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Figure 1: Our bilateral solver produces smooth, edge-aware �ow �elds. Given an input pair of images (a), a low-resolution
�ow is estimated (b), upsampled to a noisy high-resolution �ow (c), and processed with the bilateral solver (d) to produce an
edge-aware smoothed �ow (e). Our algorithm for bilateral solving is better-suited for hardware acceleration and results in
speedups of up to 50× over prior work [2, 3].

ABSTRACT
Rendering 3D-360° VR video from a camera rig is computation-
intensive and typically performed o�ine. In this paper, we target
the most time-consuming step of the VR video creation process,
high-quality �ow estimation with the bilateral solver. We propose a
new algorithm, the hardware-friendly bilateral solver, that enables
faster runtimes than existing algorithms of similar quality. Our
algorithm is easily parallelized, achieving a 4× speedup on CPU
and 32× speedup on GPU over a baseline CPU implementation.
We also design an FPGA-based hardware accelerator that utilizes
reduced-precision computation and the parallelism inherent in our
algorithm to achieve further speedups over our CPU and GPU im-
plementations while consuming an order of magnitude less power.
�e FPGA design’s power e�ciency enables practical real-time VR
video processing at the camera rig or in the cloud.
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1 INTRODUCTION
Virtual reality (VR) devices are becoming widely available, from
camera rigs for video capture [Anderson et al. 2016; Facebook 2017],
to headsets for immersive viewing [Google 2017; Oculus 2017; Sam-
sung 2017]. Real-time rendering of 3D-360° video can enable a wide
range of VR applications, from live sports and concert broadcasting
to telepresence. While the domains of VR video content capture
and viewing are growing more popular, no system is capable of
producing 3D-360° VR videos in real time as of yet.

�e Google Jump camera rig [Anderson et al. 2016] is one ex-
ample of a commodity VR video capture device, using 16 cameras
to capture high-resolution (4K-1080p) overlapping video streams
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of a 360° scene. �e collected video is used to estimate edge-aware
�ow �elds, which are composited into a stereoscopic 3D-360° video.
A key portion of this processing pipeline, �ow estimation, is con-
structed around the bilateral solver, a fast and edge-aware algorithm
that combines simple bilateral �lters with domain-speci�c opti-
mization problems [Barron and Poole 2016]. �is �ow estimation
algorithm, highlighted in Figure 1, consumes the majority of the
processing time, despite using one of the fastest existing algorithms
across thousands of cores [Anderson et al. 2016].

In this paper, we introduce a new algorithm for this �ow es-
timation problem, the hardware-friendly bilateral solver (HFBS).
HFBS achieves signi�cant speedups over the bilateral solver with
li�le accuracy loss. While Barron and Poole’s bilateral solver [2016]
is challenging to parallelize on modern hardware, our “hardware-
friendly” algorithm can be easily parallelized on GPUs and �eld-
programmable gate arrays (FPGAs). To demonstrate, we design
a scalable FPGA-based hardware accelerator for HFBS, employ-
ing specialized memory layout and reduced-precision �xed-point
computation to achieve real-time results. Compared to the original
bilateral solver, HFBS is 4× faster on a CPU, 32× faster on a GPU,
and 50× faster on an FPGA. We evaluate the accuracy of HFBS
on the depth superresolution task and show that our algorithm is
faster than every more accurate algorithm, and more accurate than
any faster algorithm.

�is paper makes two contributions: an algorithm for hardware-
friendly bilateral solving, and a �xed-function FPGA accelerator im-
plementing HFBS. To achieve fast performance while maintaining
accuracy, we take a hardware-so�ware codesign approach where
both the algorithm and hardware substrate are developed in tan-
dem. Our algorithm modi�es the original bilateral solver to ensure
memory access is predictable and therefore fast, and performs opti-
mization using preconditioned gradient descent with momentum
to reduce global communication and enable parallel execution. Our
hardware accelerator explores �xed-point arithmetic and bilateral-
grid-specialized memory layout to process large-resolution bilateral
grids in a scalable way in real time. Many of these performance
optimizations are codependent, and we evaluate performance of
the algorithm and hardware together to illustrate our results. Our
algorithm and accelerator design make it more practical to generate
real-time VR video from camera rigs, either locally at the capture
device, or in the cloud to accelerate large-scale video processing.

2 BACKGROUND
Before formalizing our hardware-friendly bilateral solver, we pro-
vide an overview on bilateral solving and its role in VR video. We
also describe related work in so�ware and hardware acceleration
for bilateral solving.

2.1 Bilateral Filtering and the Bilateral Grid
We base our design for fast and accurate VR video on a state-of-the-
art bilateral-space optimization algorithm, the bilateral solver [Bar-
ron and Poole 2016]. �e bilateral solver is general-purpose and
scalable, and can be applied to the many vision applications: op-
tical �ow, stereo, depth superresolution, image colorization, and
semantic segmentation. �e bilateral solver can be used as part of
an edge-aware optical �ow algorithm for VR video, and scales to

high resolutions e�ciently [Anderson et al. 2016]. �is optical �ow
algorithm generates a correspondence map from a pair of images
by computing a rough �ow vector for every pixel (Figure 1b-c), and
then re�ning that �ow �eld until a cost function has been mini-
mized. To compute this edge-aware per-pixel �ow �eld, the bilateral
solver resamples a coarse �ow �eld into bilateral-space (Figure 1d),
and then solves an optimization problem in bilateral-space to infer
the smoothest possible �ow-�eld that is similar to the input coarse
�ow �eld. In bilateral-space, simple local �lters are equivalent to
costly, global, edge-aware �lters in pixel-space—consequently, �ow
re�nement in bilateral-space is much faster than its pixel-space
equivalent. We perform optimization in a three-dimensional bilat-
eral grid data structure [Chen et al. 2007].

Figure 2 illustrates a simpli�ed version of bilateral space and its
use in our problem. We begin with the noisy �ow �eld of Figure 2a-
i, where color corresponds to some �ow value. If we a�empt to
denoise this noisy �ow �eld by applying a simple smoothing kernel,
the result will present undesirable blurring at color edges. In Fig-
ure 2a-ii, for instance, the green region is successfully denoised, but
the blue and red regions (which likely belong to di�erent objects)
blend around the edges, producing incorrect �ow values there.

To smooth this �ow �eld while maintaining sharp edges, we map
the problem to bilateral space. First, we construct a bilateral grid
for the original image, where a pixel in the image at location (x ,y)
with luminance l corresponds to a grid block at location (x ,y, l)
(Figure 2b-i, b-ii). In the 3D bilateral space, the lighter pixels are
separated from neighboring darker pixels. We then map the �ow
value of each pixel (Figure 2b-iii) to its corresponding grid location
(Figure 2b-iv). When we smooth this noisy �ow in bilateral space,
the blue and red areas are no longer neighbors and do not a�ect each
other’s value. Finally, we map the smoothed 3D �ow (Figure 2b-v)
back to the 2D representation (Figure 2b-vi). �e resulting bilateral-
smooth output in Figure 2a-vi retains sharp edges.

Virtual reality video with the bilateral solver. We tailored our al-
gorithm for a VR pipeline (similar to that of Anderson et al. [2016]),
which takes 16 camera streams as input and processes them with
the bilateral solver to construct 3D-360° video. �ere are many other
ways to capture and render VR video, but each method presents
unique challenges. Light �elds [Levoy and Hanrahan 1996], a type
of image that conveys information about the �ow of light in a
scene, are the most general and immersive solution to VR imagery.
Proposed light �eld-based systems, however, require an enormous
amount of input and output data, and rendering on the client side is
compute-intensive. While impressive results for light �eld images
have been demonstrated in VR [Huang et al. 2015], video is a greater
challenge and still impractical. Other solutions for immersive video
viewing, such as free-viewpoint video [Carranza et al. 2003] and
concentric mosaics [Shum et al. 2005], are also challenging to pro-
cess and display using standard video formats, resulting in systems
that are not yet stable enough to motivate hardware support. In
contrast, the Jump VR video system is designed to be practical to
compute, edit, and stream. Processing the 16 camera video array re-
quires computing optical �ow between images from each adjacent
pair of cameras and then interpolating the images to produce the
omnidirectional stereo projection [Peleg et al. 2001]. �e output is a
pair of equirectangular spherical video streams, one stream for the
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Figure 2: Smoothing a noisy �ow �eld in (a) regular 2D space and (b) bilateral space. Regular smoothing produces undesirable
artifacts at edges as the �ow values blur together. �e bilateral grid allows edge-aware smoothing and produces a correct
denoised output.

le� eye and one stream for the right. Anderson et al. [2016] employ
a bilateral-space solver for optical �ow to e�ciently produce high
quality edge-aware �ow results that are well-suited to omnidirec-
tional stereo image interpolation. �ey observe that the majority
of rendering time is spent running the bilateral solver.

2.2 Hardware Acceleration for Bilateral Grids
�is work is the �rst, to our knowledge, to accelerate the bilateral
solver on GPUs or with custom hardware, and builds on related
work in hardware-e�cient algorithms and accelerators for bilateral
�ltering and the bilateral grid. �e bilateral grid itself was originally
proposed as a solution for fast, parallelizable bilateral �ltering on
GPUs [Chen et al. 2007]. Towards more hardware-e�cient execu-
tion on GPUs, Yang [2014] proposed a hierarchical bilateral �lter
technique, but their approach has much higher error than our algo-
rithm. Most similar to our accelerator is that of Rithe et al. [2013],
who designed a low-power recon�gurable processor for bilateral
�ltering. �eir design di�ers from ours by implementing spla�ing
and slicing in hardware, but it can only perform streaming bilat-
eral �lters and does not support the repeated �ltering iterations
necessary for bilateral-space optimization.

3 HARDWARE-FRIENDLY BILATERAL
SOLVING

In this section, we formulate a bilateral solver that maintains speed,
scalability, and accuracy, while also being parallelizable. We �rst
describe the original bilateral solver of [Barron and Poole 2016],
and motivate the requirements for a hardware-friendly bilateral
solver. We then provide a detailed formulation of our algorithm
and its advantages.

3.1 Bilateral-Space Optimization
�e original bilateral solver (OBS) consists of an objective and
optimization technique [Barron and Poole 2016]. �e input to the
solver is a reference RGB image, a target image that contains noisy
observed quantities we wish to improve, and a con�dence image.
�e goal is to recover an “output” vector x, which will resemble
the input target where the con�dence is large while being smooth
and tightly aligned to edges in the reference image. To achieve
this, Barron and Poole construct an optimization problem of the
following form:

minimize
x

λ

2
∑
i, j

Ŵi, j
(
xi − x j

)2
+

∑
i
ci (xi − ti )

2 (1)

�e �rst term of the loss encourages that for all pixel pairs i and
j, the overall di�erence between their �ow values xi and x j is
minimized if they are neighboring pixels in the bilateral space. �e
second term of Eq. 1 encourages each pixel xi to be close to the
target input ti if that pixel’s con�dence ci is high.

�e a�nity matrix Ŵ is a bistochastized (all rows and columns
sum to 1) version of a bilateral a�nity matrix W. Each element
of the bilateral a�nity matrixWi, j describes the a�nity between
pixels i and j in the reference image in the YUV colorspace:

Wi, j = exp ©­«−



[pxi ,pyi ]−[pxj ,pyj ]


2

2σ 2
xy

−

(
pli −p

l
j

)2

2σ 2
l
−




[pui ,pvi ]−[puj ,pvj ]


2

2σ 2
uv

ª®¬ (2)

where pi is a pixel in the reference image with location (pxi ,p
y
i )

and color (pli ,p
u
i ,p

v
i ). �e σxy , σl , and σuv parameters control the

support of the spatial, luminance (luma), and chrominance (chroma)
components of the �lter. Bistochastization normalizes this a�nity
matrix while maintaining symmetry [Barron et al. 2015].
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Bilateral operations (e.g., �ltering) can be sped up by treating
the �lter as a “splat/blur/slice” procedure in the bilateral grid. �e
splat/blur/slice �ltering approach corresponds to a compact factor-
ization of W:

W = STBS (3)
where S and ST are spla�ing and slicing, andB is a [1 2 1] blur kernel.
As in Barron and Poole [2016], S de�nes a per-pixel mapping from
a pixel to a coarse bin in the bilateral grid, where that mapping
is a function of the x and y coordinates, l luma, u and v chroma
of that pixel. Multiplying by S is a data-dependent histogramming
operation, and multiplying by ST is a data-dependent interpolation.
�e bilateral space optimization formulation of Barron et al. [2015]
performs bistochastization by calculating two matrices m and n
that satisfy the following:

Ŵ = ST diag
( n
m

)
B diag

( n
m

)
S (4)

where Ŵ is a bistochastic version of matrix W. �e vectors m and
n describe a normalizing transformation required by the solver.

Barron and Poole also perform a variable substitution [2016],
transforming the high-dimensional pixel-space optimization prob-
lem into one with lower-dimensional bilateral-space vertices:

x = STy (5)
where y is a small vector of values for each bilateral grid vertex,
and x is the large vector of values for each pixel.

Equations 3 and 5 allow us to reformulate the pixel-space loss
function of Eq. 1 into bilateral-space in a quadratic form:

minimize
y

1
2y

TAy − bTy + c (6)

A = λ(diag(m) − diag(n)B diag(n)) + diag(Sc)

b = S(c ◦ t) c =
1
2 (c ◦ t)

Tt

where y is the solution to the problem in bilateral-space, m and
n are de�ned by Eq. 4, and t and c are per pixel initial solutions
and con�dences (Eq. 1). �e Hadamard (element-wise) product is
denoted by ◦.

�e optimization problem of Eq. 1 is intractably slow to solve
naively. However, the bilateral-space formulation allows feasible
and fast execution. Minimizing Eq. 6 is equivalent to solving a
sparse linear system:

Ay = b
and we can produce a pixel-space solution x̂ by slicing out the
solution from the linear system:

x̂ = ST(A−1b) (7)
In summary, OBS takes an input image vector and a con�dence

image to construct a simpli�ed bilateral grid from the reference
image. With that, it produces the A matrix and b vector of Eq. 6 to
solve the linear system in Eq. 7 and obtain an output image.

3.2 Algorithmic Modi�cations
�ough computationally e�cient, OBS as presented has a number of
properties that make it di�cult to implement in hardware, or even
to achieve real-time operation on modern CPU or GPU systems.
Vectorizing and parallelizing CPU or GPU processing on the sparse
5D bilateral grid Ŵ demonstrates too-irregular memory access

pa�erns to achieve large performance bene�ts from parallelization.
Moreover, the use of second order global optimization limits the
level of parallelism we can extract from the algorithm. We modify
OBS to construct a hardware-friendly bilateral solver and address
these speci�c challenges: color and sparse memory indexing, and
second order global optimization. Our modi�cations also allow for
an alternative, more e�cient initialization and reduced quantization
artifacts, which we will discuss a�er formulating our algorithm.

Color and sparse memory indexing. �e bilateral solver of Barron
and Poole [2016] was designed around a hard bilateral grid or a per-
mutohedral la�ice [Adams et al. 2010], meaning that optimization
takes place in a “sparse” �ve-dimensional bilateral space (where
the �ve dimensions are position in x and y, pixel luma, and two
pixel chroma values). �e resulting 5D grid has an image-dependent
“sparsity” that is challenging to exploit in parallel algorithms. More-
over, the connectivity structure of the graph used in the bilateral
solver varies as a function of the input, leading to expensive and
unpredictable memory access pa�erns. A�empting to resolve this
by solely converting the sparse grid into a “dense” representation
of the 5D space requires a prohibitive amount of memory. Instead,
HFBS ignores the color of the input image and uses a “dense” 3D
bilateral grid [Chen et al. 2007], which makes memory indexing
predictable and enables further optimizations. Ignoring color this
way induces a small decrease in accuracy, as we will demonstrate.

Second order global optimization. �e numerical optimization in
OBS was performed using the preconditioned conjugate gradient
method with a Jacobi or Jacobi-like hierarchical preconditioner.
Conjugate gradient methods use a global optimization step: at each
iteration, updating each variable of the optimization vector requires
reasoning about the gradient at all other variables. Such global com-
munication requirements make parallel hardware implementation
di�cult, as we want to be able to individually update and optimize
any variable in our state space via local communication with the
“neighboring” variables in our bilateral grid. To avoid global com-
munication, HFBS performs optimization using gradient descent
with momentum (i.e., the “Heavy Ball” algorithm), which can be
shown to have similar asymptotic performance as conjugate gra-
dient [Polyak 1964]. �is converts an irregular number of global
matrix operations into a regular, but larger, number of local updates
that are much easier to execute in parallel.

�e Heavy Ball algorithm does not naturally accommodate a
preconditioner, so we reformulate our optimization problem with
a transformation that indirectly applies a Jacobi preconditioner
during optimization. We �nd that HFBS slightly underperforms
the preconditioned conjugate gradient solver of Barron and Poole
[2016] and therefore requires roughly twice as many steps for con-
vergence. However, since each step is signi�cantly faster to compute
(roughly 4× faster on CPU and much faster on GPU/FPGA), we see
an overall increase in performance.

3.3 Algorithm Formulation
We now formalize the details of HFBS and how it relates to the
original bilateral solver. Both OBS and HFBS minimize an opti-
mization problem of the form of Eq. 1. In this case, the ti is the
low resolution �ow shown in Figure 1b. We derive the con�dence
image for these low resolution �ow �elds by computing normalized
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sum-of-squared di�erences. �e resulting con�dence is larger for
areas that are near each other and match well.

We obtain the weight Ŵi, j , which determines the bilateral-space
distance between two pixels i and j, from a bistochastized version
of the matrix W whose elements are calculated via the following:

Wi, j = exp
©­­«−




[[pxi ,pyi ] − [pxj ,pyj ]


2

2σ 2
xy

−
(pli − p

l
j )

2

2σ 2
l

ª®®¬ (8)

where each pixel pi has a spatial position (pxi ,p
y
i ) and luminance

pli . While OBS includes color information inŴi, j (Eq. 2), HFBS only
considers luminance.

�e bistochastization step in Barron and Poole [2016] requires
10-20 iterations to achieve low error. To reduce the �xed cost of
this step, we use a faster, approximate bistochastization step for ini-
tializing the bilateral solver. Unlike OBS, which fully-bistochastizes
W into Ŵ, we construct an approximately bistochastized Ŵ (equiv-
alent to one iteration of bistochastization) that still satis�es the
requirements of the bilateral solver:

m0 = S1 n =
√
ϵ +m0
ϵ + B1

m1 = n ◦ (Bn) (9)

In OBS, bistochastization is done to convergence, which produces
a n which satis�es m0 = n ◦ (Bn). Partial bistochastization requires
that we treat this equality as an assignment, thereby constructing
m1 to explicitly obey this constraint (Eq. 9). �is produces nearly-
indistinguishable output while being faster and easier to compute.

Our normalization also di�ers from OBS by the use of ϵ ∼ 0.00001
in the construction of n. Adding ϵ to the numerator prevents divide-
by-zero later and ensures that empty grid cells do not propagate
information during optimization. Adding it to the denominator
prevents the addition of ϵ in the numerator from biasing the solution
towards 0. Note that the partial bistochastization step of HFBS is
not iterative and does not require any convergence, and thus is
signi�cantly faster than the bistochastization step of OBS.

As described earlier, the expensive per-pixel optimization in
Eq. 1 can be reformulated to a much more tractable optimization
problem inside a bilateral grid. For convenience we will de�ne
By (the product of some grid y with a blur B) as a scaling of and
“di�usion” of y:

By = 2y + Dy
Dy = D(y) = y(x + 1,y, z) + y(x − 1,y, z)

+ y(x ,y + 1, z) + y(x ,y − 1, z)
+ y(x ,y, z + 1) + y(x ,y, z − 1)

where D is a di�usion operator (which we can interchangeably
refer to as a matrix and a function) that replaces each element in y
with the sum of its neighbors. Because our 3D bilateral grid is dense
in memory, this di�usion process is a simple stencil operation.

We now perform a variable substitution, as in Eq. 5. For us, this
simply requires dividing by the square root of the diagonal of the
A matrix:

y = p ◦ ẑ p =
1√

Sc + λ (m1 − 2 (n ◦ n))
where ẑ is the solution to the substituted problem.

With our variable substitution in place, we can reformulate Eq. 6:

minimize
z

1
2 z

TÃz − b̃Tz + c

Ã = I − diag (q)D diag (q)

b̃ = p ◦ (S (c ◦ t))

q =
√
λ (n ◦ p)

Here c is the same as in Eq. 6. Note that the diagonal of Ã is 1, so
optimizing this problem without a preconditioner is the same as
optimizing Eq. 6 with a Jacobi preconditioner. Minimizing this prob-
lem requires solving a linear system, undoing our preconditioning
variable substitution, and then slicing out a solution:

ẑ = Ã−1b̃ x̂ = ST (p ◦ ẑ)

We will solve this problem using the “Heavy Ball” method (gradient
descent with momentum). �is problem is fully-described by the
di�usion operator D(·) and the bilateral grids b̃ and q.

Algorithm 1 shows pseudocode describing how optimization
is performed. It can be shown that if the momentum and step

Algorithm 1 Bilateral-Space Heavy Ball Method
Input: problem description {D(·), b̃, q}, initial state zinit, step size
α = 1, momentum β = 0.9, number of iterations n = 256.
Output: state a�er n iterations z

1: z← zinit
2: h← 0
3: for i = 1 : n do
4: g← z − q ◦ D(q ◦ z) − b̃
5: h← βh + g
6: z← z − αh
7: end for

size hyperparameters are set correctly, this heavy ball method has
the same asymptotic performance as conjugate gradient [Polyak
1964]. Because preconditioning has been absorbed into the problem,
performance approaches preconditioned conjugate gradient. Since
the di�usion operator D(·) is a local stencil, the gradient update to g
and the optimization update to h and z can be performed e�ciently
(i.e., vectorized, parallelized, etc).

Be�er Initialization to Reduce Optimization Iterations. Our ob-
jective function is convex and thus invariant to the initialization
zinit, but a be�er initialization may allow us to converge in fewer
iterations. We can achieve this with a simple weighted blur in our
bilateral grid.

zinit =
blur(S(c ◦ t),σb )
p ◦ blur(S(c),σb )

where blur(a,σb ) is a large-support 3D Laplacian blur of a with a
scale of σb :

blur(a,σb )(tx , ty , tz ) =∭ ∞

−∞

e

(
−|τx |−|τy |−|τz |

σb

)
a(tx − τx , ty − τy , tz − τz )dτxdτydτz

and tx , ty , and tz are 3D coordinates. �is can be e�ciently im-
plemented as three separable in�nite impulse response �lters (i.e.,
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exponential smoothing, forward and backward) in the three dimen-
sions of the grid. �e intuition behind this initialization is that the
solution should be close to b where the con�dence is large and
smooth where con�dence is small. We found that this initialization
can be implemented e�ciently on a CPU and roughly halves the
number of required iterations.

Reduced �antization Artifacts. In OBS, slicing can introduce
“blocky” quantization artifacts in the output [Barron and Poole
2016]. �is quantization requires post-processing, adding to the
computational cost of running the bilateral solver. However, HFBS
uses a dense and low-dimensional grayscale bilateral grid which
allows us to e�ciently slice out of our bilateral grid using trilinear
interpolation. As shown in Chen et al. [2007], this produces smooth
results without post-processing. �e trilinear interpolation can be
done through a weighted slice, where Stri is analogous to S but with
trilinear weights instead of hard “one-hot” assignment:

x̂ =
ST

tri (m0 ◦ p ◦ ẑ)

ST
tri (m0)

By performing a weighted slice according to the per-vertex grid
occupancy m0 this process produces artifact-free results in compari-
son to results from OBS, even if trilinear interpolation is not used in
the spla�ing step. �is “so�” slicing is only slightly more expensive
than its “hard” equivalent, though both forms can be implemented
very e�ciently by virtue of being simple gather operations in a
dense bilateral grid.

4 HARDWARE ARCHITECTURE
�e formulation of HFBS allows for fast bilateral solving on high-
performance CPUs or GPUs, but the resulting power consumption
may prove prohibitively costly for a full system. FPGA platforms,
on the other hand, can demonstrate fast performance with be�er
power e�ciency. �is makes them a more suitable target for a sys-
tem requiring multiple high-performance processors in a single
chassis that can support processing 16-camera outputs simulta-
neously. To demonstrate power and performance e�ciency on
FPGAs, we co-designed our hardware implementation with the
HFBS algorithm. In addition to the algorithmic optimizations, we
apply hardware-speci�c techniques such as customized variable
bitwidths and bilateral-space memory partitioning to enable bet-
ter performance. We �rst discuss the hardware system at a high
level, and then our speci�c design exploration for bitwidth pre-
cision and bilateral grid memory layout. Finally, we describe the
hardware-so�ware interface of our design and how we integrate
the accelerator into an application.

4.1 Microarchitectural Design
We focus on executing the inner loop of Algorithm 1 with cus-
tom hardware, and maintaining the higher-level control �ow in
so�ware. In this scheme, a so�ware application splats the opti-
mization problem de�ned in Section 3 onto a bilateral grid, and
transfers it to the accelerator for iterative solving. Figure 3 shows a
high-level overview of how application functionality is distributed
across the system. �e �gure also illustrates details of our design’s
microarchitecture.
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Figure 3: High-level system overview of our accelerator. Par-
allel workers process bilateral grid vertices stored in parti-
tioned memory banks.
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Figure 4: Block diagram of a single worker in our design.
Table 1: Worker resource utilization and maximum work-
ers at varied bitwidths. Reported MSE is relative to 32-bit
�oating-point.

Bitwidth 32 47 64
DSPs per Worker 1 4 16
Maximum Workers 6840 1710 427
Min. MSE 8.30 × 10−4 6.69 × 10−7 7.16 × 10−13

�e CPU constructs the bilateral grid based on the input refer-
ence image and the initial low-resolution solution provided from
prior steps. �e transferred data includes b̂, q, and the initial so-
lution zinit shown in Algorithm 1. During transfer, the memory
controller of Figure 3 interleaves the data corresponding to each bi-
lateral grid vertex, and partitions the data into memory banks. A�er
the data transfer is complete, a pool of parallel workers iteratively
solve the optimization problem by running the loop of Algorithm 1.
A�er some number of iterations (we chose 256 iterations for our
experiments to ensure convergence), the CPU reads back the �nal
solution and slices it into a 2D result.

Each worker (shown in in Figure 4) performs the inner loop
of Algorithm 1 on one grid cell. It computes the result by stream-
ing in the data from the neighboring cells (required for the “blur”
operation), as well as the normalization factors required for the
optimization process. �e workers compute their local stencil op-
erations synchronously, interfacing primarily with an assigned
memory bank and occasionally the neighboring memory banks
to access grid blocks that may be stored across banks. Because
each worker executes in lockstep, there are no memory collisions
when accessing data in other banks. Figure 3 demonstrates how
multiplexers, managed by the main controller, shepherd access to
neighboring banks. As we scale the number of workers, we �nd that
parallelism introduces a 1% reduction in speedup against perfect
linear scaling. �is near-linear scaling can entirely be a�ributed to
our inclusion of the “Heavy Ball” algorithm in HFBS, which allowed
our design to use only local-neighbor communication rather than
global synchronization a�er each iteration.
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Figure 5: MSE of �xed-point implementations at varied frac-
tional widths, for di�erent bitwidths. MSE is reported rela-
tive to 32-bit �oating-point. We chose a con�guration with
31 bits of fractional precision to reduce chance of over�ow
in the integer portion.

4.2 Fixed-point Conversion
To improve resource utilization, we converted the algorithm from
�oating-point to �xed-point number representation. We �rst imple-
mented our workers using single-precision �oating-point, like our
CPU and GPU implementations. We found that the large number of
digital signal processing units (DSPs) required for a single �oating-
point multiplier prohibitively limited the number of workers we
could employ, and consequently, the amount of parallelism. Con-
verting FPGA designs from �oating-point to �xed-point number
representation resolves this by reducing the resource requirements
of hardware multipliers. Using the cheaper �xed-point multiplier,
however, required us to evaluate three competing tradeo�s: (1) the
bitwidth of our �xed-point numbers, (2) the precision at a given
bitwidth for the integer and fractional portions of the number, and
(3) convergence of the solver. If less than 12 bits were used for the
integer portion, the bilateral grid data would quickly populate with
over�ow values. If less than 24 bits were used for the fractional
component of the number, the bilateral solver would not converge,
because grid vertices would not have enough precision to capture
the change in a value a�er blurring. �ese constraints prevented us
from using 32-bit �xed-point numbers, as highlighted by the high
mean squared error (MSE) shown in Figure 5 across integer-fraction-
ratio con�gurations. We delineate a maximum error threshold of
∼ 0.00001, because any errors exceeding that precision eliminate
the positive bene�ts of using an ϵ-value to reduce zero-propagation.
Using 64-bit �xed-point numbers resulted in very low MSE, but, as
seen in Table 1, required 16 DSPs per worker, limiting the number
of parallel workers we could deploy with these con�gurations.

As a compromise, we evaluated a 47-bit number representa-
tion that was more accurate than 32-bit �xed-point, with 75% less
DSPs than 64-bit �xed-point. To maintain some precision of 64-bit
numbers during non-multiplier arithmetic, we chose a 64-bit �xed-
point representation with 15 bits of integer precision and 48 bits
of fractional precision, and cast it to and from 47-bit for multiply
operations only. Before multiplying two 64-bit numbers, we round
o� the bo�om 16-bits of each number, resulting in the 1-bit sign,
15-bit integer, 31-bit fraction number highlighted in Figure 5. We
zero-extend the resulting 47-bit output back to a 64-bit number for

the rest of the computation. �is �xed-point con�guration has a
MSE of 3.17× 10−7 compared to the �oating-point implementation,
resulting in negligible accuracy loss at the solver output, and the
solver converges at the same number of iterations.

4.3 On-Chip Bilateral Grid Memory Layout
To take advantage of block RAM distribution on the FPGA, we
partitioned the bilateral grid into chunks along di�erent dimensions,
and dedicated grid workers for each partition. For large, �nely
divided grids with many vertices (the largest grids we consider have
up to 5 million vertices), we could achieve full resource utilization
simply by partitioning the grid along one dimension and allocating
a single worker to process each memory bank. For more coarse
grids, we partitioned the memory in multiple dimensions.

Our method for laying out data in memory consists of storing
all the data needed for a grid vertex in a single packet, and writing
the packets sequentially in memory. Rather than storing multiple
bilateral grid data structures separately and repeatedly indexing
into each of them to process a single vertex, we interleave the data
structures together to access all the information for processing a
grid vertex as a single packet. When a worker is assigned a grid
vertex to process, it can fetch most of the data required for its
computation from a single partition, including neighboring vertex
data for some dimensions. For large grids, where we only partition
on one dimension, the data for two of the three dimensions is stored
in the same memory bank, and the worker only has to communicate
across banks for the two neighbors in other partitions. For smaller
grids, where we partition along multiple dimensions to improve
parallelism, workers may need to fetch more of their neighbors from
neighboring partitions. All inter-bank communication is handled
via the main controller of Figure 3.

To aid in fetching grid vertex data for a worker’s vertex or neigh-
boring ones, we abstracted this memory layout into a simple ad-
dressing method: we dedicate dlog2(k)e bits of address space for
each grid dimension with size k , and use the last three bits to index
into the packet for a grid vertex. For instance, with a bilateral grid
of shape

[
247, 166, 16

]
partitioned on the �rst dimension only, a

worker assigned the address 0b 00001010 10100001 0100 001
would map the �rst dimension’s value to memory bank 10, and
use the second and third dimensions to fetch the second item in
the packet for grid vertex

[
10, 161, 4

]
. Indexing into a neighbor-

ing vertex in any dimension means incrementing or decrementing
a dimension’s tag; the main controller detects when a worker is
requesting an address in a neighboring bank and multiplexes the
request appropriately. �is discrete mapping of grid dimensions
to address spaces results in simple logic for memory addressing,
but at the cost of wasted memory space. Each grid vertex packet
contains �ve items but requires the memory space for eight. �e
same is true at the grid partition level, since the number of grid
vertices along a dimension is a function of the image resolution
and the σxy or σl , and does not o�en �t nicely in power-of-two
partitions.

4.4 FPGA Implementation
We implemented a maximal design in Verilog and wrapped the
accelerator in an AXI4-Stream compliant interface for portable
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Table 2: Resource requirements for FPGA implementations
with maximum parallelism.

Model Logic RAM DSP Clock (MHz)
Virtex Ultrascale+ 44% 99% 100% 250

deployment across Xilinx FPGAs. We can �t a maximum of 1,710
workers on a Xilinx Virtex UltraScale+ device. We detail resource
utilization of our maximal design in Table 2.

To invoke the bilateral solver accelerator in an application, the
application sends a bytestream of bilateral grid data over the FPGA’s
PCIe-to-AXI DMA interface. �e FPGA’s driver can be invoked with
standard Unix I/O system calls like read() andwrite(), and can thus
be integrated with so�ware applications wri�en in any high-level
language.

At con�guration time, we �x the number of grid workers, mem-
ory size, and partitioning based on a chosen set of parameters for
image resolution and bandwidths in the luma and spatial dimen-
sions. �e parameters essentially de�ne the maximum memory size
and number of partitions, which can be interpreted as the upper
bound of grid sizes that can be run under a certain con�guration.
�e bilateral grid dimensions and number of iterations are so�ware-
de�ned at program runtime. �is level of �exibility in our design
allows applications to process images of varied resolutions at varied
grid bandwidths, but can result in wasted resources if the grid size
being processed is much smaller than the accelerator’s con�gured
grid size.

5 EXPERIMENTAL RESULTS
We designed HFBS with the goal of improving bilateral solver per-
formance by parallelizing on modern hardware, while maintaining
comparable visual accuracy. In this section we evaluate the perfor-
mance of our algorithm and hardware, including runtime compari-
son, power consumption measurements, and accuracy evaluation.

5.1 Methodology
We compare our algorithm across CPU, GPU, and FPGA implemen-
tations. �e CPU is a Xeon E5-2620 with six cores, and the GPU is an
NVIDIA GTX 1080 Ti. Both platforms execute optimized implemen-
tations of the kernels wri�en and tuned with Halide [Ragan-Kelley
et al. 2013]. We prototyped our FPGA design on a Xilinx Kintex-7
connected to a host CPU over PCIe to evaluate host-device memory
tra�c, and synthesized and simulated a target evaluation design
for the Xilinx Virtex UltraScale+ VU9P to evaluate full-resolution
frame processing. In this section we only report results from the
Virtex UltraScale+ design.

To benchmark our algorithm, we execute the bilateral solver on
�ow �elds and con�dences generated from the ten training images
in the Middlebury stereo dataset [Scharstein and Szeliski 2002],
and evaluate runtime and accuracy. We compare runtimes for our
algorithm on CPU, GPU, and FPGA with the bilateral solver of Bar-
ron and Poole [2016] on CPU as the baseline. For CPU and GPU
implementations, we report the average runtime from 8 trials; the
FPGA runtime is deterministic and did not vary across trials. We

Table 3: Runtimes for di�erent variants of the bilateral
solver on di�erent hardware for the VR video use-case. Run-
times for optimization by itself and for the entire algorithm
(problem construction/splatting, optimization, and slicing)
are shown independently.

Algorithm / Platform Opt. (ms) Total (ms) Power (W)
Baseline (CPU) 1322±171 2529±271 16
Our Algorithm (CPU) 545 ±77 588 ±77 152
Our Algorithm (CPU + GPU) 49 ±3 78 ±5 245
Our Algorithm (CPU + FPGA) 23 ±1 52 ±3 25

(a) Runtime (Optimization Only) (b) Runtime (Total)

Figure 6: Runtimes of the baseline, CPU, GPU, and FPGA
implementations of HFBS, as a function of the spatial band-
width (σxy of Eq. 8).

characterize power consumption for the CPU and GPU by mea-
suring utilization and scaling from the reported device power. For
the FPGA, we report estimated power consumption from Xilinx
Vivado’s power report.

�e size of the bilateral grid data ranges from 4KB-1.8GB, de-
pending on the σxy used to construct the grid. All results use a
σl = 16. We use 256 iterations of optimization in all cases, more than
enough guarantee convergence for all algorithms and implementa-
tions. Note that our performance comparison is not at iso-quality,
as our algorithm has slightly more error but qualitatively similar
results, which we discuss more in Section 5.3. All computation
is single-precision �oating-point, except for bilateral solving on
the FPGA which is conducted with 64-bit �xed-point numbers.
We observe transfer throughput for the FPGA over a single PCIe
channel to range between 9.6-11.3 Gbps, which is in keeping with
reported estimates. Since both GPU and FPGA communicate with
the host over PCIe and we assume frames can be pipelined, we omit
the transfer time between the host processor and the device from
reported runtimes.

5.2 Runtime Results
Figure 6 plots the runtime results of bilateral solver implementa-
tions on all our benchmarks, as a function of the spatial bandwidth.
Figure 6a shows the runtime for the optimization portion of the
solver, and Figure 6b shows the runtime for the complete bilateral
solver including pre-processing. As we increase the spatial band-
width (σxy of Eq. 8), we see that the overall grid size decreases,
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Table 4: Depth Superresolution Task [Ferstl et al. 2013]

Algorithm Error (MSE) Runtime (sec)
Chan et al. [2008] 3.89 3.02
Min et al. [2014] 3.78 0.383
Domain Transform [Gastal and Oliveira 2011] 3.60 0.021
Ma et al. [2013] 3.53 18
Zhang et al. [2014] 3.51 1.346
Guided Filter (Matlab) He et al. [2010] 3.51 0.434
Fast Guided Filter He and Sun [2015] 3.45 0.225
Yang [2015] 3.44 0.304
Farbman et al. [2008] 3.24 6.11
JBU [Adams et al. 2010; Kopf et al. 2007] 3.19 1.98
Barron and Poole [2016] 2.75 0.234
Our Model 3.27 0.047 ± 0.002

and runtimes shorten for all implementations. We �nd that our
algorithm outperforms the baseline on all platforms at all spatial
bandwidths. For optimization alone, CPU and FPGA results scale
with the grid size, while the GPU results scales until the size of
the grid is too small to fully utilize resources. Because spla�ing
and slicing is not accelerated on the FPGA, runtime for the entire
bilateral solver does not scale as well at large grid sizes.

Table 3 highlights the runtime results speci�cally for the VR
Video use-case, where σxy = 12 as in Anderson et al. [2016], as well
as the power consumption of each hardware con�guration. Our
algorithm’s speed outperforms the CPU baseline on all platforms
evaluated, and our FPGA accelerator is signi�cantly faster than
the baseline while also reducing power consumption. Note that
the CPU-only HFBS runtime reported in Table 3 is still far from
the real-time requirement of 30 frames-per-second. �e GPU and
FPGA implementations get very close to real-time for σxy = 12,
but still do not make it. By selecting σxy = 32 and losing some
accuracy, both FPGA and GPU implementations meet the real-time
requirements.

We also observe that HFBS signi�cantly reduces pre-processing.
�is is mainly caused by the elimination of the Jacobi precondi-
tioner. �e switch to a dense 3D bilateral grid improves available
parallelism in the splat-slice routines as well.

5.3 Depth Superresolution
Because our proposed model is an approximation to the bilateral
solver, we should expect some drop in the quality of our output
relative to that of Barron and Poole [2016]. To quantify this drop in
accuracy, we evaluate on the depth superresolution task of Ferstl
et al. [2013], which was the primary evaluation used in Barron and
Poole [2016]. We evaluate using the same experimental setup and
the same hyperparameters as Barron and Poole [2016] (σxy = 8,
σl = 4), and report MSE with respect to ground truth from the
Middlebury Stereo Dataset [Scharstein and Szeliski 2002].

As can be seen in Table 4, our model produces a slightly higher
error than that of Barron and Poole [2016], but has a signi�cantly
lower runtime (here we report runtime on a Nvidia 1080 Ti). �is
increase in error is due to the fact that our model ignores color in
the input image, and so has di�culty distinguishing between pixels
with di�erent chroma but similar luma. �e images in this task are
unusually colorful and “cartoonish”, by virtue of being a constructed

(a) Input reference image (b) Input noisy depth

(c) Improved depth
[Barron and Poole 2016]

(d) Our improved depth
(with HFBS)

Figure 7: A qualitative comparison of HFBS’s performance
compared to the model of Barron and Poole [2016] on the
depth superresolution task of Ferstl et al. [2013]. HFBS pro-
duces similar output to Barron and Poole [2016] and is sig-
ni�cantly faster.

vision task, so this increase in error represents an upper-bound on
the increased error we expect to see in natural scenes. Even with
this reduction in error, we see that HFBS is signi�cantly faster than
all more-accurate techniques, and signi�cantly more accurate than
all faster techniques.

We present qualitative results for this task in Figure 7. As dis-
cussed in Section 3.2, HFBS requires double the iterations to achieve
the same accuracy level of OBS, but still performs signi�cantly faster.
We can see that our output depths are qualitatively very similar to
those of Barron and Poole [2016], as expected.

6 DISCUSSION
�ere are a number of optimizations our hardware design can
integrate for improved performance. Nevertheless, we observe that
our design can be practically deployed at both the camera node or
in the cloud to enable real-time VR video rendering.

Accelerator optimizations. �ere are many opportunites to fur-
ther optimize our hardware design. For instance, our design only
accelerates the iterative optimization portion of HFBS. Integrating
splat and slice operations into our accelerator, as in Rithe et al.
[2013], would reduce transfer costs from GB-large bilateral grid to
smaller MB-sized images and further reduce runtimes. Also, many
vertices of the dense bilateral grid begin as zeros and do not need
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Table 5: Full-system speci�cation for an end-to-end real-
time VR pipeline

Item Use # Unit $ Total $ Max. Power

GoPro Camera 16 $360 $5, 760 N/A
Virtex Ultrascale+ HFBS 16 $2, 995 $47, 920 ≈400 W
Intel i7-7700K Host CPU 1 $350 $350 ≈ 90 W
Full-System $55,360 490 W

to be processed; intelligently ignoring these zero-valued grid ver-
tices can reduce wasted computation and potentially improve the
runtime. Similarly, the wasted memory space from our addressing
scheme can be mitigated with increased control logic, which may
allow us to maximize the bilateral grid size.

System speci�cations for real-time VR video processing platforms.
While our design can execute bilateral solving under real-time
constraints, the bilateral solver is just one step in the Jump VR video
rendering pipeline. Moreover, the design we present processes the
�ow �eld from a camera pair while the VR video capture system
we target processes 16 �ow �elds from a 16-camera rig. We outline
the speci�cations and cost for a system that could process the
full 16-camera input to produce virtual reality video in real-time
in Table 5. �e monetary cost of deploying such a many-FPGA
system in both con�gurations is high, but the power consumption
of our FPGA-based system, with 16 high-end fully-utilized FPGAs,
is approximately that of two GPUs. Such power savings can be
critical for mobile camera rigs. At the data center level, power
constraints are less stringent, but deploying custom hardware for
high-bandwidth tasks can still reduce power consumption and
operating costs.

7 CONCLUSIONS
�e hardware-friendly bilateral solver enables scalable, real-time
processing of VR video on modern hardware. We explore a hardware-
so�ware codesign approach to construct an algorithm that is both
faster and more accurate than prior work, optimizing algorithm
details and hardware implementation together. In particular, HFBS
uses a bilateral-space Heavy Ball algorithm and a 3D dense bilat-
eral grid that allows fast and predictable memory accesses. We also
design an FPGA accelerator for HFBS using reduced-precision �xed-
point numbers and customized memory layout. Our CPU, GPU, and
FPGA implementations of HFBS are 4×, 32×, and 50× faster than
the original bilateral solver. We observe that our FPGA accelerator
is more energy-e�cient than comparable CPU and GPU implemen-
tations, and can be practically deployed at both the camera node or
in the cloud to enable real-time VR video rendering.
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