Harnessing the Web for Population-Scale Physiological Sensing: A Case Study of Sleep and Performance

Tim Althoff*, Eric Horvitz, Ryen W. White, Jamie Zeitzer

😏 @timalthoff

* Research performed at Microsoft Research Microsoft

Human Cognitive Performance

- Ability to perform mental actions and processes including attention, memory, reasoning, decision making, planning, etc.
- High cognitive performance important for:
 - Productivity [Colten & Altevogt, 2006]
 - Learning outcomes [Kelley et al., 2015]
 - Accident risk [Dinges, 1995]
- Laboratory setting: Performance varies throughout day [Van Dongen & Dinges, 2000] and is decreased after sleep loss [Dinges, 1995]

Existing Research

- Laboratory setting:
 - Induce sleep deprivation
 - Regular, intrusive, artificial performance tasks
 - Missing real-world influences incl. motivation, mood, illness, behavioral compensation (e.g., caffeine), and complex sleep patterns

Existing Research

- Laboratory setting:
 - Induce sleep deprivation
 - Regular, intrusive, artificial performance tasks
 - Missing real-world influences incl. motivation, mood, illness, behavioral compensation (e.g., caffeine), and complex sleep patterns

Lack of scalable methods to characterize real-world cognitive performance & sleep [Roenneberg, 2013]

Open Research Questions

1. How does cognitive performance vary in the real world?

2. How do real-world sleep patterns impact performance?

Challenges

- Real-world more complex than laboratory
 Need much larger dataset
- But existing methods don't scale!
- Need cognitive performance measurements
 - Annoying: Regular, intrusive, artificial performance tests
 - Should use performance on real tasks
- Need sleep measurements
 - Can't observe in lab or control as before
 - Can't trust subjective reports
- How can research progress outside the laboratory?

Our Key Insight

Use existing interactions with technology as a sensor into real-world cognitive performance.

Harnessing Search Engine Interactions

- Search engines are used repeatedly every day, awake or sleepy, by billions of people
- Reframe everyday interactions with web search engine as series of performance tasks

Harnessing Search Engine Interactions

- Search engines are used repeatedly every day, awake or sleepy, by billions of people
- Reframe everyday interactions with web search engine as series of performance tasks
 - Query typing speed, or click on search result

. . .

fa
$$\Delta t("c") = 237ms$$

fac $\Delta t("e") = 219ms$

7

Harnessing Search Engine Interactions

- Search engines are used repeatedly every day, awake or sleepy, by billions of people
- Reframe everyday interactions with web search engine as series of performance tasks
 - Query typing speed, or click on search result

. . .

a
$$\Delta t("c") = 237ms$$

ac $\Delta t("e") = 219ms$

Measuring Sleep

- Use wearable device
 - Many search engine users already own device

 Objective measures of time in bed by clicking "Start" & "I'm awake" (plus accelerometer-based algorithm)

Real-World Sleep & Performance at Scale

- Our insights enable study of realworld performance & sleep at scale
- 400x larger study than ever before

Dataset

- Cohort: 32k users over 18 months
 - US representative age, BMI, sleep; mostly male (93%)
 - (Opt-in to link Bing searches & Band data)
- Performance: 75M interaction tasks
 - Keystroke time (and click time)
 - Bing search engine

- Sleep: 3M nights of sleep
 - Microsoft Band

How does cognitive performance vary in the real-world?

Diurnal Performance Variation

- Performance far from constant (31% variation)
- Slowest during typical sleep times (circadian rhythm)

Error bars (all figures): 95% confidence interval

Robustness of Results

Findings are robust. Not explained by...

- Effects of individual users / Population differences
 - Observe true within-person variation
- Type of query
 - Control for click entropy to capture query intent (navigational vs. informational)
 - Similar results for specific queries like "facebook"
- Learning effects
 - Few queries repeat; show no signs of learning effects
- Weekend vs. weekday effects
- Network latency dynamics

How can we model real-world performance variation?

Three biological processes drive performance variation

> Interac Modul

> > Be

.

Wo

- Three biological processes drive performance variation
 - 1. Circadian rhythm (C):

time-dependent, behaviorindependent, near 24h oscillations

Interac Modul

Be

Wo

17

- Three biological processes drive performance variation
 - 1. Circadian rhythm (C): time-dependent, behaviorindependent, near 24h oscillations
 - 2. Homeostatic sleep drive (H): the longer awake, the more tired you become

Wo

- Three biological processes drive performance variation
 - 1. Circadian rhythm (C): time-dependent, behaviorindependent, near 24h oscillations
 - 2. Homeostatic sleep drive (H): the longer awake, the more tired you become
 - 3. Sleep inertia (I): performance impairment experienced immediately after waking up

Wo

Be

- Three biological processes drive performance variation
 - Circadian rhythm (C): 1. time-dependent, behaviorindependent, near 24h oscillations
 - 2. Homeostatic sleep drive (H): the longer awake, the more tired you become
 - 3. Sleep inertia (I): performance impairment experienced immediately after waking up
- Hard to disentangle effects
 - Many factors, highly correlated
 - Lab: Forced desynchrony protocol
 - Our method: Variation across millions of real-world interactions (web search)

17

Interac Modul

Be

Wo

Statistical Model

- Generalized Additive Model
 - Intercept
 - Keystroke (control for key pressed: "A", "a", "@", …)
 - Time of day (circadian rhythm)
 - Time since wakeup (homeostatic sleep drive & sleep inertia)

$$y_{i} = \alpha + f^{k}(x_{i}^{k}) + f^{t}(x_{i}^{t}) + f^{w}(x_{i}^{w}) + \epsilon_{i}$$
Keystroke time Residual

Statistical Model

- Generalized Additive Model
 - Intercept
 - Keystroke (control for key pressed: "A", "a", "@", …)
 - Time of day (circadian rhythm)
 - Time since wakeup (homeostatic sleep drive & sleep inertia)

$$y_{i} = \alpha + f^{k}(x_{i}^{k}) + f^{t}(x_{i}^{t}) + f^{w}(x_{i}^{w}) + \epsilon_{i}$$
Keystroke time Residual

- Parameter learning
 - Fine-grained discretization functions (non-parametric)
 - Least squares optimization

Model Estimates: Time of Day

- Model identifies underlying circadian rhythm
- Consistent with lab-based studies

Model: Time After Wakeup

- Model identifies underlying homeostatic sleep drive and sleep inertia consistent with lab-based studies (validation)
- New insights: It was impossible to measure real-world cognitive performance at scale. Now we can!

How do real-world sleep patterns impact performance?

Sleep Loss over Multiple Nights

- 1. Can we observe an additive effect of multiple nights with little sleep?
- 2. How long does it take to recover from sleep loss? (Given real-world sleep patterns)
- Measure performance over 7 days after zero (SS), one (SI), or two (II) insufficient nights of sleep (less than 6h)

Recovering from Sleep Loss

Recovering from Sleep Loss

Performance by Sleep Timing

Our Contributions

- New method: Use existing technology interactions to study sleep and cognitive performance
 - Large-scale, real-world (outside of laboratory)
 - Continuous, non-intrusive measurements of realistic tasks
- New insights: Real-world performance is not constant but exhibits variation based on time of day and complex sleep patterns. We are the first to quantify these effects.

Our Contributions

- New method: Use existing technology interactions to study sleep and cognitive performance
 - Large-scale, real-world (outside of laboratory)
 - Continuous, non-intrusive measurements of realistic tasks
- New insights: Real-world performance is not constant but exhibits variation based on time of day and complex sleep patterns. We are the first to quantify these effects.
- Population-scale Physiological Sensing
 - Physiology: Branch of biology dealing with the functions and activities of living organisms and their parts
 - Learn about biological functions through user activity logs

Acknowledgments

Research performed during internship at Microsoft Research

Joining faculty job market end of 2017. Please let me know about opportunities at your institution.

Ask me anything!

@timalthoff althoff@cs.stanford.edu www.timalthoff.com