only 0.638

None 0.5
+ hedges 0.514 (+0.014)
+ check questions 0.546 (+0.032)
+ similarity to last message 0.553 (+0.007)
+ duration of each stage 0.561 (+0.008)
+ sentiment 0.590 (+0.029)
+ message length 0.596 (+0.006)
+ stages feature conjunction 0.606 (+0.010)
+ counselor unigrams and bigrams 0.652 (+0.046)
+ texter unigrams and bigrams 0.708 (+0.056)

Table 5.5 – Performance of nested models predicting conversation outcome given the first
80% of the conversation. In bold: full models with only counselor features and with
additional texter features.

model is able to distinguish positive and negative conversations after only seeing
the first 20% of the conversation (see Figure 5.10). We attribute the significant
increase in performance for x = 100 (Accuracy=0.687, AUC=0.716) to strong
linguistic cues that appear as a conversation wraps up (e.g., “I’m glad you feel
better.”). To avoid this issue, our detailed feature analysis is performed at x = 80.

Feature Analysis. The model performance as features are incrementally added to
the model is shown in Table 5.5. All features improve model accuracy significantly
(p < 0.001; paired bootstrap resampling test). Adding n-gram features produces
the largest boost in AUC and significantly improves over a model just using n-gram
features (0.638 vs. 0.652 AUC). Note that most features in the full model are based
on word frequency counts that can be derived from n-grams which explains why a
simple n-gram model already performs quite well. However, our model performs
well with only a small set of linguistic features, demonstrating they provide a
substantial amount of the predictive power. The effectiveness of these features
shows that, in addition to exhibiting group-level differences reported earlier in
this chapter, they provide useful signal for predicting the outcome of individual
conversations.
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5.10 Conclusion

Knowledge about how to conduct a successful counseling conversation has been
limited by the fact that studies have remained largely qualitative and small-scale.
In this chapter, we presented a large-scale quantitative study on the discourse of
counseling conversations. We developed a set of novel computational discourse
analysis methods suited for large-scale datasets and used them to discover action-
able conversation strategies that are associated with better conversation outcomes.
We hope that this work will inspire future generations of tools available to people
in crisis as well as their counselors. For example, our insights could help improve
counselor training and give rise to real-time counseling quality monitoring and
answer suggestion support tools.



Chapter 6

Conclusions

6.1 Summary of Contributions

The goal of this thesis was to demonstrate that novel computational methods can
derive new insights from already collected digital activity traces that can help
us better understand and improve human well-being. We considered three key
aspects of human health and well-being: physical activity, sleep, and mental health.
First, we showed how to leverage consumer smartphone data on a global scale,
which revealed a previously unknown activity inequality and gender activity
gap (Chapter 2). We then proposed a machine learning model to predict human
real-world actions ahead of time (Chapter 3). This model could be used to drive
just-in-time interventions that encourage physical activity and attempt to reduce
overall activity inequality, or support healthy eating habits. Next, we combined
digital traces from web search engine interactions with wearable sleep data to
study how variation and lack of sleep affect cognitive function (Chapter 4). Lastly,
we demonstrated that beyond these health behaviors relevant to physical health
(i.e., physical activity and sleep), we can study mental health through digital
traces as well. Specifically, we conducted a study of successful conversation
strategies through a large-scale counseling corpus and new linguistic analysis
methods (Chapter 5). These studies form a first step towards developing scalable
computational techniques to measure, understand, predict, and enhance human
behavior and well-being.

6.2 Future directions

The results presented in this thesis point to several interesting future directions,
some of which we shall outline here, thus concluding the thesis.
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6.2.1 Data science tools for large-scale and high-dimensional ob-
servational data

Throughout this dissertation we encountered multiple instances of analyzing
large-scale datasets of human activities to gain actionable insights. Due to the ob-
servational nature of the data, we needed to put special attention on ruling out key
confounding factors and alternative explanations. Ensuring that the findings were
robust took a variety of forms, from validating smartphone and wearable-based
activity and sleep measures (Chapter 2 and Chapter 4), to testing generalization
across mobile applications (Chapter 3), to manually designed experiments (Chap-
ter 2 and Chapter 4), to matching techniques (Chapter 5), and leveraging natural
experiments (Chapter 5; see also [Althoff et al., 2017b]).

Due to the large cost and limited scope of randomized controlled trials, scientific
advances will increasingly be based on large-scale observational studies like the
ones presented in this dissertation. However, these advances are contingent on
democratized ability to conduct observational studies that meet high standards
of validity. Therefore, we need tools that turn observational data into robust
inferences and enable high-quality observational science. For instance, these tools
should reveal and automatically correct bias whenever possible and help establish
causal relationships. Specific challenges include scaling balancing methods to
large data, causal inference in high-dimensional spaces such as when modeling
language, and handling non-binary treatments such as dose-response relationships.

6.2.2 Designing supportive online social networks

Online social networks are common places of human interaction, both good and
bad, for billions of people. We have seen in Chapter 5 that technology mediates
serious conversations between people and that we can leverage the digital traces
collected in this process to better understand how to support each other most
effectively (also see [Althoff et al., 2014; Althoff and Leskovec, 2015]). We have
also shown that social support can have significant impact on someone’s physical
activity levels and health (see [Althoff et al., 2017b; Shameli et al., 2017]).

Today, online social networks are primarily designed to maximize user en-
gagement and advertising revenue. In contrast and addition, we should seek to
understand and design supportive social networks that optimize for the well-being
of their members. This could entail helping people connect with others that are
likely to be encouraging, and to help them support each other more effectively, for
instance through proactive interventions and conversation support tools that high-
light suboptimal phrasing and make constructive suggestions. Principled design
of supportive social networks needs to address challenges of: (1) how to measure
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well-being by computationally operationalizing and testing psychological and soci-
ological theories at scale, (2) understanding what drives well-being through causal
inference, and (3) leveraging insights through proactive interventions involving
prediction and language generation.

6.2.3 Real-world health behavior change at population scale

Computational approaches may be able to guide the design of interventions for
healthy behavior change, for example helping people exercising more (Chapter 2;
also see [Althoff et al., 2016b; Shameli et al., 2017]), sleeping better (Chapter 4;
also see [Althoff et al., 2018]), and eating more healthily (Chapter 3). Leveraging
large-scale data may allow us to answer long-standing questions in the behavioral
sciences and public health. For example, to what degree is individual behavior
truly individual, versus influenced by one’s environment? How should we design
our cities for good health? Beyond measuring behaviors, there is a great need to
develop methods that motivate actual change of behavior. This often turns out to
be the bigger challenge, though for instance learning optimal intervention policies
personalized to each individual may be a fruitful direction.

Twenty years ago in 1998, Turing Award winner Jim Gray likened the emerging
world wide web to the the discovery of a new continent [Gray, 1999]. Through
analyzing the web we were able to learn a great deal about people and how they
behave online. Computing has since moved from large machines and desktop com-
puters into lightweight, wearable and ubiquitous sensors all around us. With this
transformation, the discovery and exploration of “new continents” can continue.
Digital traces from mobile and ubiquitous sensors now uniquely enable us to
study people in their natural habitat, and to study critical dynamics in health and
society. It is my hope that we will continue to leverage these signals to advance
our understanding of ourselves and our environment, and to design our lives in
healthy and productive ways.
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