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THEBIGGERPICTURE In this study, we integrate longitudinal symptoms reports and continuous data from
commercial wearables to compare and contrast flu and COVID-19 presentations. We found that, while
symptoms constellation between COVID-19 and flu have large overlap, symptoms are significantly more
prolonged and severe for COVID-19 than for flu. Similarly, physiological data from commercial wearables
showed increased resting heart rate around symptoms onset date that were more severe for COVID-19,
but present in milder form for flu as well.
Person-generated health data (PGHD), including data from smartphones and other connected sensors, has
the potential to enable applications ranging from individual-level early warnings or population-level hotspot
detection for COVID-19. However, for these applications to become a reality, our findings suggest that it is
crucial to develop and validate them in the context of other potentially confounding respiratory illnesses,
such as the flu.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The fight against COVID-19 is hindered by similarly presenting viral infections that may confound detection
and monitoring. We examined person-generated health data (PGHD), consisting of survey and commercial
wearable data from individuals’ everyday lives, for 230 people who reported a COVID-19 diagnosis between
March 30, 2020, and April 27, 2020 (n = 41 with wearable data). Compared with self-reported diagnosed flu
cases from the same time frame (n = 426, 85 with wearable data) or pre-pandemic (n = 6,270, 1,265 with wear-
able data), COVID-19 patients reported a distinct symptom constellation that lasted longer (median of 12
versus 9 and 7 days, respectively) and peaked later after illness onset. Wearable data showed significant
changes in daily steps and prevalence of anomalous resting heart rate measurements, of similar magnitudes
for both the flu and COVID-19 cohorts. Our findings highlight the need to include flu comparator arms when
evaluating PGHD applications aimed to be highly specific for COVID-19.
INTRODUCTION

The emergence of the novel SARS-CoV-2 (COVID-19) pandemic

necessitates an understanding of symptom prevalence and pro-

gression among individuals with COVID-19, as well as how
This is an open access article und
COVID-19 symptoms compare with those of other infectious dis-

eases. Self-reported data collected at the point of care are being

used to help answer key questions around the management of

COVID-19 patients,1 and real-world data collected via smart-

phone apps from individuals participating in COVID-19
Patterns 2, 100188, January 8, 2021 ª 2021 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:luca@evidation.com
https://doi.org/10.1016/j.patter.2020.100188
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2020.100188&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS Article
syndromic surveillance programs2–4 are being used to perform

population-level hotspot detection,5 and show promise in under-

standing symptom presentation outside clinic walls. In addition

to self-report, data from commercial sensors may be used for

large-scale surveillance of influenza-like illnesses (ILI), given

that resting heart rate (RHR)6–10 and temperature11 change in

the presence of an infection. Benefits may come from integrating

different digital data sources. For example, a hotspot detection

system, including smart thermometers and internet searches,

has been shown to provide accurate early-warning indicators

of increasing or decreasing state-level US COVID-19.12 Syn-

dromic surveillance based on symptom self-report has recently

been shown to scale to tens of thousands of responses per

day,5 and wearables sensors, being worn by one in five Ameri-

cans,13 could further increase the volume of daily feeds of per-

son-generated health data (PGHD) used at the aggregate level

for syndromic surveillance and hotspot detection.

In addition to being used in aggregate form for population-

level hotspot detection, PGHD is also being proposed as a

candidate for individual-level applications, such as to support

detection and monitoring of COVID-19 and other respiratory

viruses.14–18

Along these lines, several efforts are currently underway to

explore the potential of using wearable technology to detect

COVID-19 onset,19–21 and preliminary results have shown that

wearables may be able to predict COVID-19 symptoms before

onset,22–24 with potential application to large-scale, low-sensi-

tivity/high-frequency testing to enable reopening in the wait for

a vaccine.14–16

However, the lack of a canonical COVID-19 symptom presen-

tation, including how symptoms progress over time,24,25

undermines our ability to track, predict, and control disease pro-

gression and manage critical care. In addition, to evaluate

performances of any detection system, being that for individ-

ual-level early warnings or population-level hotspot detection,

it is crucial to compare and contrast symptoms, behavioral,

and physiological manifestation with other ILIs, especially flu.

Most current COVID-19 research has been developed outside

of flu season, but will have to withstand confounding from a

surge of flu cases as flu season escalates. This remains true

even in spite of the fact that the flu season is expected to be

milder due to lockdown measures,26 as lockdowns are merely

bringing flu prevalence within the same order of magnitude as

COVID-19 prevalence.

To address this challenge, we present PGHD contemporane-

ously shared by individuals who self-reported being diagnosed

by a medical provider with either flu or COVID-19. We also pre-

sent PGHD from a comparator group who were diagnosed

with flu before the COVID-19 pandemic. The PGHD consists of

self-reported surveys describing symptoms and experiences,

and sensor-derived continuous data describing behavior and

physiology. The PGHD were collected as part of a large-scale

digital participatory surveillance study designed to monitor ILI

over the 2019–2020 influenza season. Wearable sensor PGHD

(including daily RHR, step counts, and nightly sleep hours), al-

lows us to link continuously measured behavioral and physiolog-

ical patterns to illness onset.

Our contributions are 2-fold: first, we examine the presentation

of COVID-19 symptoms outside of strictly clinical settings both in
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terms of constellation and time course, and contextualize them

with comparisons with seasonal influenza; second, by analyzing

wearable data around symptoms onset we show that physiolog-

ical signals, such as RHR change significantly near symptom

onset, as do physical activity measures, such as step counts,

although these changes appear to be similar in timing and magni-

tude across ILI and COVID-19 cohorts. Beyond furthering under-

standing ofmild-to-moderateCOVID-19 symptompresentation in

the real world as compared with flu, our work suggests that appli-

cations leveraging PGHD for COVID-19 detection should be vali-

dated not only in cohorts comprised of COVID-19-positive and

healthy cases, but also on flu cases, as intermingling the two

may significantly increase false positive rates.

RESULTS

Data Collection and Cohort Definitions
We compare a cohort of self-reported diagnosed COVID-19

cases (n = 230) to two groups of diagnosed flu cases: non-

COVID-19 flu cases (n = 426), which occurred in the same time

frame as the COVID-19 cases, and pre-COVID-19 flu (n =

6,270), which occurred earlier in the 2019–2020 flu season before

the outbreak of COVID-19. All cases were identified through cura-

tion of a data set of 194,401 responses to a longitudinal survey

about ILI symptoms (Figure 1). The rationale of splitting flu com-

parators into two separate groups is to be able to account for

behavioral and physiological confounding factors brought about

by lockdown and other measures. In addition, these three primary

cohorts were filtered to those participants in each cohort with

wearable sensor data and a low fraction of missing data (dense

data), focusing on Fitbit wearable sensors (all models). In the

COVID-19 cohort, 33 have dense RHR, 35 have dense sleep

data, 36 have dense step data, and 41 participants have dense

Fitbit data in any of the data channels. In the non-COVID-19 flu

cohort, 85 have any dense Fitbit data (60RHR, 64 sleep, 80 steps),

and in the pre-COVID-19 flu cohorts, 1,226 have dense data in any

channel (1,025 in RHR, 979 in sleep, 1,193 in steps; Figure 2). The

lower counts for RHR stem from the fact that some Fitbit models

do not support RHR, while the lower counts for sleep are due to

the fact that some participants do not wear the sensor while

sleeping. The three primary cohorts, filtered to account for sensor

data availability and density are used to estimate changes inwear-

able data in the neighborhood of self-reported symptoms.

Survey Results
Demographic Differences between COVID-19 and

Flu Cases

A demographic summary of the three cohorts is provided in Ta-

ble 1. A chi-square test of independence was performed for each

demographic category to test for significant differences across

cohorts. Age group and race differed significantly among the co-

horts after applying a Bonferroni correction to adjust for perform-

ing five comparisons (age group, p = 0.008; race, p < 0.001),

while gender, education, and body mass index (BMI) did not

differ significantly. Compared with the pre-COVID-19 flu cohort,

the COVID-19 cohort was less likely to be white/caucasian

(63.9% versus 70.0%, follow-up two-proportion z test,

p = 0.047) and more likely to be Asian or Pacific Islander (9.6%

versus 4.6%, p < 0.001). A greater proportion of the
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Figure 1. Data Preparation Schema

(A) Flow diagram for preparing survey data for analysis. Data preparation consisted of filtering survey responses and merging responses that correspond to the

same ILI event.

(B) Flow diagram for preparing Fitbit wearable data. Participants with insufficiently dense data were filtered out.
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non-COVID-19 flu cohort was aged 55 years or older compared

with the pre-COVID-19 flu cohort (7.5% versus 3.8%, two-pro-

portion z test, p = 0.001). The demographics of the analyzed co-

horts tended to be younger and there were more females

compared with those described in the literature for medically at-

tended ILI events for the general US population,27 and should be

reweighed28 beforemeaningful comparisons can bemadewith a

target population with different demographic characteristics.

The cohorts in this study are based on convenience sampling

and are not representative of the US population.

Healthcare Interactions Differ between COVID-19 and

Flu Cases

Although all patients had to report seeking medical care and

being diagnosed by a medical provider with either flu or

COVID-19 to be included the analyses, locations of medical

care, hospitalization rates, and medication prescription rates

differed significantly across the three cohorts (chi-square tests

of independence with a Bonferroni correction, all p < 0.001;

summarized in Table 2). Compared with non-COVID-19 flu

and pre-COVID-19 flu patients, COVID-19 patients were less

likely to seek care at a primary care clinic (37.4% versus

50.2% for non-COVID-19 flu, p = 0.002, versus 45.7% for

pre-COVID-19 flu, p < 0.001) or urgent care facility (16.1%
versus 23.5% for non-COVID-19 flu, p = 0.026, versus 39.1%

for pre-COVID-19 flu, p < 0.001) and more likely to seek

care in an emergency room (17.0% versus 8.2% for non-

COVID-19 flu, p < 0.001, versus 6.9% for pre-COVID-19 flu,

p < 0.001) or other location (37.4% versus 50.2% for non-

COVID-19 flu, p = 0.002, versus 45.7% for pre-COVID-19 flu,

p < 0.001). Informal review of the text responses provided for

"other" locations indicated that COVID-19 patients were more

likely to seek care via telehealth services.

COVID-19 patients were more likely to be hospitalized

(36.1%) than non-COVID-19 flu (15.7%, p < 0.001) and pre-

COVID-19 flu (7.1%, p < 0.001) patients. Interestingly, a

greater proportion of patients with recent flu events were hos-

pitalized than those with flu events earlier in the season

(15.7% non-COVID-19 flu versus 7.1% pre-COVID-19 flu,

p < 0.001). This result may relate to the fact that a higher pro-

portion of individuals in the non-COVID-19 cohort were older

than 55 years. In addition, provider behavior during the initial

stages of the COVID-19 pandemic when rapid diagnostic

testing was not widely available may have prompted medical

providers to admit patients seeking care with ILI symptoms

to hospitals at a higher rate than would have otherwise been

observed.
Patterns 2, 100188, January 8, 2021 3



Figure 2. Definition of Analysis Cohorts

All participants included in the analyses reported

that they sought medical care and were diagnosed

with either flu or COVID-19 by a healthcare provider.

Participants who indicated they were diagnosed

with both flu and COVID-19 (n = 83) were assigned

to the non-COVID-19 flu cohort.
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The COVID-19 and non-COVID-19 flu cohorts were less likely

to be prescribed medication (baloxavir marboxil, oseltamivir, za-

namivir, antibiotics, and/or other) than the pre-COVID-19 flu

cohort (p < 0.001 and p < 0.001), but the medication rates be-

tween COVID-19 and non-COVID-19 flu patients did not differ

significantly (p = 0.202).

Differing Presentation of COVID-19 and Flu Symptoms

A summary of self-reported symptom prevalences for the

COVID-19 and flu cohorts is reported in Table 3. The most com-

mon symptoms across all groups included cough, headache,

body muscle ache, fatigue, and fever. Symptoms prevalence

was significantly different across the three cohorts (chi-square

test of independence, p < 0.001). All follow-up pairwise symptom

comparisons were tested with two-proportion z tests and a Bon-

ferroni correction was applied for performing 33 tests.

Compared with the non-COVID-19 flu cohort, patients with

COVID-19 were significantly more likely to report experiencing

cough (84.3% versus 71.6%, p < 0.001), loss of sense of smell

(anosmia; 38.3% versus 15.5%, p < 0.001), persistent pain or

pressure in the chest (49.6% versus 19.7%, p < 0.001), and short-

ness of breath or difficulty breathing (65.7% versus 24.2%, p <

0.001). These are generally accepted as the canonical symptoms

of COVID-19.29 Although it is important to note that, with the

exception of cough, while these symptoms have moderate posi-

tivepredictivevalue (higher relativeprevalence inCOVID-19cases

as comparedwith flu), they are still relatively insensitivemarkers of

COVID-19 (low absolute prevalence in COVID-19 cases).

Compared with the pre-COVID-19 flu cohort, the COVID-19

cohort was significantly less likely to report experiencing body

muscle ache, fever or feeling feverish, nasal congestion or runny

nose, sneezing, chills or shivering, and sweats (all p < 0.001).

Several symptoms (i.e., shortness of breath, anosmia, and chest

pain) could not be compared between the COVID-19 and pre-

COVID-19 flu cohorts because they were not included in the orig-

inal survey.

With the exception of headache, all symptoms were signifi-

cantly less prevalent in the non-COVID-19 flu cohort relative to

the pre-COVID-19 flu cohort. One possible reason for the differ-

ence in symptom presentations in the two flu cohorts is that the

2019–2020 flu season consisted of two waves of different flu

strains: strain B (Victoria lineage) appeared earlier on and was
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followed by strain A (H1N1-pdm09).30

Vaccines for the 2019–2020 season

were well-matched against circulating

strain A but not as well-matched against

strain B,31 which could account for milder

symptom presentation in the recent flu

cases in the non-COVID-19 flu cohort

compared with cases in the pre-COVID-

19 flu cohort.
We also examined the prevalence of co-occurring sets of

symptoms for the COVID-19 and non-COVID-19 flu cohorts

(Figure 3). The pre-COVID-19 flu cohort was excluded from

this analysis for two reasons. First, comparing the COVID-19

and non-COVID-19 flu cohorts provides two cohorts that are

comparable contemporaneously. Second, due to the fact that

the pre-COVID-19 flu cohort utilized a survey requesting only

a subset of symptoms, adding this cohort was of limited utility

in assessing symptom constellations. For simplicity of illustra-

tion, we unioned only the five most prevalent symptom sets in

each cohort, which resulted in a subset of seven individual

symptoms: cough, headache, fever, fatigue, body muscle

ache, chills or shivering, and shortness of breath. The two

most common symptom sets consisted of all symptoms, which

was predominated by COVID-19 cases, and all symptoms

except for shortness of breath, which was predominated by

non-COVID-19 flu cases. The symptom pair of shortness of

breath and cough, and the set of all symptoms other than chills

or shivering were also more indicative of COVID-19 than non-

COVID-19 flu.

COVID-19 Symptoms Tend to Peak Later and Last

Longer than Flu

The duration of each ILI event (illness period) in days was calcu-

lated from self-reported dates of illness onset and illness recov-

ery (Figure 4). COVID-19 illnesses tended to last longer than flu

illnesses, lasting a median of 12 days, compared with a median

of 9 days for non-COVID-19 flu illnesses and 7 days for the pre-

COVID-19 flu illnesses. Compared with the non-COVID-19 and

pre-COVID-19 flu cohorts, most of the COVID-19 cohort experi-

enced a longer duration of illness (Mood’s median test, p = 0.003

and p < 0.001, respectively). The observed slightly longer dura-

tion of non-COVID-19 flu as compared with pre-COVID-19 flu,

despite the overall milder symptoms of non-COVID-19 flu, may

depend on potential contamination of the non-COVID-19 flu

with COVID-19 cases, which have a longer duration on average,

with symptoms mild enough and non-specific enough to not

warrant a test, and thus get reported as flu.

Symptom prevalence across each cohort for each day after the

date of self-reported illness onset is illustrated in Figure 5, and the

days of peak symptom occurrence for each cohort are reported in

Table 3. The peak days of symptom occurrence were significantly



Table 1. Demographic Summaries for the Full COVID-19 (COVID), Non-COVID-19 Flu (NCF), and Pre-COVID-19 Flu (PCF) Cohorts, as

well as the Subset of Each Cohort with Dense Steps, RHR, and/or Sleep Data

Full Cohorts Sub-cohorts with Dense Sensor Data

COVID

(n = 230), %

NCF

(n = 426), %

PCF

(n = 6,270), %

COVID

(n = 41), %

NCF

(n = 85), %

PCF

(n = 1,226), %

Gender

Female 70.0 74.4 78.2 80.5 76.5 82.8

Male 28.7 24.6 20.8 17.1 21.2 16.4

Other 0.4 0.7 0.3 0.0 1.2 0.2

Unavailable 0.9 0.2 0.6 2.4 1.2 0.7

Race and ethnicity

White/caucasian 63.9 66.4 70.0 56.1 75.3 74.8

Hispanic or Latino 7.0 6.8 8.3 9.8 2.4 5.2

Black or African American 3.5 7.0 6.0 7.3 5.9 3.2

Asian or Pacific Islander 9.6 8.0 4.6 9.8 7.1 3.1

American Indian or Alaskan Native 1.3 0.7 0.8 0.0 1.2 0.6

Prefer not to answer 4.8 1.6 1.4 7.3 0.0 1.1

Unavailable 10.0 9.4 8.8 9.8 8.2 12.1

Education

Did not finish high school 2.2 1.4 1.8 0.0 0.0 1.1

High school diploma or GED 8.7 11.5 12.2 7.3 15.3 9.9

Some college, no degree 21.3 24.2 23.0 19.5 20.0 22.0

Trade/technical/vocational training 4.3 5.4 5.3 7.3 7.1 5.6

College degree 34.8 30.3 36.9 29.3 31.8 39.0

Graduate degree 17.4 18.3 14.3 22.0 20.0 15.8

Doctorate degree or MD 3.0 3.1 1.5 2.4 0.0 1.6

Prefer not to answer 0.0 0.2 0.1 0.0 1.2 0.1

Unavailable 8.3 5.6 4.7 12.2 4.7 4.9

Age (years)

<25 20.9 16.4 17.9 14.6 11.8 9.2

25–34 40.0 37.3 39.7 41.5 37.6 38.4

35–44 22.6 23.9 25.8 26.8 21.2 28.2

45–54 10.4 14.8 12.2 9.8 16.5 17.0

55+ 5.2 7.5 3.8 4.9 12.9 6.7

Unavailable 0.9 0.0 0.5 2.4 0.0 0.4

BMI

<18.5 3.5 4.2 2.6 2.4 4.7 2.4

18.5–24.9 27.0 21.8 24.0 22.0 21.2 21.9

25.0–29.9 24.3 22.3 24.3 22.0 28.2 24.6

30+ 32.2 37.6 38.4 43.9 34.1 42.1

Unavailable 13.0 14.1 10.8 9.8 11.8 9.0

Note that table percentages may not add up to exactly 100% due to rounding applied during formatting.
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different across the three cohorts for all symptoms (Mood’s me-

dian test: p < 0.001). The peak days were significantly different

for all symptoms when comparing non-COVID-19 flu and pre-

COVID-19 flu cohorts as well as when comparing COVID-19

and pre-COVID-19 flu cohorts. Compared with the non-COVID

flu cohort, the COVID-19 cohort had significantly different peak

symptom days for fever (p < 0.001), cough (p = 0.014), nasal

congestion (p < 0.001), fatigue (p < 0.001), sweats (p = 0.011),

chest pain (p = 0.007), shortness of breath (p = 0.006), and
anosmia (p = 0.007), but not for other symptoms. In general,

day-by-day symptom prevalence peaked later for the COVID-19

cases comparedwith the two groups of flu cases.With the excep-

tion of shortness of breath for the non-COVID-19 flu cohort, all

symptoms peaked 2–3 days after illness onset in both flu cohorts.

In contrast, COVID-19 symptoms peaked 3–7 days after illness

onset, with most symptoms peaking 4–5 days after illness onset.

Some of the latest peaking symptoms are those that are most

tightly associated with COVID-19, including fever, cough, nasal
Patterns 2, 100188, January 8, 2021 5



Table 2. Summaries of Medical Care-Seeking Behaviors and

Outcomes for the COVID-19 (COVID), Non-COVID-19 Flu (NCF),

and Pre-COVID-19 Flu (PCF) Groups

COVID (n =

230), %

NCF (n =

426), %

PCF (n =

6,270), %

Medical care location

Primary care clinic 37.4 50.2 45.7

Urgent care facility 16.1 23.5 39.1

Emergency room 17.0 8.2 6.9

Ear, nose, and throat clinic 2.2 2.1 0.8

Infectious disease clinic 1.7 1.2 0.4

Other 10.9 4.7 4.3

Multiple locations 14.8 10.1 2.8

Hospitalized

Yes 36.1 15.7 7.1

No 63.9 83.6 92.6

Unavailable 0.0 0.7 0.3

Prescribed medication

Yes 62.2 67.1 79.4

No 37.0 30.8 19.2

Do not know/remember 0.9 1.4 1.1

Unavailable 0.0 0.7 0.3

Overall statistics are shown, including where medical care was sought,

whether patients were hospitalized, and whether they were prescribed

medication.

Table 3. Summary of Self-reported Symptoms for the COVID-19

(COVID), Non-COVID-19 Flu (NCF), and Pre-COVID-19 Flu (PCF)

Cohorts

Symptom

Prevalence

Peak Symptom Day

Relative to

Illness Onset

COVID

(n =

230),

%

NCF

(n =

426),

%

PCF

(n =

6,270),

% COVID NCF PCF

Cough 84.3 71.6 85.1 5 3 3

Headache 71.3 68.1 74.3 4 3 3

Body muscle ache 66.1 67.1 80.8 4 2 2

Shortness of

breath

65.7 24.2 N/A 6 8 N/A

Fatigue 61.7 54.7 70.9 5 3 3

Fever 61.3 62.0 74.6 5 2 2

Chills or shivering 53.5 55.4 69.3 4 3 2

Sore

throat

51.7 48.8 61.1 3 2 3

Nasal

congestion

49.6 49.3 65.4 5 2 3

Chest

pain/

pressure

49.6 19.7 N/A 6 2 N/A

Sweats 42.2 47.4 56.3 5 2 2

Anosmia 38.3 15.5 N/A 7 3 N/A

Sneezing 37.0 36.9 48.2 4 2 3

Symptom prevalence refers to the percentage of the cohort reporting the

symptom at any time during the ILI event and symptoms are sorted by

most (top) to least (bottom) prevalence in the COVID-19 cohort. The

day of peak symptom occurrence relative to illness onset corresponds

to the maximum of a centered 5-day rolling mean of day-by-day symp-

tom prevalence for each cohort. Some symptoms (i.e., shortness of

breath, chest pain/pressure, and anosmia) were only included in the up-

dated survey and therefore are not available for the pre-COVID-19 flu

cohort. N/A, not applicable.
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congestion, fatigue, shortness of breath, chest pain or pressure,

and anosmia (Figures 5F–5M, respectively).29

Wearable Data Results
Demographics of Participants with Dense Wearable

Sensor PGHD

Data from commercial Fitbit sensors were available for at least

1 day between 2019-11-01 and 2020-05-13 for approximately

31% of all participants. A smaller subset of these participants

met the criteria for sensor data density (see Experimental Pro-

cedures) and were included in the analysis, including 41 (18%)

COVID-19 patients, 85 (20%) non-COVID-19 flu patients, and

1,226 (20%) pre-COVID-19 flu patients. The demographics of

the cohorts with dense sensor data are described in Table 1.

We tested for demographic differences among participants

with and without dense sensor data using the same two-step

statistical testing procedure described previously. Pooling

across the three cohorts, compared with participants without

dense Fitbit data (n = 5,574), those with dense Fitbit data (n =

1,352) were more likely to be female (p < 0.001), white (p <

0.001), obese (30+ BMI, p = 0.003), and in an older age group

(45–54, p < 0.001; 55+, p < 0.001).

COVID-19 Illness Onset Was Associated with

Elevated RHR

Given the known association between elevated RHR and the in-

flammatory immune system response,9,10 we examined the

prevalence of elevated RHR around ILI events. RHR is computed

by commercial Fitbit sensors. While the exact algorithm esti-

mating RHR is proprietary to Fitbit,32 it approximately coincides

with heart rate observed during periods of deep sleep or inac-
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tivity. Following a previously described methodology,8 we define

an RHR measurement as elevated for a participant if they are

0 (minimally elevated), 0.5 (moderately elevated), or 1 (highly

elevated) standard deviation(s) above mean RHR, where both

mean and standard deviation are computed for each participant

over the entire 189-day-long observation window, consisting of

both the baseline and ILI event windows. Figure 6 illustrates

the fraction of each cohort with elevated RHR, for different eleva-

tion thresholds, for each day relative to symptom onset for each

of the three cohorts. In both the COVID-19 and pre-COVID-19 flu

cohorts, the prevalence of highly elevated RHR was highest in

the first days after illness onset. In particular, the percent of

COVID-19 patients with highly elevated RHR was higher around

the onset of COVID-19 from days�2 to 2 (25%), when infectivity

is at its peak and isolation interventions could have maximum

effectiveness,16 as compared with days �10 to �5 (13%, two-

proportion z test p = 0.005) when transmissibility is less likely.16

Remarkably, the percentage of the COVID-19 cohort with highly



Figure 3. Co-occurrence of Self-Reported

Symptoms in COVID-19 Cases or Non-

COVID-19 Flu Cases

Only the top 5 most prevalent symptoms in each

cohort are included in the symptom sets and only

symptom sets that represent 2% or more of total

COVID-19 (n = 230, blue) and non-COVID-19 flu

cases (n = 426, gray) are plotted. Symptoms are

sorted by their relative prevalence in COVID-19 (top)

versus non-COVID-19 flu (bottom) cases.
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elevated RHR around illness onset was greater than that of the

non-COVID-19 cohort (16%, p = 0.026), but did not differ from

that of the pre-COVID-19 cohort (22%, p = 0.454), which sug-

gests that RHR elevation alone may not be a specific marker of

infection. Non-COVID-19 flu appears to display a noticeable

peak only for the moderately elevated RHR, which corroborates

the hypothesis of milder symptom severity of non-COVID-19 flu

as compared with pre-COVID-19 flu.

Activity Decrease during COVID-19 and Flu Illnesses

To quantify the impact of COVID-19 and flu on objective, sensor-

based measures of behavior, we examined the extent to which

daily steps and sleep deviated from expected measurements

before and after illness onset. To this end, we first estimated for

each participant what their expected measurement (total sleep

duration, step counts) for a given day would be during illness had

they not been sick, based on models fit on a pre- and post-illness

baseline period (see Experimental Procedures for details). Subse-

quently, we computed excess activity during the ILI event as the

difference between the unobserved estimated "healthy day"mea-

surement and theobservedoneduringa sickday.Generalized ad-

ditive models were fit to the excess values separately for each

cohort (mgcv package for R) and the resulting regression splines

were used for visualizations. Figure 7 illustrates the impact of

illness in terms of excess daily steps lost and additional minutes

of sleep. Reductions in daily step counts were more marked for

pre-COVID-19flu than theywere for non-COVID-19flu, supporting

the hypothesis of milder symptoms of non-COVID-19 flu, and the

fact that mobility-reducing shelter-in-place measures during

non-COVID-19 flu limit the maximum amount of lost step counts.

Reduction in daily steps were also more marked and prolonged

for COVID-19 patients as compared with non-COVID-19 flu and

pre-COVID-19 flu patients. Thismay be explained by the adoption

of more stringent self-imposed quarantine measures after a

COVID-19 diagnosis (89%of the COVID-19 cohort reported being

told by a medical provider to self-quarantine compared with only

57% of the non-COVID-19 flu cohort), but given the fact that
excess is computed taking into consider-

ation reduced mobility caused by shelter-

in-place measures, the observed reduction

could also be a reflection of the more pro-

longed illnessdurations in theCOVID-19pa-

tients as captured by self-reported symp-

toms and discussed in previous sections.

In addition, the step reduction appears to

persist beyond the 2-week default quaran-

tine mandate period, and if confirmed on

longer timehorizons it couldbean indication
of COVID-19 patients experiencing "long COVID"33: a phenome-

non in which symptoms persist for many weeks or months after

the illness is meant to subside.

Sleep changes are largely inconclusive, as the post-onset total

sleep time increase observed for pre-COVID-19 flu may be ex-

plained by changes in sleeping schedules during sick days that

would be less prominent for the COVID-19 and non-COVID-19

flu cases, which are concurrent with widespread shelter-in-place

measures. When directly comparing the non-COVID-19 flu and

COVID-19 cohorts, post-onset sleep excess seems to persist

for prolonged periods, hinting once again to a longer duration

of symptoms and disruption of behavior brought about by a

COVID-19 infection.

DISCUSSION

We present a report on PGHD, including longitudinal symptoms

reports and linked physiologic and behavior data from commer-

cial wearables collected remotely in real-life settings for 6,696

diagnosed flu and 230 diagnosed COVID-19 patients.

Chest pain, shortness of breath, and anosmia, as well as com-

binations of these symptoms (e.g., shortness of breath and

coughing) were more prevalent in COVID-19 as compared with

non-COVID-19 flu. Other symptoms, including fatigue and

cough, were more prevalent later after illness onset for COVID-

19 cases relative to flu cases. Similarly, patients reported longer

illness duration for COVID-19 (median of 12 days) as compared

with non-COVID-19 and pre-COVID-19 flu illnesses (9 and

7 days, respectively).

Differences in self-reported symptoms are supported by data

from wearable sensors. We observed larger, more prolonged re-

ductions in daily step counts for COVID-19 patients as compared

with other groups. This is consistent with the observed longer

illness durations for COVID-19 generally, sometimes lasting

weeks or months in what is now being referred to as "long

COVID.’’33 Wearable sensors could be particularly useful in
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Figure 4. Self-Reported Illness Duration in

Days for COVID-19, Non-COVID-19 Flu, and

Pre-COVID-19 Flu Cases

Vertical lines denote the median illness duration.

COVID-19 (n = 230, blue); non-COVID-19 flu (n =

426, gray); pre-COVID-19 flu (n = 6,270, light gray).

Error bands around foot of vertical median lines

represent bootstrapped 95% confidence intervals.
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monitoring recovery from long COVID, as their unobtrusive na-

ture may guarantee steady data collection for longer time hori-

zons for which daily self-reporting of symptoms may become

too burdensome for the participant.34

We observed a significantly increased fraction of participants

with elevated RHR measurements in the 2 days surrounding ILI

symptom onset. This has previously been observed for other

ILIs7 and is now also observed for COVID-19 patients. Several

recent works have explored use of wearable data, including

RHR, to detect symptoms of COVID before they appear toward

applications that can prompt users to intervene in pre-symptom-

atic disease phases and curb the spread of infection (e.g., self-

quarantine while waiting for a confirmatory test).22–24,35 While

these systems have shown moderate discriminative ability

between COVID-19 patients versus healthy persons in retro-

spective cohorts, our findings suggest that the specificity of

those systems should also be measured as compared with flu

patients, as they will be the overwhelming majority as flu season

starts. If specificity versus flu and other respiratory viruses

cannot be demonstrated, early-warning systems triggered on

wearable data should be considered as more non-specific

‘‘infection screening,’’ and therefore be coupledwith appropriate

confirmatory testing mechanisms that can help to quickly relieve

self-imposed quarantine of non-COVID-19 infections.17,18

From a methodological perspective, we note that we found it

helpful to be able to compare two different flu comparator

arms, one of which was contemporaneous with COVID-19, as

it allows partial control for the society-scale shifts in behavior

that the pandemic has brought about. For example, we noted

that medication prescription rates were lower for the COVID-19

and non-COVID flu cohorts as compared with the pre-COVID

flu cohorts. This may suggest that, during the pandemic, there

may be additional barriers to treatment that have arisen due to

lockdown measures and changes in attitudes toward risks in

seeking care. Without two flu comparator arms, including one

that is pre-pandemic, it would have been impossible to disen-

tangle reduction of prescriptions coming from lockdown versus

reduction coming from fewer available treatments for the novel

COVID-19. While we do not have additional data to investigate

these hypotheses, they may be worthwhile directions for further

research.
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Biases and Limitations
The studied cohorts come from conve-

nience samples that are not representative

of the US population at large. In particular,

we note that African Americans andmales,

alongside older individuals, are underrep-

resented in our cohort, thus limiting the

generalizability of our findings. Increasing
access and usage of these tools in these risk groups is of critical

importance.36

Differences in the rate of the COVID-19 occurrence across de-

mographic groups and disease severity levels have received

attention recently,37–42 with increasing evidence that some racial

and ethnic minority groups are being disproportionately affected

by COVID-19, and preliminary findings point to possible differ-

ences with other ILIs as well.43–45 Large-scale connected popu-

lations could be a key tool in examining the impact COVID-19 is

having across demographic and geographic groups, helping to

highlight vulnerable populations and target care delivery.4 How-

ever, the cohort of individuals utilizing wearable data in this study

may not reflect the heterogeneity of the general populace and, as

such, results relying on wearable data may not generalize to all

new populations.

Hospitalization rates for the COVID-19 and non-COVID-19 flu

participants in this study were higher than national estimates

from the same time frame,46–48 which could be due to the fact

that participants were required to report that they both sought

medical attention at a clinic or urgent care facility, and were diag-

nosed by a medical provider to be included in the analysis. Due

to shortages in testing availability and stringent testing criteria at

the early stage of the pandemic and at the time of these surveys,

our cohorts of diagnosed individuals may be composed of peo-

ple who hadmore severe symptoms and thus weremore likely to

seek medical care, those with greater access to healthcare re-

sources, or those who were already hospitalized when tested.

Higher hospitalization rates in the post-pandemic cohorts may

also be attributed to elevated monitoring and quarantining ef-

forts in an attempt to control spreading. In addition, given that

only individuals who sought medical care were included in the

analysis, this may skew the symptom presentation toward

more severe symptoms, such as shortness of breath or difficulty

breathing, as opposed to less worrisome symptoms (e.g., sneez-

ing). In parallel, the medication prescription rate is likely to vary

by patient symptom presentation and severity upon healthcare

visit and were not explored further by medication type or adher-

ence in this study.

Another limitation comes from the fact that the analysis con-

siders self-reported symptoms and self-reported diagnostic

test confirmation. During the early period of the pandemic,



Figure 5. Self-Reported Symptom Prevalence over Time Relative to Illness Onset (Day 0; Also Self-Reported)

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100188.

Prevalence is reported as a percentage of the full cohort of COVID-19 cases (n = 230; blue), non-COVID-19 flu cases (n = 426; dark gray), or pre-COVID-19 flu

cases (n = 6,270; light gray trace). (A–M) Each subplot contains data for one symptom and symptoms are sorted by peak symptom occurrence (earliest to latest)

for the COVID-19 cases. Note that negative values of ‘‘Days since illness onset’’ reflect the number of days preceding the self-reported illness onset.
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diagnostic tests for COVID-19 suffered from highly heteroge-

neous administration policies and inaccuracies, which may

have biased cohort composition. Finally, the surveys used to

capture symptoms between the earlier pre-COVID flu cohort

and the COVID-19 and non-COVID flu cohorts used slightly

different symptom sets, making direct comparison of symptom

prevalence infeasible in some cases.

Outlook
Using PGHD from self-reported symptoms, in combination with

physiological and behavioral measures continuously and unob-

trusively tracked by commercial wearable sensors, allows us to

confirm and contextualize learnings that may be otherwise lost

when considering each data stream in isolation. As more

PGHD is collected and evidence is created, it is important to

keep in mind that inclusion of additional data streams may in-

crease utility, but does not immediately yield increased

representativeness, especially when new streams continue to

be digitally mediated and are thus biased toward access to dig-

ital technologies.49 Making sure that PGHD generation is not

restricted to a niche of the population is perhaps the current

biggest limitation, and the most important agenda item on which

we need to continue to make progress.

In the specific context of COVID-19, our findings support the

case made by recent work that data from wearable sensors

may provide low-sensitivity testing capability with daily fre-

quency.22–24,35 Low-sensitivity/high-frequency testing when

combined with a low-delay confirmatory testing strategy has

been shown by computationmodels to significantly reduce prev-

alence of spreading with minimal burden on pre-emptive quaran-

tine for false positives.14,16 Therefore,wearables could potentially

support use cases, such as return to work and college reopen-

ing,18 where most of the cohort can be asked to wear the sensors

frequently.17 To better understand feasibility, however, further

research is needed.
First, it is important to accurately quantify the sensitivity of

wearable-based alert systems in prospective validation, and

especially for asymptomatic/pre-symptomatic patients (who

collectively seem to be responsible for more than 40% of the to-

tal infections).50 To this end, an understanding of the ability of

PGHD to detect pre-symptomatic and asymptomatic spreading

cannot be derived from data based solely on symptoms. There-

fore, studies designed to combine PGHDwith direct measures of

infectivity (e.g., PCR tests) constitute a necessary next step to

understand sensitivity to asymptomatic/pre-symptomatic infec-

tions, and they are currently under development.51

Second, as highlighted by the current work, it is important to

understand the specificity of any PGHD-based early-warning

system as compared with other respiratory diseases, such as

the seasonal flu, that may have similar physiological and behav-

ioral fingerprint in addition to a large symptom overlap. We

encourage researchers presenting results of COVID-19 early-

warning systems based on PGHD in real-world settings to

contextualize their findings, taking the confounding effect of flu

into account, instead of assuming "non-COVID-19" to be a syn-

onym of healthy controls. Despite the expectation of reduced

impact due to lockdownmeasures, flu is still seen as a confound-

ing factor for population-level estimates of the burden of respira-

tory illness when COVID-19 and flu coexist.52 Analogously, flu

must be taken into serious consideration as a confounding factor

for any PGHD-based applications, being that at population or in-

dividual level. Finally, an accurate understanding of detection

parameters (sensitivity, specificity, lag) in true real-world settings

is crucial not only to understand feasibility, but also to under-

stand how to shape the interaction between the system and its

users. For example, wemust consider how to incorporate confir-

matory tests that test onmultiple pathogens, not only COVID-19.

The usability, including perceptions around effectiveness,

burden, and privacy, will ultimately define adoption of such sys-

tems at scale.49,53
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Figure 6. Fraction of Participants with Elevated Daily RHR on Days Surrounding Illness Onset (Day 0)

Elevated RHR is defined as being greater than 1, 0.5, or 0 standard deviations (SD) over all daily RHRs observed during the combined baseline and symptomatic

periods. Cohorts refer to the sub-cohorts with dense RHR data: COVID-19 (n = 33; left), non-COVID-19 flu (n = 60; middle), and pre-COVID-19 flu (n = 1,025; right).

Error bars represent the SD of the sample proportions.
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As care becomes more decentralized and telehealth becomes

more widespread,54 PGHD can become a valuable tool on an in-

dividual level as patients transition in and out of care.55 In

addition to providing support to individual-level early-warning

systems and population-level hotspot detections, PGHD could

enable monitoring of recovery from symptoms, as the unobtru-

sive nature of sensor-based PGHDmakes consistent monitoring

possible over the weeks and months of long-COVID recovery.

The vast majority of learning about COVID-19 has come from

real-world data sources, such as health records and claims.56

PGHD can be a crucial addition, adding a large-scale under-

standing of early signals, several days before impact is seen at

centers of care. As the COVID-19 pandemic continues to

develop, and as future annual ILI waves arrive, understanding

and correctly reacting to symptom presentation will be critically

important. These results support not only an emerging picture

that COVID-19 has a distinct presentation, but highlight the po-

wer of PGHD, digital health, and connected populations in

broadly and remotely monitoring health status.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Luca Foschini, luca@evidation.com.

Materials Availability

The amended questionnaire is available in Note S2. The original questionnaire

consisted of a subset of questions from the amended questionnaire; the orig-

inal questionnaire included all questions except for questions 1, 8–9, 14–16,

18, 28–30, 32, 36–38.

Data and Code Availability

The completed coded curated study data can be requested by qualified re-

searchers via the Sage Synapse platform57 here: https://www.synapse.org/

#!Synapse:syn22891469/.

Code for reproducing all analyses in the manuscript can be found here:

https://github.com/evidation-datascience/COVID19_baseline_paper.

Data Collection

Achievement is a mobile consumer application that rewards and enables

members to participate in research by completing questionnaires and sharing

data from commercial-grade wearable sensors.58–60 Since 2017, Achievement

has been used to run a participatory ILI surveillance program, examining

annual waves of influenza virus infections.7 The 2019–2020 version of the pro-

gram recruits individuals who have experienced ILI symptoms in the past
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7 days to collect information on the date of illness onset and/or recovery,

detailed symptoms, healthcare interactions and outcomes, medications, and

household characteristics. The questionnaire was designed with inspiration

from Flu Near You,6 as well as input from public health and clinical infectious

disease experts. On 2020-03-30, the questionnaire was updated to include

questions that specifically address COVID-19, including questions about

COVID-19 diagnosis, testing, and social distancing measures, and an

expanded list of symptoms, including shortness of breath, chest pain, and

anosmia. The contents of the original and updated questionnaires are included

in Note S2.

Participants agreed to share survey responses and activity data from con-

nected wearable sensors. Responses to the original and updated surveys,

collected between 2019-12-02 and 2020-04-27, comprised the initial survey

dataset and included a total of 194,401 responses from 85,558 unique partic-

ipants. The sensor data analyzed in this project consisted of minute-by-minute

step counts, RHR recordings, and sleep states from 2019-11-01 to 2020-05-

13 for the subset of participants with Fitbit sensors connected to the Achieve-

ment platform.

Survey Preparation

Survey preparation methods are described in detail in Note S3, and summa-

rized here. Survey cleaning reduced the initial dataset to 146,133 responses

from 71,556 unique participants. Since participants could submit multiple sur-

vey responses for the same ILI event, distinct ILI events were inferred bymerg-

ing survey responses from the same participant when the dates encompassing

self-reported illness onset through recovery overlapped or were separated by

nomore than 2 days (chosen to account for potential misreporting of symptom

onset date). After excluding participants who reported five or more distinct ILI

events and participants who reportedmultiple distinct COVID-19 events (to re-

move participants with possible erroneous or fraudulent responses; removed

1,740 participants, bringing the sample to 69,816 among whom 49,397 re-

ported one distinct ILI event throughout the flu season and 20,419 reported

more than one ILI event—for whom the most recent ILI event was selected),

the analysis set was reduced to a subset of 6,926 ILI events with self-reported

clinical diagnoses. Note that applying the thresholding specified above 6

(2.5%) individuals were removed from theCOVID-19 cohort. Survey responses

were supplemented with demographic information from another survey,

including gender, age, BMI, ethnicity, race, and pre-existing health conditions.

This survey could have been completed at a different time than the ILI survey,

and as such there may be slight discrepancies in time-variant demographic

data, such as age, BMI, and health conditions.

Cohort Definition

To be included in the analysis, participants had to answer ‘‘yes’’ to survey

question 10, indicating that they sought medical attention from a healthcare

provider for their illness, and either question 12 or 14, indicating that the health-

care provider diagnosed them with either the flu or COVID-19 (see Note S2 for

mailto:luca@evidation.com
https://www.synapse.org/#!Synapse:syn22891469/
https://www.synapse.org/#!Synapse:syn22891469/
https://github.com/evidation-datascience/COVID19_baseline_paper


Figure 7. Deviations from Typical Healthy Behavior and Physiology Observed during ILI Events

Three measurement channels were studied: daily number of steps, daily mean RHR, and daily sleep minutes. Deviation from the norm was quantified as dif-

ference (excess) between observed values and estimates from a model fit only to symptom-free days (i.e., days outside the window of �10 through +20 days

surrounding ILI onset). Greater excess indicates greater deviations from typical behavior. Sample sizes across cohorts and channels: steps analysis: (A) COVID-

19, n = 36; (B) non-COVID-19, n = 80; (C) pre-COVID-19, n = 1,193; sleep analysis: (D) COVID-19, n = 35; (E) non-COVID-19, n = 64; (F) pre-COVID-19, n = 979.

Error bands represent 1 SE.
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question wordings). Participants who self-reported seeking medical care and

being diagnosed with flu and/or COVID-19 by a healthcare provider (n = 6,926)

were divided into three cohorts (Figure 2). Participants who completed the

amended survey and self-reported being diagnosed with COVID-19 or flu

were assigned to the COVID-19 cohort (n = 230) or non-COVID-19 flu cohort

(n = 426), respectively. The non-COVID-19 flu cohort offers a comparison of

COVID-19 and flu cases that is not confounded by time of year, survey content,

time since survey completion, or recent large-scale societal changes, such as

shelter-in-place orders or changes within the healthcare system. Participants

who reported being diagnosed with flu in the original survey were assigned to

the pre-COVID-19 flu cohort (n = 6,270). These cases spanned the 2019–2020

flu season before the COVID-19 outbreak and are included to provide a large

comparison group of canonical flu events.

Wearable Sensor Data Preparation and Analysis

The pipeline for preparing and analyzing the sensor data is described in

detail in Note S3 and summarized here. Of the 6,926 participants with diag-

nosed ILI events, 4,778 (69%) connected at least one wearable sensor to

the Achievement platform: 2,582 (37%) participants connected Apple

Watches, 2,166 (31%) connected Fitbit sensors, 420 (6%) connected Gar-

min sensors, 123 (2%) connected Withings sensors, and 17 (0.2%) con-

nected Misfit sensors. We focused the analysis of sensor data on the sub-

set of participants with connected Fitbit sensors, consisting of minute-by-

minute steps, heart rate recordings, and sleep states. These data were
collected from 2019-11-01 through 2020-05-13. Analyses focused on two

different periods: an ILI-event period, conservatively defined as days �10

through +20 relative to self-reported symptom onset (day 0), and a baseline

period—all other days before and after the ILI-event period. Given the

sparse and often conflicting literature regarding the incubation period and

illness duration for COVID-19 that was available at the time analysis was

conducted,61–64 the ILI-event period was intentionally wide to capture po-

tential asymptomatic days during the incubation period of the virus (days

[�10, �1]) and a potentially long recovery (days [0, 20]). Valid days were

defined as those with 10 or more hours of sensor wear time or at least

one main sleep period.65 The analysis set was restricted to participants

with ‘‘dense’’ sensor data, with at least 10% of valid days in the baseline

period, and at least 50% of valid days within the ILI event. Dense sensor

data were available for 41 COVID-19 patients (36 with steps, 33 with

RHR, and 35 with sleep), 85 non-COVID-19 flu patients (80 with steps, 60

with RHR, and 64 with sleep), and 1,226 pre-COVID-19 flu patients (1,193

with steps, 1,025 with RHR, and 979 with sleep). For participants included

in the dense wearable analysis cohort, the mean number of missing days

was 10.2%, 9.5%, and 8.9% for steps, sleep, and heart rate data, respec-

tively. Sensitivity analysis on the valid day thresholds was conducted and

results did not change significantly when removing the requirement of hav-

ing 10% of valid days for each day of the week, or lowering the percentage

of individual valid days to as low as 30%. The pipeline for preparing the

wearable data for analysis is illustrated in Figure 1B. While wear time is
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estimated using minute-by-minute data, all analysis is conducted on day

level variables consisting of daily RHR, daily step sum, and nightly

sleep hours.

We used a mixed-effects regression model to estimate expected activity

levels and adopted the model to impute gaps in RHR values for the RHR-

related analysis and to provide counterfactual estimates of ‘‘typical’’ activity

during ILI events for the excess analysis. The model specified fixed-effects

for the week of the year to control for time of year effects (more specifically,

this consisted of three terms for the first, second, and third expansions of an

ordinal variable for week of flu season), a categorical fixed-effect for the day

of the week to account for differences in activity patterns by day of week, a

fixed-effect for the average daily activity level in the participants’ state of resi-

dence to control for different state-wide shelter-in-place and social distancing

measures, and a random-intercept for each participant’s baseline activity level

to control for individual differences in activity levels. Three models were spec-

ified to predict daily total steps, daily RHR, and nightly total sleep time:

feature = b0 + b1 �week + b2 �week2 + b3 �week3 + b4 � day of week +b5

� state mean+ u0 + ε:

We examined the fraction of each cohort with elevated RHR in the days pre-

ceding and following ILI onset.8 First, missing RHR values were imputed by

fitting the mixed-effects model described previously to all participant-days

with an RHR recording. Model estimates were used for days when RHR was

not recorded, and observed RHRswere used otherwise. Individualized thresh-

olds for elevated RHR were defined as 1 standard deviation above each par-

ticipant’s mean RHR across all days. The fraction of each cohort with elevated

RHR was computed for the days surrounding the ILI event (defined as 10 days

before and 20 days after ILI onset). Two-proportion z tests were performed to

determine (1) if a greater proportion of the COVID-19 cohort had elevated RHR

in the days surrounding ILI onset (days �2 to 2) compared with baseline days

before ILI onset (days �10 to �5) and (2) if the proportion of participants with

elevated RHR surrounding ILI onset differed among cohorts. Sensitivity anal-

ysis was conducted for the elevated RHR analysis, with imputed days being

entirely dropped. Results did not change materially, both with respect to the

proportion of individuals with elevated RHR, and the trajectory of the elevated

RHR traces.

To quantify how COVID-19 and flu impact physical activity, RHR, and sleep,

we measured deviations from expected behavior during illness events. We

generated individualized estimates of daily measurements that would have

been recorded in the counterfactual scenario that the participant did not fall

ill (that is, on a typical healthy day) by fitting the mixed-effects model to all

participant-days outside of the ILI events (all days outside the range of �10

to 20 days from illness onset). Then we computed the excess, defined as the

difference (observed � estimated), on the days within each ILI event. To visu-

alize the time course of behavioral changes during COVID-19 and flu events

(Figure 7), we fit generalized additive mixed models with spline smoothing

functions (a thin plate regression spline for days since symptom onset with

random effects for participants) to the daily excess time series for each cohort

using the mgcv package for R.66

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100188.
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62. McAloon, C., Collins, Á., Hunt, K., Barber, A., Byrne, A.W., Butler, F.,

Casey, M., Griffin, J., Lane, E., McEvoy, D., et al. (2020). Incubation period

of COVID-19: a rapid systematic review and meta-analysis of observa-

tional research. BMJ Open 10, e039652.

63. Tan, W.Y.T., Wong, L.Y., Leo, Y.S., and Toh, M.P.H.S. (2020). Does incu-

bation period of COVID-19 vary with age? A study of epidemiologically

linked cases in Singapore. Epidemiol. Infect. 148, https://doi.org/10.

1017/S0950268820001995.

64. Wang, Y., Wang, Y., Chen, Y., and Qin, Q. (2020). Unique epidemiological

and clinical features of the emerging 2019 novel coronavirus pneumonia

(COVID-19) implicate special control measures. J. Med. Virol. 92,

568–576.

65. Tudor-Locke, C., Johnson, W.D., and Katzmarzyk, P.T. (2011). U.S. pop-

ulation profile of time-stamped accelerometer outputs: impact of wear

time. J. Phys. Act. Health 8, 693–698.

66. Wood, S.N. (2011). Fast stable restricted maximum likelihood and mar-

ginal likelihood estimation of semiparametric generalized linear models.

J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36.

https://federallabs.org/news/barda-evidation-health-partner-on-covid-19-self-monitoring-study
https://federallabs.org/news/barda-evidation-health-partner-on-covid-19-self-monitoring-study
https://doi.org/10.1093/cid/ciaa1023
https://doi.org/10.1101/2020.05.14.20102269
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref54
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref54
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref54
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref55
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref55
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref55
https://covid19researchdatabase.org/
https://www.synapse.org/
https://www.myachievement.com/
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref59
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref59
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref59
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref59
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref60
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref60
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref60
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref60
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref62
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref62
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref62
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref62
https://doi.org/10.1017/S0950268820001995
https://doi.org/10.1017/S0950268820001995
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref64
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref64
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref64
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref64
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref65
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref65
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref65
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref66
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref66
http://refhub.elsevier.com/S2666-3899(20)30258-0/sref66


PATTER, Volume 2
Supplemental Information
Characterizing COVID-19 and Influenza

Illnesses in the Real World

via Person-Generated Health Data

Allison Shapiro, Nicole Marinsek, Ieuan Clay, Benjamin Bradshaw, Ernesto Ramirez, Jae
Min, Andrew Trister, Yuedong Wang, Tim Althoff, and Luca Foschini



Supplementary Note 1: Institutional Review Board 
This study received expedited review and IRB approval from Solutions IRB (Protocol ID 
#2018/11/8). Waiver of informed consent was granted by the IRB. Prior to each questionnaire, 
participants were notified about how their survey responses and behavioral data will be used for 
research purposes through a disclosure. 

Supplementary Note 2: Questionnaire 
Weekly 1-Click Item 

1. Have you experienced flu-like symptoms in the past 7 days (such as fever, chills, cough, shortness of breath, 
and/or headache)? If you had flu-like symptoms in the past 7 days, but have recovered, please still answer 
YES. 

(a)   Yes [Symptom Experience Survey] 

(b)   No [Infection Risk Factors Survey] 

Symptom Experience Survey 

1.     What is your current zip code? (Where you live and spend the majority of your time) If you are currently 
staying in a different location for an extended period of time, please enter your current zip code. 

(a)   numeric 5-digit entry 

2.     When did you first begin experiencing flu-like symptoms? If you don’t recall the exact date, please provide 
the best estimate. 

(a)   calendar date selection 

3.     As of today, do you feel that you have completely recovered from your illness? 

(a)   Yes 

(b)   No 

[IF Q3 = A, THEN Q4] 
[IF Q3 = B, THEN THEN SKIP TO Q5] 

4.     When did you feel you were completely recovered from your illness? If you don’t recall the exact date, 
please provide the best estimate. 

(a)   calendar date selection 

5.     We’d like to know more about the symptoms you experienced. Looking back over the past 7 days, did 
you have any of the following symptoms? Please select all that apply. 

(a)   Cough 

(b)   Body/Muscle Ache 

(c)    Fever or feeling feverish 

(d)   Chills or shivering 



(e)   Sweats 

(f)    Headache 

(g)   Sore throat or itchy/scratchy throat 

(h)   Feeling more tired than usual 

(i)     Nasal congestion or runny nose 

(j)    Sneezing 

(k)   I did not experience any flu-like symptoms 

(l)     Other 

[IF Q4 = K, SURVEY END] 

6.     We’d like to know more about the symptoms you experienced. Looking back over the past 7 days, please 
indicate on which days you felt the following symptoms. 

(a)   Matrix carry forward symptoms; check all that apply: Today, Yesterday, 2 days ago, 3 days ago, 4 
days ago, 5 days ago, 6 days ago 

7.     Looking back over the past 7 days, did you have any of the additional symptoms below 

(a)   Shortness of breath and/or difficulty breathing 

(b)   Persistent pain or pressure in the chest 

(c)    Loss of sense of smell 

(d)   None of the above 

[IF Q7 = A-C, THEN Q8] 
[IF Q7 = D, THEN THEN SKIP TO Q9] 

8.     Looking back over the past 7 days, please indicate on which days you felt the following additional 
symptoms. 

(a)   Matrix carry forward other symptoms; check all that apply: Today, Yesterday, 2 days ago, 3 days ago, 
4 days ago, 5 days ago, 6 days ago 

9.     Thinking about your flu-like symptoms over the last 7 days, on what day did you feel the worst? 

(a)   Today 

(b)   Yesterday 

(c)    2 days ago 

(d)   3 days ago 

(e)   4 days ago 

(f)    5 days ago 

(g)   6 days ago 

10.  Did you seek medical attention from a healthcare provider at a clinic or urgent care facility for this flu or 
flu-like illness? 

(a)   Yes 

(b)   No 

[IF Q10 = A, THEN Q11] 
[IF Q10 = B, THEN SKIP TO Q23] 



11.  Where did you seek care from a healthcare provider? 

(a)   Primary care clinic (e.g. family medicine, internal medicine) 

(b)   Urgent care facility 

(c)    Emergency room (ER) 

(d)   Ear, nose, and throat (otolaryngology) clinic 

(e)   Infectious disease clinic 

(f)    Other 

12.  Did the healthcare provider diagnose you as having the flu? 

(a)   Yes 

(b)   No 

(c)    I don’t know / I can’t remember 

13.  Did the healthcare provider perform any of the following tests? Select all that apply. 

(a)   Nasal swab 

(b)   Throat swab 

(c)    Symptoms only (no lab test) 

(d)   I don’t know / I can’t remember 

(e)   Other (please specify) 

14.  Did the healthcare provider diagnose you as having coronavirus disease (also known as COVID-19)? 

(a)   Yes 

(b)   No 

(c)    I am waiting for my diagnosis 

(d)   I don’t know / I can’t remember 

15.  Did you take any of the following tests for your coronavirus diagnosis? Select all that apply. 

(a)   Nasal swab 

(b)   Throat swab (c) Blood test 
(d)   Spit test / kit 

(e)   Symptoms only (no lab test) 

(f)    I don’t know / I can’t remember 

(g)   Other (please specify) 

16.  Where did you take the COVID-19 diagnostic test? 

(a)   In a clinic or hospital 

(b)   At a drive through testing facility 

(c)    At home testing kit 

(d)   Other (please specify) 

(e)   None of the above 



17.  Were you hospitalized as a consequence of this flu or flu-like illness? Hospitalization is when you leave 
the emergency room (ER) and are admitted to the inpatient hospital based on a doctor’s order. Even if 
you stayed overnight in the ER, this is not considered a hospitalization. 

(a)   Yes (b) No 

18.  Were you told to self-quarantine (stay in your home without leaving for any reason) by a medical 
professional? 

(a)   Yes 

(b)   No 

(c)    I don’t know / I can’t remember 

19.  Did a healthcare provider prescribe any medications to treat or manage your current symptoms? 

(a)   Yes 

(b)   No 

(c)    I don’t know / I can’t remember 

[IF Q19 = A, THEN Q20] 
[IF Q19 = B, THEN SKIP TO Q23] 

20.  Which of the following medications were you prescribed to treat or manage your symptoms? Select all 
that apply. 

(a)   Xofluza (baloxavir marboxil) 

(b)   Tamiflu (oseltamivir) 

(c)    Relenza (zanamivir) 

(d)   Antibiotics (Z-pak, amoxicillin, Augmentin, doxycycline) (e) Other 

21.  When did you take your first dose of [CARRY FORWARD MEDICATION NAME]? Please enter the date in 
MM/DD/YYYY format. 

(a)   Date entry 

22.  Did you ever miss any doses or decide not to take [CARRY FORWARD MEDICATION NAME]? a. 

(a)   I missed at least one dose of this medication 

(b)   I did not take any doses of this medication 

(c)    I did not miss any doses of medication 

(d)   I don’t know / I can’t remember 

23.  Did you take any over-the-counter (non-prescription) medications to treat or manage your current 
symptoms in the past 7 days? 

(a)   Yes 

(b)   No 

(c)    I don’t know / I can’t remember 

[IF Q23 = A, THEN Q24] 
[IF Q23 = B, THEN SKIP TO Q25] 

24.  Which of the following over-the-counter (non-prescription) medications did you personally decide to take 
to treat or manage your current symptoms in the past 24 hours? Select all that apply. 



(a)   Fever reducers or pain relievers (ibuprofen, aspirin, Advil, Tylenol, Aleve, acetaminophen) 

(b)   Cough suppressants (Delsym, Robitussin, dextromethorphan) 

(c)    Chest or mucus decongestants (Mucinex, guaifenesin) 

(d)   Nasal decongestants (Sudafed, Sudafed PE, Afrin, Flonase, phenylephrine, pseudoephedrine, 
fluticasone propionate) 

(e)   I don’t know / can’t remember 

(f)    Other 

25.  How many people (other than yourself) live in your household? 

(a)   0 

(b)   1 

(c)    2 

(d)   3 

(e)   4 (f) 5 
(g)   6 

(h)   7 

(i)     8 

(j)    9 

(k)   10 

(l)     >10 

26.  Have any members of your household (other than yourself) experienced flu-like illness this flu season? 

(a)   Yes 

(b)   No 

(c)    I live alone 

[IF Q26 = A, THEN Q27] 
[IF Q26 = B or C, THEN SKIP TO Q29] 

27.  How many members of your household, by age group listed below, have experienced flu-like symptoms 
during this flu season (September 2019 to today)? If no household member in your household 
experienced symptoms within an age group please enter 0. [numeric entry] 

(a)   Number of household members 0-4 years old experiencing flu-like symptoms 

(b)   Number of household members 5-17 years old experiencing flu-like symptoms 

(c)    Number of household members 18-49 years old experiencing flu-like symptoms 

(d)   Number of household members 50-64 years old experiencing flu-like symptoms 

(e)   Number of household members 65+ years old experiencing flu-like symptoms 

28.  Have any members of your household been diagnosed with coronavirus disease (also known as COVID-
19? 

(a)   Yes 

(b)   No 

29.  Have you been in close contact with anyone outside your household (e.g., family members, friends, 
coworkers, acquaintances) who has experienced flu-like symptoms recently? Close contact can include 



direct physical contact, face-to-face contact for longer than 15 minutes, exchange of bodily fluids, or being 
within 6 feet of the person for more than 15 minutes. 

(a)   Yes, within the last 7 days 

(b)   Yes, within the last 14 days 

(c)    Yes, over 14 days ago 

(d)   No 

(e)   I don’t know / I’m not sure 

30.  Have you recently been in contact with someone who was diagnosed with coronavirus? Close contact can 
include direct physical contact, face-to-face contact for longer than 15 minutes, exchange of bodily fluids, 
or being within 6 feet of the person for more than 15 minutes. 

(a)   Yes, within the last 7 days 

(b)   Yes, within the last 14 days 

(c)    Yes, over 14 days ago 

(d)   No 

(e)   I don’t know / I’m not sure 

31.  Did you miss school or work due to your illness? 

(a)   No, I did not miss any school or work during my illness 

(b)   I missed 1 day of school or work 

(c)    I missed 2 days of school or work 

(d)   I missed 3 days of school or work 

(e)   I missed more than 3 days of school or work 

(f)    Illness occurred on a weekend or other day(s) off 

(g)   I am retired and/or school or work days don’t apply to me 

(h)   I don’t know / I don’t remember 

32.  Looking back over the past 7 days, which days have you practiced social distancing or isolation behaviors 
(e.g., working remotely, limited the time spent in crowds, increasing the amount of time spent at home)? 
Please select all that apply. 

(a)   Today 

(b)   Yesterday 

(c)    Two days ago 

(d)   Three days ago 

(e)   Four days ago 

(f)    Five days ago 

(g)   Six days ago 

(h)   I did not practice social distancing in the last 7 days 

33.  Did you receive the flu vaccine (sometimes called the flu shot) this flu season (September 2019 to today)? 

(a)   Yes 

(b)   No 



(c)    I don’t know / I can’t remember 

34.  Did you receive the flu vaccine last flu season? (September 2018 - March 2019) 

(a)   Yes 

(b)   No 

(c)    I don’t know / I can’t remember 

35.  Please select the statement below that describes whether you typically get a flu shot (or another form of 
flu vaccine). 

(a)   I never have gotten a flu shot 

(b)   I rarely get a flu shot 

(c)    I get a flu shot every year 

(d)   I sometimes get a flu shot 

36.  Have you recently traveled on an airplane? 

(a)   Yes, within the last 7 days 

(b)   Yes, within the last 14 days 

(c)    Yes, over 14 days ago 

(d)   No 

37.  Have you recently participated in any large public gatherings of over 250 people (e.g., concerts, sporting 
events, amusement parks)? 

(a)   Yes, within the last 7 days 

(b)   Yes, within the last 14 days 

(c)    Yes, over 14 days ago 

(d)   No 

38.  Are you or one of your household members a healthcare worker (i.e., doctor, dentist, nurse, nurse’s aid, 
paramedic, physician’s assistant, home healthcare aid, hospital worker, pharmacist, or other type of 
healthcare worker)? Please select all that apply. 

(a)   I am, and I am currently working 

(b)   I am, but I am NOT currently working 

(c)    One of my household members is, and they are currently working 

(d)   One of my household members is, but they are NOT currently working 

(e)   No one in my household is a healthcare worker 

 

39. Were you diagnosed by a healthcare provider with any of the following health problems either during 
your flu illness or since you recovered from your flu illness? Please select all that apply. [CHECKBOX] 

a. Chest infection (pneumonia, acute lung injury) 
b. Worsening of asthma or COPD 
c. Bloodstream infection (sepsis) 
d. Ear infection (otitis media) 
e. Sinus infection (sinusitis) 
f. Brain inflammation (encephalitis or encephalopathy) 



g. Stroke 
h. Inflammation of the heart or the covering of the heart (myocarditis and/or pericarditis) 
i. Worsening of heart failure 
j. Heart attack (myocardial infarction) 
k. Muscle inflammation (myositis or rhabdomyolysis) 
l. No, I was not diagnosed with any of these conditions 

 
[IF Q38 = YES TO ANY → GO TO Q39 for each complication selected 
IF Q38 = “l” —> end survey]] 
 

40. Approximate date that the [CARRY FORWARD COMPLICATION SELECTIONS] first occurred. Please enter 
the date in MM/DD/YYYY format.  

a. Date text entry 

Supplementary Note 3: Methods 

Survey Filtering.  

Survey responses with self-reported illness onset dates or recovery dates that occurred 30 or 
more days before the survey completion date were excluded, leaving 158,999 survey responses 
from 73,728 unique participants. Survey responses with invalid illness onset and/or recovery 
dates (defined as dates occurring after the survey date or responses in which the illness 
recovery date occurred before the illness onset date) were also removed, leaving 149,309 
survey responses from 71,556 unique individuals. Finally, the set of survey responses was 
restricted to one survey per participant per day. If one participant attempted more than one 
survey in a given day, the less complete survey was excluded. 

Inference of Distinct ILI Events.  
Participants could submit new survey responses as frequently as once per week, with no 
maximum limit. Therefore, individual symptom trajectories for an ILI event had to be inferred by 
concatenating and reconciling multiple surveys responses, for example, if the participant were 
midway through their illness when they submitted their first survey their next survey could 
describe the second half of their illness. 
We inferred ILI events by merging multiple surveys from the same participant with date ranges 
encompassing symptoms onset and recovery that overlapped or were separated by no more 
than 2 days. Participants with more than 5 ILI events were removed, eliminating 16,878 surveys 
and 1,639 participants, and leaving 126,014 survey responses, corresponding to 99,604 distinct 
ILI events and 69,034 participants. 
This gives the set of discrete ILI events per participant, from which we will select only 1 for 
analysis. If a participant has a diagnosed COVID-19 ILI event, that event is selected, otherwise 
the most recent ILI event is selected. This process removes a further 40,357 surveys and 
30,567 distinct ILI events, and 0 participants. Participants reporting multiple non-overlapping 



diagnosed COVID-19 events were then excluded (excluding 7 survey responses, 6 distinct ILI 
events, and 3 participants). 

Reconciliation of Merged Survey Responses.  
At this point, we have one ILI event per participant, corresponding to 85,650 surveys for 69,031 
distinct ILI events across 69,031 participants. We then reconcile responses to derive a single 
value per item. For example, the date of onset and recovery are taken as the earliest and latest 
reported date for that ILI event, respectively. 
Participants who reported being diagnosed with both flu and COVID-19 (N=83) were assigned 
to the COVID-19 cohort, under the rationale that some individuals may consider COVID-19 to 
be a type of flu, and the relative order in the questionnaire (flu preceding COVID-19). Among the 
41 COVID-19 cases with dense Fitbit data, 14 also reported having the flu (12 with dense HR 
data, 12 with dense sleep data, 11 with dense steps data. 
Flu events drawing from multiple surveys responses may have differing symptoms reports for 
the same calendar date. Such day-level values (e.g., symptoms reported for a specific day) 
were collapsed if identical, and if not, the survey submitted on the date closest to the calendar 
date was used. Participants were also allowed to report annotations, for example "the worst 
day", during a given event. These are highly subjective, thus all responses were retained, with a 
given date coded as "one of the worst days" if the participant indicated as such in any survey. 
For event-level categorical features, the algorithm described in Figure S1 was used to collapse 
surveys to a single response. Numerical event-level features, for example the number of 
household members who have experienced ILI symptoms, were aggregated by taking the 
maximum value reported. All other features which could not be reconciled were simply 
aggregated as concatenated unique values. 
 
In our selection of ILI events,we select COVID-19 events or the most recent ILI event for each 
participant. This biases our analysis towards later calendar dates when sensor data is most 
affected by social distancing. For this reason, we have included a chronologically parallel group 
of Non-COVID-19 Flu patients. A second issue is that we could be missing participants’ most 
severe ILI events, which could have happened earlier in the season. We will continue to monitor 
symptomatic and behavioral changes associated with COVID-19 and non-COVID-19 ILIs as 
more events are captured and as guidance on social distancing and stay-at-home measures are 
relaxed. Further analysis will focus on how strongly these measures confound our observations. 

Statistical Testing.  
A two-step statistical testing procedure was used to test for differences in demographics, 
healthcare care-seeking behavior, medical outcomes, and symptoms among the three cohorts. 
First, for each sub-analysis (i.e., demographics, medical care-seeking, and symptom 
prevalence), a series of chi-squared tests of independence were performed to test for an 
association between the three cohorts and the different possible outcomes for each category. A 
Bonferroni correction was applied to adjust for running multiple chi-squared tests in each sub-
analysis. Second, follow-up two-proportion z-tests were performed to test for differences in 
proportions for each outcome and each pair of cohorts. These follow-up tests were only 



performed for the categories with significant cohort differences as determined by the chi-
squared tests. 
 

Wearable Sensor Data Preparation.  
The pipeline for preparing the surveys for analysis is described in detail in Supplementary Note 
3 and summarized here. 
Of the 6,926 participants with diagnosed ILI events, 4,778 (69%) have shared at least one 
wearable device connected to the Achievement platform: 2,582 (37%) participants had 
connected Apple Watches, 2,166 (31%) had connected Fitbit devices, 420 (6%) had connected 
Garmin devices, 123 (2%) had connected Withings devices, and 17 (0·2%) had connected Misfit 
devices. We focus the analysis of sensor data on the subset of participants with connected Fitbit 
devices, consisting of minute-by-minute steps, heart rate recordings, and sleep states, available 
for a subset of study participants. This data was collected from 2019-11-01 through 2020-05-13 
and analyzed to investigate the impact of COVID-19 and flu on everyday behavior and 
physiology. 
Since the sensor data was collected passively in real-world settings, daily sensor wear-time 
varied across participants and study days. We implemented a three step procedure to enforce 
adequate data density around each ILI event prior to analysis. First, we estimated if the sensor 
was worn for each participant for each minute in the study period. Periods of non-wear-time 
were defined as 180 or more consecutive minutes of zero steps or null heart rate recordings. 
Second, days with 10 or more hours of sensor wear-time were tagged as valid for analysis. For 
the sleep data, days with at least one main sleep period recorded by Fitbit were considered 
valid. Third, the analysis set was restricted to only include participants with 1) at least 10% of 
valid days for each day of the week in the baseline period (defined as all participant-days that 
occurred outside the window of 10 days prior to and 20 days after illness onset) and 2) at least 
50% valid days in the time period surrounding the ILI event (defined as all days within the 
window of 10 days prior to 20 days after illness onset). Dense sensor data was available for 41 
COVID-19 patients (36 with steps, 33 with RHR, and 35 with sleep), 85 Non-COVID-19 Flu 
patients (80 with steps, 60 with RHR, and 64 with sleep), and 1226 Pre-COVID-19 Flu patients 
(1193 with steps, 1025 with RHR, and 979 with sleep). Sensitivity analysis on the valid day 
thresholds was conducted and results did not change significantly when removing the 
requirement of having 10% of valid days for each day of week or lowering the percentage of 
individual valid days to as low as 30%. The pipeline for preparing the wearable data for analysis 
is illustrated in Supplementary Figure S1 (b). 

Elevated RHR Prevalence.  
Similarly to previous work,1 we examined the fraction of each cohort with elevated RHR in the 
days preceding and following ILI onset. First, days without RHR recordings were imputed in 
order to ensure that the cohorts were the same across days of interest. Imputed RHR values 
were generated from predictions of a mixed effects regression model that was fit to all 
participant-days that RHR was recorded. The model specified fixed effects for the week of the 
year to control for time of year effects (more specifically, this consisted of three terms for the 



1st, 2nd, and 3rd expansions of an ordinal variable for week of flu season), a categorical fixed 
effect for the day of the week to account for differences in activity patterns by day of week, a 
fixed effect for the average activity level in the participants’ state of residence to control for 
different state-wide shelter-in-place and social distancing measures, and a random intercept for 
each participant’s baseline activity level to control for individual differences in activity levels. The 
model was fit to all participant-days with a RHR recording using the lme4 package for R.2 Note 
that the imputed values were used only to fill days when RHR was not recorded, the observed 
value was used on all other days . 
Next, in order to account for individual differences in RHR when defining thresholds for elevated 
RHR, RHR values were converted to z-scores using each participant’s RHR mean and standard 
deviation across all days. The fraction of each cohort with elevated RHR was computed for the 
days surrounding the ILI event, defined as 10 days prior to 20 days after ILI onset. Elevated 
RHR was defined as being greater than 1 standard deviation above the participant’s mean 
RHR. Two-proportion z-tests were performed to answer the following two questions: 1. Does a 
greater fraction of the COVID-19 cohort have elevated RHR in the days surrounding ILI onset 
compared to days prior to ILI onset and 2. Does the fraction of participants with elevated RHR 
surrounding ILI onset differ between COVID-19 and Flu cohorts? The time window surrounding 
ILI onset was defined as starting two days prior to self-reported illness onset and ending two 
days afterward (Days -2 to 2). We conservatively allowed 2 days for physiological changes 
before any symptom was reported, and 2 days after the onset of symptoms as the time horizon 
within which actions could be taken that would not otherwise be taken without information from 
the wearable device. For the purpose of the first statistical test, the time period prior to ILI onset 
was defined as Days -10 to -5 relative to self-reported illness onset. This time window was 
selected because it fell within the time period that data density was enforced, it was the same 
duration as the time window surrounding ILI onset, and the median time from exposure to 
COVID-19 to the development of symptoms is 5 days3. 

Behavioral and Physiological Changes During ILI Events.  

In order to characterize daily changes associated with COVID-19 and flu events, we measured 
deviations from typical healthy measurements (RHR, step count, sleep hours) that occurred 
while participants were ill. We used a model on symptom-free days (conservatively assumed all 
days excluding the 10 days before symptoms onset and within 20 days after symptoms onset) 
to generate individualized estimates of daily measurements that would have been recorded in 
the counterfactual scenario that the participant did not fall ill, and then computed the excess, 
defined as the difference (observed - estimated), on the days surrounding symptoms onset, and 
finally report the excess as a measure of deviations from expected typical measurements. The 
symptom-free day model was a mixed effects regression model with the same specification as 
what was used to impute missing RHR values in the previous analysis. The key difference in 
this analysis was that, in order to generate estimates based only on assumed symptom-free 
days, we excluded all data within 10 days before symptoms onset and within 20 days after 
symptoms onset when fitting the model. In order to visualize the time course of behavioral 
changes during COVID-19 and flu events, we fit generalized additive mixed models with spline 



smoothing functions and random intercepts to the daily excess time series for each cohort using 
the mgcv package for R.4 This procedure was performed three separate times, for each of the 
channels considered: daily total step counts, daily RHR, and total daily sleep minutes. 

Supplementary Note 4: Comorbidity Prevalence 
Table S1 describes self-reported comorbidities observed in our ILI cohorts. 
 
 

  COVID-19 Non-COVID-19 
Flu 

Pre-COVID-19 
Flu 

Anxiety 65 (28.3%) 122 (28.6%) 1915 (30.5%) 

Depression 62 (27.0%) 104 (24.4%) 1868 (29.8%) 

Asthma 56 (24.3%) 79 (18.5%) 1247 (19.9%) 

Migraines 50 (21.7%) 75 (17.6%) 1225 (19.5%) 

Chronic Pain 30 (13.0%) 40 (9.4%) 572 (9.1%) 

Hypertension 17 (7.4%) 46 (10.8%) 718 (11.5%) 

PCOS 16 (7.0%) 16 (3.8%) 315 (5.0%) 

GERD 15 (6.5%) 46 (10.8%) 599 (9.6%) 

Mental Health (Excluding 
Depression/Anxiety) 

15 (6.5%) 32 (7.5%) 499 (8.0%) 

Insomnia 15 (6.5%) 37 (8.7%) 541 (8.6%) 

Sleep Apnea 11 (4.8%) 20 (4.7%) 335 (5.3%) 

Restless Leg Syndrome 10 (4.3%) 12 (2.8%) 231 (3.7%) 

Type 2 Diabetes 10 (4.3%) 10 (2.3%) 254 (4.1%) 

Hypo- or Hyperthyrodism 9 (3.9%) 32 (7.5%) 418 (6.7%) 

Fibromyalgia 9 (3.9%) 16 (3.8%) 215 (3.4%) 

High Cholesterol 9 (3.9%) 21 (4.9%) 352 (5.6%) 

Gestational Diabetes 8 (3.5%) 13 (3.1%) 187 (3.0%) 

Cancer 6 (2.6%) 13 (3.1%) 165 (2.6%) 



Arrhythmia 6 (2.6%) 5 (1.2%) 165 (2.6%) 

Psoriasis 5 (2.2%) 14 (3.3%) 147 (2.3%) 

Type 1 Diabetes 4 (1.7%) 6 (1.4%) 63 (1.0%) 

Rheumatoid Arthritis 4 (1.7%) 7 (1.6%) 135 (2.2%) 

Stroke 3 (1.3%) 3 (0.7%) 31 (0.5%) 

Heart Attack 2 (0.9%) 3 (0.7%) 28 (0.4%) 

IBS or IBD 2 (0.9%) 9 (2.1%) 94 (1.5%) 

COPD 2 (0.9%) 4 (0.9%) 61 (1.0%) 

Seasonal Allergies 2 (0.9%) 5 (1.2%) 109 (1.7%) 

Lupus 1 (0.4%) 0 (0.0%) 7 (0.1%) 

Coronary Heart Disease 1 (0.4%) 0 (0.0%) 13 (0.2%) 

Multiple Sclerosis 1 (0.4%) 4 (0.9%) 30 (0.5%) 

Alzheimer’s Disease 1 (0.4%) 1 (0.2%) 3 (0.0%) 

Heart Failure 0 (0.0%) 5 (1.2%) 27 (0.4%) 

Neurodegenerative 0 (0.0%) 1 (0.2%) 4 (0.1%) 

Arthritis 0 (0.0%) 3 (0.7%) 37 (0.6%) 

Osteoporosis 0 (0.0%) 6 (1.4%) 51 (0.8%) 

Table S1. Prevalence of self-reported co-morbidities for the COVID-19 (N=230), Non-COVID-19 Flu (N=426), and 

Pre-COVID-19 Flu (N=6270) cohorts. 

Supplementary Note 5: Symptom Labels 
Table S2 describes the labels and associated descriptions used in our surveys for this work. 
 
 

Symptom Label Symptom Description in Survey 

Cough Cough 

Headache Headache 



Body Muscle Ache Body/Muscle Ache 

Fatigue Feeling more tired than usual 

Fever Fever or feeling feverish 

Chills or Shivering Chills or shivering 

Sore Throat Sore throat or itchy/scratchy throat 

Nasal Congestion Nasal congestion or runny nose 

Sweats Sweats 

Sneezing Sneezing 

Chest Pain/Pressure Persistent pain or pressure in the chest 

Shortness of Breath Shortness of breath and/or difficulty 
breathing 

Anosmia Loss of sense of smell 

Table S2. Full symptom descriptions included in the survey for each abbreviated symptom label. The Chest 

Pain/Pressure, Shortness of Breath, and Anosmia symptoms were only included in the updated survey. 

Supplementary Note 6: Symptom Reporting 
Figure S1 describes the percentage of each ILI cohort reporting daily symptoms between one 
week prior and 4 weeks post symptom onset. Figure S2 describes the percentage of observed 
symptom reporting for hospitalized and non-hospitalized COVID-19 cohorts, between one week 
prior and 4 weeks post symptom onset. 
 



 

 
Fig. S1. Percentage of COVID-19 (N=230; blue), Non-Covid Flu (N=426; gray), and Pre-Covid Flu (N=6270, light gray 

trace) cohorts with symptom reports for days -7 to 28 since illness onset.  



 

 

 
We note that our approach may underestimate disease severity, due to participants not 
reporting symptoms, not wearing sensors in days when symptoms are most severe, or during 
hospitalization events (see Figure S3). 
 

 

 
Fig. S2. Percentage of the Hospitalized (N=83, purple) and Non-hospitalized (N=147, gray) COVID-19 sub-cohorts 

with symptom reports for days -7 to 28 since illness onset.  

Supplementary Note 7: Sensor Data Coverage 
A summary of coverage of wearable sensor data over the course of the study is visualized in 
Figure S3. 
 
We recognize that our analyses do not immediately translate to real-time implementation of 
COVID-19 monitoring, due to lag in data collection that comes from sensor and data 
synchronization. Lags in our dataflow are nevertheless small compared to the gains in symptom 
detection and reporting compared to canonical practice. 
 



 

 
Fig. S3. Coverage of Fitbit steps, sleep, and RHR data on each calendar date of the study, color-coded by cohort. 

Each row is one participant (ordered by date of ILI-onset) and each column is one calendar date. Shaded days 

indicate that wearable data was recorded on that day from that participant. Days highlighted in yellow indicate the ILI 

onset dates. 

Supplementary references 
1. Radin, J. M., Wineinger, N. E., Topol, E. J. & Steinhubl, S. R. Harnessing wearable device 

data to improve state-level real-time surveillance of influenza-like illness in the USA: a 

population-based study. The Lancet Digital Health 2, e85–e93 (2020). 

2. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using 

lme4. J. Stat. Softw. 67, (2015). 

3. Lauer, S. A. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From 

Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 172, 



577–582 (2020). 

4. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of 

semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology) 73, 3–36 (2011). 

5. Bionetworks, S. Synapse | Sage Bionetworks. https://www.synapse.org. 

 


	PATTER100188_proof_v2i1.pdf
	Characterizing COVID-19 and Influenza Illnesses in the Real World via Person-Generated Health Data
	Introduction
	Results
	Data Collection and Cohort Definitions
	Survey Results
	Demographic Differences between COVID-19 and Flu Cases
	Healthcare Interactions Differ between COVID-19 and Flu Cases
	Differing Presentation of COVID-19 and Flu Symptoms
	COVID-19 Symptoms Tend to Peak Later and Last Longer than Flu

	Wearable Data Results
	Demographics of Participants with Dense Wearable Sensor PGHD
	COVID-19 Illness Onset Was Associated with Elevated RHR
	Activity Decrease during COVID-19 and Flu Illnesses


	Discussion
	Biases and Limitations
	Outlook

	Experimental Procedures
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Data Collection
	Survey Preparation
	Cohort Definition
	Wearable Sensor Data Preparation and Analysis

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



