
Sparselet Models for Efficient
Multiclass Object Detection

Hyun Oh Song1, Stefan Zickler2, Tim Althoff1, Ross Girshick3, Mario Fritz4,
Christopher Geyer2, Pedro Felzenszwalb5, and Trevor Darrell1

1UC Berkeley, 2iRobot, 3University of Chicago, 4MPI Informatics, 5Brown University
1{song,althoff,darrell}@eecs.berkeley.edu

2{szickler,cgeyer}@irobot.com 3rbg@cs.uchicago.edu
4mfritz@mpi-inf.mpg.de 5pff@brown.edu

Abstract. We develop an intermediate representation for deformable
part models and show that this representation has favorable performance
characteristics for multi-class problems when the number of classes is
high. Our model uses sparse coding of part filters to represent each filter
as a sparse linear combination of shared dictionary elements. This leads
to a universal set of parts that are shared among all object classes. Re-
construction of the original part filter responses via sparse matrix-vector
product reduces computation relative to conventional part filter convo-
lutions. Our model is well suited to a parallel implementation, and we
report a new GPU DPM implementation that takes advantage of sparse
coding of part filters. The speed-up offered by our intermediate repre-
sentation and parallel computation enable real-time DPM detection of
20 different object classes on a laptop computer.

Keywords: Sparse Coding, Object Detection, Deformable Part Models

1 Introduction

Scalable category-level recognition is a core requirement for visual competence in
everyday environments: domains of modest complexity typically have hundreds
to thousands of categories, and as one considers unconstrained search problems,
the space of possible categories becomes practically unlimited. As the number
of categories grows, individual models are increasingly likely to become redun-
dant. In the case of part-based models this redundancy can be exploited by
constructing models with shared parts.

We introduce an intermediate representation into part-based recognition mod-
els whereby a fixed set of shared “basis” parts is used to reconstruct category
responses and infer detections. We learn the set of basis parts so that reconstruct-
ing the response of a target model is extremely efficient: our method decomposes
model parameters as sparse linear combinations of the basis elements. With this
representation we can reconstruct approximate part responses using a sparse
matrix-vector product instead of exhaustive convolutions.

2 Sparselet Models for Efficient Multiclass Object Detection

input
image

*

intermediate
representation

DPM_bicycledecompose

Bicycle
detections

reconstructDPM_car

DPM_horse

Sparselet

dictionary...

pre-processing reconstructionoffline

dictionary learning

Fig. 1: Top: System concept. Middle row: example bicycle detection and true
part filter responses for a wheel part from the bicycle model. Bottom row: recon-
structed responses using SVD and sparselets (each using 20 bases). Our method
maintains part response specificity (peaked responses at the wheels), while SVD
reconstruction fails to maintain the sharpness. Best viewed in color.

In contrast to standard applications of sparse coding, where features are
encoded as sparse combinations of dictionary elements, we learn a dictionary of
model parameters, and the models themselves are encoded as sparse combinations
of dictionary elements. This leads to a compression of the models that can be
exploited to speed-up computation.

As the number of object categories increases the speed-up provided by our
“sparselet” model is the ratio of the original part filter size to the average num-
ber of non-zero coefficients in the sparse representation. For retrieval of a novel
(“post-hoc”) category in a large media corpus, low-level features and basis convo-
lutions can be computed in a pre-processing step. For online detection, our rep-
resentation is especially well-suited to a parallel architecture, where the memory
and processor architecture allows for efficient reconstruction in a direct fashion
(e.g., without a cascade). The method is also applicable to a cascaded CPU im-

Sparselet Models for Efficient Multiclass Object Detection 3

(a) Motorbike part 10 (b) Sofa part 25

(c) Aeroplane part 27 (d) Cat part 34

Fig. 2: Each block shows a randomly selected part, its sparselet reconstruction,
and its SVD reconstruction. In both cases 20 out of 216 bases were used. Note
how sparselets preserve filter structure better than singular vectors.

plementation, but the speed improvement can be limited by memory cache issues
relative to a GPU implementation. Our CUDA implementation of a sparselet-
based DPM model is approximately 35 times faster than the fastest single CPU
cascaded DPM implementations on benchmark PASCAL evaluations.

We evaluate our methods using the PASCAL VOC, ImageNet, and TRECVID
MED datasets. We show 1) real-time performance on PASCAL VOC using 20
categories on a laptop computer, 2) that sparselets learned on PASCAL can
effectively reconstruct detectors trained on the ImageNet dataset, and 3) that
post-hoc detectors trained on ImageNet using PASCAL-derived bases can be
effective at detecting objects related to TRECVID MED activities.

Although we focus on object and activity recognition, the conceptual contri-
bution of this paper – sparse decomposition of filters – is generally applicable to
a variety of multiclass classification settings where linear models are employed.

2 Related Work

Deformable part models have been proven to yield high accuracy on benchmark
challenges, yet are computationally demanding. Previous efforts have addressed
hypothesis pruning in a cascaded implementation [1], and in coarse-to-fine search
schemes [2]. However, relatively little attention has been paid to the problem of
scaling such models to detect hundreds or thousands of categories at near real-
time speeds, or to quickly search large repositories of media for a category of
interest not known a-priori.

Recent work has explored schemes for part sharing, including [3]. Our method
implicitly shares part prototypes and can provide a significant improvement in
speed by compressing the effective number of parts used in typical DPM models.
Other authors have explored group regularization of a prototype representation
[4], and linear manifold [5] and/or topic models [6] over visual classifier param-

4 Sparselet Models for Efficient Multiclass Object Detection

eter spaces, but have not addressed the reconstruction of new models, nor the
advantages of sparsity for large-scale detection.

Sparse activation
vectors

 Final
detection

Reconstructed
 responses

Learned
sparselets

Response
 matrix

Input
image

 Reconstruction Pre-processing

Fig. 3: Overview diagram of the our method. Once we evaluate the image with
learned sparselets, the reconstruction phase can be done via efficient sparse ma-
trix vector multiplications.

A complementary line of work uses classifier hierarchies to speed up classi-
fication by pruning classes while descending the classifier tree. We note a few,
focusing on recent works with vision results. Some learn a tree in a top-down
fashion [7, 8] by spectral clustering on the affinity matrix. Others optimize a dis-
criminative objective [9, 10]. [11] builds a taxonomy of object classes based on
shared features. These approaches may preemptively discard a correct detection
if it falls on the wrong side of a hard decision boundary. Attempts have been
made to address this using relaxed hierarchies [12, 13]. We note that sparselets
may be combined with these approaches to further accelerate them.

3 Sparselets

In this paper we propose and evaluate sparse prototype representations for en-
coding deformable object models. We use a dictionary of parts learned in a
sparse coding framework. This approach, which we term “sparselets”, has the
advantage of leading not only to fast and accurate multiclass object detection,
but also offers an efficient intermediate representation for detecting new object
categories. It is important to note that our approach learns a dictionary over
model parameters, not over observed features, as is the customary application of
existing sparse coding methods in the recognition literature.

While sparselets are applicable to a range of settings, we focus in this pa-
per on the star-structured deformable part models (DPM) from [14]. Briefly, a
DPM is composed of low-resolution root filters that describe an object category’s
global appearance and high-resolution part filters that capture local appearance.
These filters are weight vectors over HOG [15] style features learned by optimiz-
ing a latent SVM [14]. The main computational bottleneck in applying these

Sparselet Models for Efficient Multiclass Object Detection 5

models is convolving their filters with a HOG feature pyramid. This fact is
demonstrated by the cascade algorithm for detection with DPMs [1], which dra-
matically reduces detection time by computing filter convolutions at a reduced
set of locations that is chosen based on learned pruning thresholds. Sparselets
offer a complementary, shared-part approach for reducing filter convolution costs
when the number of categories becomes large.

3.1 Sparse reconstruction of models

Sparse coding of model filters has several desirable properties, most significant
among them for our post-hoc scenario being the relative efficiency of a sparse
reconstruction at query time. Our objective is to find a generic dictionary of
filters D = {D1, D2, . . . , DK}, called sparselets, that optimally approximates the
part filters P = {P1, P2, · · · , PN} pooled from a set of training models, subject
to a sparsity constraint. Explicitly, we formulate the optimization problem

min
αij ,Dj

N∑
i=1

||vec (Pi)−
K∑
j=1

αijDj ||22

subject to ||αi||0 ≤ ε ∀i = 1, ..., N

||Dj ||2 = 1 ∀j = 1, ...,K

(1)

where Pi ∈ Rh×h×l is a part filter, Dj ∈ Rlh2

is a dictionary element, αi ∈ RK is
an activation vector, ε imposes a cap on the number of activations, h is the filter
size (we assume square filters for simplicity), and l is the feature dimension.

Although the above optimization is NP-hard, greedy algorithms such as or-
thogonal matching pursuit algorithm (OMP) [16, 17] can be used to efficiently
compute an approximate solution. OMP iteratively estimates the optimal match-
ing projections of the input signal onto the dictionary D. The above optimization
problem is convex with respect to D if αi is fixed, and so we can optimize the
objective in a coordinate descent fashion by iterating between updating αi while
fixing D and vice versa. For our experiments we use the online dictionary learn-
ing algorithm from [18]. Figure 2 shows randomly chosen part filters from models
trained on the PASCAL VOC 2007 [19] dataset and compares our sparselet re-
construction with ε = 20 to the SVD-based reconstruction using 20 singular
bases out of the full set of 216.

3.2 Precomputation and efficient reconstruction

We can precompute convolutions for all sparselets, and by linearity of convolu-
tion we can then use the activation vectors estimated for a target object detector
to approximate the convolution response we would have obtained from convolu-
tion with the original filters. Denoting the feature pyramid of an image as Ψ , we
have Ψ ∗Pi ≈ Ψ ∗(

∑
j αijDj) =

∑
j αij(Ψ ∗Dj), where ∗ denotes the convolution

operator. Concretely, we can recover individual part filter responses via sparse
matrix multiplication (or lookups) with the activation vector replacing the heavy

6 Sparselet Models for Efficient Multiclass Object Detection

convolution operation as shown in Eqn (2):



—— Ψ ∗ P1 ——
—— Ψ ∗ P2 ——

...

...

...

...
–— Ψ ∗ PN —–


≈



–— α1 —–
–— α2 —–

...

...

...

...
–— αN —–




—— Ψ ∗D1 ——
—— Ψ ∗D2 ——

...

—— Ψ ∗DK ——

 = AM, (2)

whereM is a matrix of all sparselet responses, A is the matrix of sparse activation
vectors. As the number of classes increases, we amortize the time required to
compute the intermediate representation M .

In practice the score of a DPM can be reconstructed as following,

scorerecon(ω) = m0(ω) +

N∑
i=1

max
δ
si(ω + δ)− di(δ)

where si(ω) =

K∑
j=1
∀αij 6=0

αij(Ψ ∗Dj)[ω].

(3)

Here di are quadratic deformation costs, δ is a displacement and ω is a position
and scale in a feature pyramid. After precomputation, the reconstructed part
filter score, si(ω), simplifies to

si(ω) =

K∑
j=1
∀αij 6=0

αijMj [ω]. (4)

Note that the summation is only over non-zero elements of the sparse vector
αi. Additionally, this could be efficiently implemented as sparse matrix mul-
tiplications or lookups. Figure 1 shows a sample reconstruction and Figure 3
summarizes our framework.

For online detection, we convolve the query image with the sparselets and do
sparse reconstruction in turn per frame. For dictionary size K, total number of
filters N , filter size h and feature dimension l, an exhaustive convolution based
detection scheme requires approximately Nlh2 operations per feature pyramid
location. Our scheme requires approximatelyKlh2+NE[||αi||0] operations. The
first term is from convolution with sparselets and the second term is the average
activation level from the sparse reconstruction. Note that the convolution time
(Klh2) is not dependent on number of classes or model filters (N) and depends

Sparselet Models for Efficient Multiclass Object Detection 7

only on the size of sparselet dictionary (K) which is fixed and does not need to
grow with the number of classes.

As the number of classes or model filters grows, the convolution time gets
amortized and the speedup factor becomes the ratio between the complexity of
the convolution kernel and the average activation. Therefore, the sparsity in the
sparselet activation vector becomes the key, yielding the speedup

lh2

E[||αi||0]

For example, reconstructing response from a 6 by 6 kernel with feature dimen-
sion 6 and average activation level of 20, we would get more than an order of
magnitude speedup in terms of number of arithmetic operations.

4 Implementation

4.1 CPU Cascaded Sparselets

We first implemented our model using the cascade code of [1], and interleaved
sparse reconstruction with the cascaded search. In this implementation we used
a sparselet representation for the filters over PCA features as well. We found
that a sparse reconstruction model was still successful. We report results in the
following section on the ability of sparselet models to reconstruct held-out and/or
post-hoc categories; that is, categories which were not used in training the part
dictionary model. While reconstruction can be accurate with a small number of
bases, as is shown below, the memory cache behavior on a conventional CPU
limited the overall speedup of the method, even when the theoretical ratio of
the size of the convolution window to the number of sparse bases was relatively
large. To address this, we turned to a GPU implementation, described in the
following section.

4.2 Vanilla DPM and Sparselets Implementations on GPU

One of our contributions is the highest reported throughput for DPM-based
methods, which is due to both the use of GPUs and sparselets. We describe here
our CUDA1 implementation of both a “Vanilla” DPM approach, which follows
the classic implementation in [14], as well as sparselets. We expected DPM to
benefit from porting to the GPU since a large fraction of the computation time
of the original implementation is spent on convolution, HOG computation and
distance transforms - all operations that are parallelizable. GPUs offer a mas-
sively parallel computing architecture and have been successfully used to speed
up similar algorithms, e.g. HOG-based pedestrian detection [15].

1 Compute Unified Device Architecture (CUDA) is the programming paradigm for
Nvidia GPUs. Briefly, the GPU code is specified in kernels written in CUDA -
essentially C/C++ with some additional language constructs. Each core executes
compiled kernel code in a single thread. See [20] for more information.

8 Sparselet Models for Efficient Multiclass Object Detection

The main steps in the GPU implementation are as follows. First, the input
image is transferred to the GPU. Second, image pyramids and HOG features
are computed as in [14] on the GPU (as are all subsequent operations). Third,
filter responses to root, part or part basis filters are computed at each of S
scales in the HOG pyramid. For Vanilla DPM, we make SR kernel calls for
all R root filter responses, and SN kernel calls for all P part filter responses.
A single kernel call instantiates kernel threads for each HOG cell in the given
pyramid level. For Sparselets, we make SR kernel calls for the root filters, where
each kernel call runs over all HOG pixels in the pyramid level; then, we make S
kernel calls for the part bases, where each kernel call runs over each HOG cell
in the pyramid level and each of the K part bases.To reconstruct all N part
responses, we make SN kernel calls, where each part filter is reconstructed from
the part bases responses.

We then compute bounded distance transforms (BDT) of the part filter re-
sponses. In the cascade implementation of DPM [1], part location offsets are
bounded. Furthermore, all deformation penalties learned in training are sepa-
rable. We therefore employ two one-dimensional BDTs in the horizontal and
vertical directions. Each is implemented as a min convolution with a length-11
quadratic penalty filter. A total of 2SN kernel calls evaluate the horizontal, then
vertical, BDT for all scales and parts. Finally, all root filter responses and BDT
outputs are summed into a single score via SR kernel calls. Those part loca-
tions with scores above threshold are put in a list – added asynchronously by
kernel threads and protected by an atomic lock on the GPU. The list of candi-
date detections is then copied to CPU memory. All remaining operations such
as non-maxima suppression are performed on the CPU and follow the original
implementation.

4.3 Sparselet size

In practice we can divide a part filter into smaller subfilters before computing
the sparselet representation. The subfilter size (which equals the sparselet size)
determines certain runtime and memory tradeoffs. Let F be a hF ×wF × l filter,
and let the sparselet size be hs ×ws × l. We require that hs and ws are divisors
of hF and wF , respectively, and divide F into an hF /hs × wF /ws array of tiled
subfilters. We approximate (or “reconstruct”) a filter response by summing over
approximate subfilter responses.

Given precomputed sparselet responses, reconstructing the response to F
requires at most ε(hF /hs)(wF /ws) operations. Low-cost approximation is essen-
tial, so we fix the reconstruction budget for F at ε(hF /hs)(wF /ws) ≤ BR. Within
this budget, we can use fewer, smaller sparselets, or more, larger sparselets. We
consider two other budget constraints. Precomputation time BP : convolving an
input with the entire sparselet dictionary requires hswslK operations. For a
fixed budget hswslK ≤ BP , we can use more, smaller sparselets, or fewer, larger
sparselets. Representation space BS : the space required to store the intermediate
representation is proportional to the dictionary size K.

Sparselet Models for Efficient Multiclass Object Detection 9

Reconstruction error

hs × ws K hswsK ε (hF /hs)(wF /ws) bicycle car cat person

6 × 6 128 4608 112 1 1.0645 1.0349 0.8521 1.1939

3 × 3 512 4608 28 4 0.3116 0.3360 0.2552 0.4573

2 × 2 1152 4608 13 9 0.2298 0.2706 0.1763 0.4007

1 × 1 4608 4608 3 36 0.1062 0.1200 0.0820 0.1635

6 × 6 512 18432 112 1 0.0893 0.0528 0.1134 0.0472

3 × 3 512 4608 28 4 0.3116 0.3360 0.2552 0.4573

2 × 2 512 2048 13 9 0.3833 0.5962 0.2561 1.2280

1 × 1 512 512 3 36 0.3172 0.6599 0.1817 1.8594

Table 1: Reconstruction error for four classes as sparselet parameters are varied.
The reconstruction budget (BR) is fixed for the whole table. The precomputation
budget (BP) is fixed in the top half of the table and varies in the bottom half.

For fixed reconstruction and precomputation budgets BR and BP , we studied
the effect of varying sparselet size. Empirically (Table 1), filter reconstruction
error always decreases as we decrease sparselet size.

When there are not too many classes, the precomputation time is not fully
amortized and we would like to make BP small. For a fixed, small BP we mini-
mize reconstruction error by setting hs and ws to small values. However, as we
make the sparselets smaller, K grows, possibly making the representation space
budget BS too large. In our GPU experiments, we balance memory usage with
sparselet size by setting hs and ws to 3.

When precomputation is amortized, minimizing precomputation time is less
important. However, in this case we are still concerned with keeping the interme-
diate representation reasonably small. By fixing the response and representation
space budgets, we observe that using more, larger sparselets minimizes recon-
struction error (at the expense of requiring a larger precomputation budget).
Therefore, in the CPU-based experiments which focused on the offline setting
we use larger 6× 6 sparselets.

5 Experiments

5.1 Evaluation on unseen categories

We performed experiments to analyze the detection performance of reconstructed
models for previously unseen categories at a given level of sparsity. We ex-
perimented with three datasets: PASCAL VOC 2007 [19], ImageNet [21], and
TRECVID [22]. To compute ground truth AP, we ran cascaded deformable part
models [1] trained on the held-out category. For a baseline, we extracted singu-
lar vectors learned from the training models and estimated the reconstruction

10 Sparselet Models for Efficient Multiclass Object Detection

10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

original nearest sparselet svd

(a) 20 PASCAL categories

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

(b) 9 PASCAL categories

20 25 30 35 40
0

0.1

0.2

0.3

0.4

(c) 9 ImageNet categories

Fig. 4: Results on held-out evaluation on PASCAL VOC 2007 [19] and Ima-
geNet[21] dataset. Y-axes show class averaged AP. X-axes represent number of
bases used in reconstruction for SVD and sparselets.

weight vectors from the previously unseen query category models using a recon-
struction from a linear basis of the top-k singular vectors. We also explored a
nearest-neighbor-of-parts baseline where the query object model retrieves closest
matching part filters (in L2 distance) from the pool of training object models.
The global detection threshold was fixed to −1.1 for all object models through-
out the experiment for consistency. This number was roughly the saturation
threshold for AP evaluation.

To test the reconstruction generalization performance on previously unseen
category models we first performed leave one class out evaluation where we used
dictionaries and the set of singular vectors that are trained on all other classes.

Figure 4(a) shows the experimental results in AP for all 20 classes from
PASCAL VOC 2007 test dataset [19]. Figure 4(b) shows AP for 9 categories that
have AP above 0.3. This shows that the reconstruction error is relatively small
for well performing models compared to mediocre DPM models. Our intuition
is that well performing models have relatively higher classification margin than
others and are more tolerant to approximation errors. We can see from Figure 4
that our sparse reconstruction method preserves most of AP on average with only
20 bases while SVD reconstruction does not quite preserve the AP at the same
level of reconstruction budget. Although nearest-neighbor-of-parts baseline has
poor performance overall, on subset of categories that DPM detector has poor
detection performance (e.g. bird, dog and potted plant), it worked as well as
or a slightly better than the original held-out query models. Please refer to the
supplementary material for full per class AP table.

Next, we investigated whether a part dictionary model trained with PASCAL
categories would work on other datasets. We manually selected a set of object
categories which are related to events in the 2011 TRECVID MED challenge [22]:
sailboat, bread, cake, candle, fish, goat, jeep, scissors, and tire. We trained DPM
models using data sampled from ImageNet [21] for these classes. We used the
ImageNet bounding boxes for training, and manually annotated 200 additional
test images that had at least one instance of the above object categories with

Sparselet Models for Efficient Multiclass Object Detection 11

Methods Average Precision

original 0.4853
svd 20 0.0571
svd 40 0.1167

sparselet 20 0.3323
sparselet 40 0.3911

Hyun Oh Song
PhD Student
UC Berkeley
335 Ohlone Ave #108, Albany, CA, USA

Dear Editor,

Please find the attached manuscript entitled: “Visual Grasp A↵ordances By Combining
Local and Global Appearance-Based Cues” which I am submitting for a publication as an
article in The International Journal of Robotics Research.

A preprint of this work appeared in IEEE ICCV Workshop on Challenges and Opportu-
nities in Robot Perception in 2011 and received the best paper award in the workshop. This
manuscript includes additional technical details with new figures and clearer representation
of the experiments.

Thank you for your consideration of our work. Please address all correspondence concerning
this manuscript to me and feel free to correspond with me by song@eecs.berkeley.edu.

Sincerely,

July 2, 2012
Hyun Oh Song

1

Fig. 5: Left: Example keyframes on TRECVID [22] dataset. Right: Average pre-
cision of retrieved examples using models trained with ImageNet training data
reconstructed with sparselet representations learned from PASCAL categories.
Numbers 20 and 40 represent the number of bases used in the reconstruction.

bounding boxes. We tested how the dictionary learned from PASCAL models in
the previous experiment performed when approximating previously unseen novel
categories trained and tested on ImageNet imagery.

Figure 4(c) shows the AP for the 9 categories: the dictionary of parts learned
from PASCAL does transfer to novel categories from ImageNet domain. With
the domain change however, we can see that SVD reconstruction with 40 bases
preserves only about 12% to 15% of the original AP while sparselet reconstruc-
tion with 40 bases preserves about 88% to 93% of the AP. Again we can observe
the same behavior that well performing DPM models are more tolerant on re-
construction errors than mediocre models. Please refer to the supplementary
material for average AP plot of subset of classes which have AP above 0.3.

Finally, we tested how well these classifiers performed and were reconstructed
on TRECVID imagery. The contents of TRECVID videos are highly variant, for
example, “wedding ceremony” varies from a traditional catholic mass, to a Hindi
ceremony, to home-made music videos, so precision is only high at relatively
low recall in this model transfer scenario even for the baseline model. Figure 5
shows example frames from the event kit and category averaged precision for
top 50 retrieved examples (based on sampled keyframes annotated using AMT
[23]). We can see that sparse reconstruction significantly improves the precision
as compared to SVD reconstruction for an equivalently compact intermediate
representation.

5.2 Runtimes and Performance on the PASCAL VOC 2007 Dataset

In this section we present results of experiments examining runtime, and mean
average precision (AP) of Cascade DPM [1] on a CPU, Vanilla DPM on a GPU,
and Sparselets on a GPU. Figure 6 (top) plots runtime at 640×480 resolution as
a function of the number of objects, where for sparselets we use (K, ε) = (512, 4).
Runtimes were measured on a 3.1 GHz Intel Core i5 CPU, and an Nvidia GTX
580 GPU with 512 cores running at 772 MHz. We used the 20-object VOC 2007

12 Sparselet Models for Efficient Multiclass Object Detection

dataset [19] to measure runtime, and we repeated VOC 2007 classes to get to
60 classes. The dashed portion is an extrapolation based on a linear model of
runtime. Overall there is about a 32× speedup of sparselets on a GPU over
Cascade DPM on a CPU - equally attributable to the GPU and sparselets.

We also evaluated mean AP for various configurations of (K, ε). Figure 6
(bottom) presents mean AP on VOC 2007 vs. speedup over the Cascade DPM
on CPU implementation. The lower/blue group of points represent sweet spots
in the “online” case and is based on runtimes measured on 20 classes. The up-
per/orange group is based on the “post-hoc” case where we measure the incre-
mental runtime of a single class only. In both cases we only show those points not
dominated by any other configuration - neither AP greater nor runtime faster.
In the online case, we achieve speedups up to 25× without significant loss of
AP over Vanilla DPM on a GPU. In the post-hoc case where precomputation is
not counted, larger K and lower ε are favored, only the latter of which counts
against per-class runtime, thus achieving even larger speedups - up to 35×.

In the supplemental video we show sparselets detecting 20 PASCAL object
classes on video in real time on a laptop computer.

6 Conclusion

We introduced sparse intermediate representations that enable real-time multi-
class object detection and efficient post-hoc category retrieval. Our results show
that sparselets exploit the intrinsic redundancy among model filters and can gen-
eralize to previously unseen categories from other domains. Our model is well
suited to a parallel implementation, and we report a new GPU DPM implemen-
tation which takes advantage of sparse coding of part filters. We achieve state
of the art performance one to two orders of magnitude faster than the fastest
current deformable part model implementations.

Acknowledgments. S. Zickler and C. Geyer were supported by DARPA con-
tract W911NF-10-C-0081. P. Felzenszwalb and R. Girshick were supported in
part by NSF grant IIS-0746569. T. Darrell was supported by DARPA contract
W911NF-10-2-0059, by NSF awards IIS-0905647, IIS-0819984, and support from
Toyota and Google. An earlier version of this work appeared in [24].

References

1. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A.: Cascade object detection
with deformable part models. In: CVPR. (2010)

2. Pedersoli, M., Vedaldi, A., Gonzàlez, J.: A coarse-to-fine approach for fast de-
formable object detection. In: CVPR. (2011)

3. Ott, P., Everingham, M.: Shared parts for deformable part-based models. In:
CVPR. (2011) 1513–1520

4. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Bilinear classifiers for visual recognition.
In: NIPS. (2009)

Sparselet Models for Efficient Multiclass Object Detection 13

Casc
ade DPM on CPU

Vanilla
DPM on GPU

Sparse
lets

on GPU

1 10 100 1000

1 sec

10 sec

1 min

10 min

Number of Object Classes

Pr
oc

es
si

ng
T

im
e

Van
ill

a DPM

on
GPU H128

,48
L

H128
,32

L
H64,

32
L

H128
,16

L
H64,

16
L

H32,
16

L
H64,

8L

H64,
4L

H128
,48

L
H512

,32
L

H600
,20

L

H512
,16

L

H128
,16

L

H512
,8L

H512
,4L

H256
,4L

H128
,4L

H64,
4L

5 15 25 35
0

5

10

15

20

25

30

Speedup over Cascade DPM on CPU H´L

M
ea

n
A

P
H%

L

Fig. 6: Top: Comparison of cascade algorithm on CPU vs. vanilla DPM on GPU
vs. sparselets accelerated DPM on GPU as number of object classes grows.
Sparselet accelerated DPM on GPU offers approximately 35 times faster com-
pared to the cascade implementation on CPU. Frame size used in this experiment
was 640×480. Bottom: Speedup vs. Mean AP. Blue dots are for “online” results
measuring end-to-end time. Orange dots are for “post-hoc” case. The tuple in
parenthesis denote (K, ε).

14 Sparselet Models for Efficient Multiclass Object Detection

5. Quattoni, A., Collins, M., Darrell, T.: Transfer learning for image classification
with sparse prototype representations. In: CVPR. (2008)

6. Fritz, M., Schiele, B.: Decomposition, discovery and detection of visual categories
using topic models. In: CVPR. (2008)

7. Griffin, G., Perona, P.: Learning and using taxonomies for fast visual categoriza-
tion. In: CVPR. (2008)

8. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class
tasks. In: NIPS. (2010)

9. Binder, A., Müller, K.R., Kawanabe, M.: On taxonomies for multi-class image
categorization. International Journal of Computer Vision 99(3) (2012) 281–301

10. Lai, K., Bo, L., Ren, X., Fox, D.: A scalable tree-based approach for joint object and
pose recognition. In: Twenty-Fifth Conference on Artificial Intelligence (AAAI).
(August 2011)

11. Razavi, N., Gall, J., Gool, L.J.V.: Scalable multi-class object detection. In: CVPR.
(2011) 1505–1512

12. Marszalek, M., Schmid, C.: Constructing category hierarchies for visual recogni-
tion. In: Proceedings of the 10th European Conference on Computer Vision: Part
IV. ECCV ’08, Berlin, Heidelberg, Springer-Verlag (2008) 479–491

13. Gao, T., Koller, D.: Discriminative learning of relaxed hierarchy for large-scale
visual recognition. In: ICCV. (2011)

14. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(9) (2010) 1627–1645

15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005)

16. Cotter, S.F., Rao, B.D., Kreutz-Delgado, K., Adler, J.: Forward sequential al-
gorithms for best basis selection. IEEE Proceedings Vision Image and Signal
Processing 146(5) (1999) 235

17. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing 41(12) (1993) 3397–3415

18. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research 11 (2010) 19–60

19. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

20. NVIDIA: CUDA Technology. http://www.nvidia.com/CUDA
21. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-

Scale Hierarchical Image Database. In: CVPR. (2009)
22. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In:

MIR ’06: Proceedings of the 8th ACM International Workshop on Multimedia
Information Retrieval, New York, NY, USA, ACM Press (2006) 321–330

23. Amazon Mechanical Turk. http://www.mturk.com
24. Song, H.O., Fritz, M., Althoff, T., Darrell, T.: Don’t look back: Post-hoc category

detection via sparse reconstruction. Technical Report UCB/EECS-2012-16, EECS
Department, University of California, Berkeley (Jan 2012)

