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Human Cognitive Performance
§  Ability to perform mental actions and 

processes including attention, memory, 
reasoning, decision making, planning, etc.

§  High cognitive performance important for:
§  Productivity [Colten & Altevogt, 2006]
§  Learning outcomes [Kelley et al., 2015]
§  Accident risk [Dinges, 1995]

§  Laboratory setting: Performance varies 
throughout day [Van Dongen & Dinges, 2000] and is 
decreased after sleep loss [Dinges, 1995]
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§  Laboratory setting:
§  Induce sleep deprivation
§  Regular, intrusive, artificial !

performance tasks
§  Missing real-world influences incl. !

motivation, mood, illness, behavioral !
compensation (e.g., caffeine), and !
complex sleep patterns

Existing Research
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Lack of scalable methods to characterize 
real-world cognitive performance & sleep!

[Roenneberg, 2013]



Open Research Questions

1.  How does cognitive performance 
vary in the real world? !


2.  How do real-world sleep patterns 
impact performance?
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Challenges
§  Real-world more complex than laboratory!

à Need much larger dataset

§  But existing methods don’t scale!
§  Need cognitive performance measurements

§  Annoying: Regular, intrusive, artificial performance tests 
§  Should use performance on real tasks

§  Need sleep measurements
§  Can’t observe in lab or control as before
§  Can’t trust subjective reports

§  How can research progress outside the laboratory?
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Our Key Insight
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Use existing interactions with 
technology as a sensor into !

real-world cognitive performance.



Harnessing Search Engine Interactions

§  Search engines are used repeatedly every day, 
awake or sleepy, by billions of people

§  Reframe everyday interactions with web 
search engine as series of performance tasks 
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Measuring Sleep
§  Use wearable device

§  Many search engine users !
already own device

§  Objective measures of time in bed !
by clicking “Start” & “I’m awake” !
(plus accelerometer-based algorithm)
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Real-World Sleep & Performance at Scale

§  Our insights enable study of real-
world performance & sleep at scale

§  400x larger study than ever before
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Dataset
§  Cohort: 32k users over 18 months

§  US representative age, BMI, sleep; mostly male 
(93%)

§  (Opt-in to link Bing searches & Band data)


§  Performance: 75M interaction tasks
§  Keystroke time !

(and click time)
§  Bing search engine


§  Sleep: 3M nights of sleep 
§  Microsoft Band
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How does cognitive 
performance vary !
in the real-world?
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31% variation in 
performance 

throughout day

Diurnal Performance Variation

§  Performance far from constant (31% variation)
§  Slowest during typical sleep times (circadian rhythm)
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Robustness of Results
Findings are robust. Not explained by…
§  Effects of individual users / Population differences

§  Observe true within-person variation
§  Type of query 

§  Control for click entropy to capture query intent !
(navigational vs. informational)

§  Similar results for specific queries like “facebook”
§  Learning effects 

§  Few queries repeat; show no signs of learning effects
§  Weekend vs. weekday effects
§  Network latency dynamics
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How can we model !
real-world performance 

variation?



Modeling Challenges 
§  Three biological processes !

drive performance variation
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Modeling Challenges 
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drive performance variation
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independent, near 24h oscillations 

2.  Homeostatic sleep drive (H): !
the longer awake, the !
more tired you become

3.  Sleep inertia (I): performance !
impairment experienced !
immediately after waking up

§  Hard to disentangle effects 
§  Many factors, highly correlated
§  Lab: Forced desynchrony protocol
§  Our method: Variation across millions of real-world interactions (web 

search) 17
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Statistical Model
§  Generalized Additive Model

§  Intercept
§  Keystroke (control for key pressed: “A”, “a”, “@”, …)
§  Time of day (circadian rhythm)
§  Time since wakeup (homeostatic sleep drive & sleep inertia)
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§  Intercept
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§  Parameter learning
§  Fine-grained discretization functions !

(non-parametric)
§  Least squares optimization
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Model Estimates: Time of Day

§  Model identifies underlying circadian rhythm
§  Consistent with lab-based studies

19
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Model: Time After Wakeup

§  Model identifies underlying homeostatic sleep drive and 
sleep inertia consistent with lab-based studies (validation)

§  New insights: It was impossible to measure real-world 
cognitive performance at scale. Now we can! 
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How do real-world sleep 
patterns impact 
performance?
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Sleep Loss over Multiple Nights 
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1.  Can we observe an additive effect of 
multiple nights with little sleep?

2.  How long does it take to recover from 
sleep loss? (Given real-world sleep patterns) 


§  Measure performance over 7 days after 

zero (SS), one (SI), or two (II) insufficient 
nights of sleep (less than 6h)



Recovering from Sleep Loss
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Performance after 
two insufficient 
nights recovers 

only after six days!

Performance decreased further 
after two insufficient nights of sleep



Performance by Sleep Timing
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Sleeping later than 
usual associated 

with slower 
performance

§  We control for sleep duration (7-8h)
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Our Contributions
§  New method: Use existing technology interactions 

to study sleep and cognitive performance 
§  Large-scale, real-world (outside of laboratory)
§  Continuous, non-intrusive measurements of realistic tasks

§  New insights: Real-world performance is not 
constant but exhibits variation based on time of 
day and complex sleep patterns. We are the first 
to quantify these effects.
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Our Contributions
§  New method: Use existing technology interactions 

to study sleep and cognitive performance 
§  Large-scale, real-world (outside of laboratory)
§  Continuous, non-intrusive measurements of realistic tasks

§  New insights: Real-world performance is not 
constant but exhibits variation based on time of 
day and complex sleep patterns. We are the first 
to quantify these effects.

§  Population-scale Physiological Sensing
§  Physiology: Branch of biology dealing with the functions 

and activities of living organisms and their parts
§  Learn about biological functions through user activity logs 25Tim Althoff, Stanford University
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Joining faculty job market end of 2017. Please let 
me know about opportunities at your institution. 


