Computing and Global Health

Richard Anderson
Undergraduate Research Seminar
January 20, 2012
Computing and Global Health

- Broad interest in introducing computing based solutions to health challenges
- Rapidly changing technological landscape
Research Domains

- ICTD / CHANGE
- Mobile Wellness Toolkit: NSF Project
 - Anderson/Borriello/Kolko
- Educational Technology
- Computing for Low Resource Environments Capstone (CSE 490D / CSE 481K)
- PATH
Extended Sabbatical at PATH (2009–2011)

- Seattle based NGO working in health technologies
- Program for Appropriate Technology in Health
- Focus areas:
 - Maternal and Child Health
 - Reproductive Health
 - Immunization
 - Infectious diseases
 - Safe Water
NSF Mobile Wellness Toolkit Project

- 3 year NSF funded project
- UW co-PI’s:
 - Richard Anderson, Gaetano Borriello, Beth Kolko
- Partner: PATH
- Mobile technology for health and wellness
Immunization systems

- One of the worlds most effective health interventions
 - Wide coverage of basic vaccines
 - Diphtheria, Pertussis, Tetanus: 77% in poorest countries
 - Tremendous reduction in deaths
 - Some diseases close to elimination

- Large scale global programs
 - Decade of Vaccines

- Introduction of new vaccines
 - Pneumococcal and Rotavirus vaccines
Immunization: National Health Information Systems

- Manage health information on national scale
- Reporting from facility level
 - Web based submission to central database
- Integrate tools into existing systems
Immunization: Health System Modeling

- Analyze health system based on data
 - PATH CCEM: Vaccine Cold Chain Analysis

Estimated costs to address cold chain equipment deficiencies in four countries\(^1\) (USD in 000’s)

<table>
<thead>
<tr>
<th>Country</th>
<th>Base Schedule with Pneumo</th>
<th>Base Schedule with Pneumo and Rota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILR units</td>
<td>Gas/Ker units</td>
</tr>
<tr>
<td>Country A(^2)</td>
<td>219</td>
<td>258</td>
</tr>
<tr>
<td>Country B(^3)</td>
<td>47</td>
<td>56</td>
</tr>
<tr>
<td>Country C(^4)</td>
<td>94</td>
<td>413</td>
</tr>
<tr>
<td>Country D(^5)</td>
<td>55</td>
<td>35</td>
</tr>
</tbody>
</table>
Immunization: Facility Monitoring

- Data collection to understand status of health facilities
- Link with multiple sources of data
Immunization: Health Worker and Manager Support

- Develop (mobile) tools to support management of the health system
 - Manage and track assets
 - Record information during facility visits
Communication and Education

- Promote behavior change and adoption of practices
- Maternal and child health focuses on small number of interventions
 - Taking iron pills
 - Exclusive breast feeding
 - Keeping babies warm
 - Promoting institutional delivery
 - Birth preparedness
- Mobile Interventions
 - Multimedia playback
 - Reminders
 - Community building
 - Spam
Digital Public Health
Mobile Job Aids

- Job aids
 - Process walk through
 - Calculator
 - Care protocol
- Support with mobile applications
 - Tool for use during care
 - Often these tasks are rare
 - Training
 - Standardization

Magnesium Sulfate Dilution Chart

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Required Solution</th>
<th>Dilution Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 g in 10 mL (50% solution) OR 10 g in 20 mL (50% solution)</td>
<td>4 g in 20 mL (20% solution) OR 20 mL of a 20% solution</td>
<td>Extract 8 mL from a vial. This will contain 4 g of MgSO₄. Add to 12 mL of normal saline.</td>
</tr>
<tr>
<td>5 g as 50% solution</td>
<td>2 g as a 50% solution</td>
<td>Extract 4 mL from a vial. Use without dilution.</td>
</tr>
<tr>
<td>10 mL of a 20% solution (2 g) OR 2 g of a 20% solution (10 mL)</td>
<td>5 g in 1000 mL</td>
<td>Extract 4 mL from a vial. This will contain 2 g of MgSO₄. Add this to 6 mL of normal saline.</td>
</tr>
<tr>
<td>1 g in 2 mL (50% solution)</td>
<td>4 g in 20 mL (20% solution) OR 20 mL of a 20% solution</td>
<td>Add the contents of 4 vials (4 g total, 8 mL) to 12 mL of normal saline.</td>
</tr>
<tr>
<td>5 g as 50% solution</td>
<td>Combine the contents of 5 vials (5 g total, 10 mL). Use without dilution.</td>
<td></td>
</tr>
<tr>
<td>2 g as a 50% solution</td>
<td>Combine the contents from 2 vials (2 g, 4 mL). Use without dilution.</td>
<td></td>
</tr>
<tr>
<td>10 mL of a 20% solution (2 g) OR 2 g of a 20% solution (10 mL)</td>
<td>5 g in 1000 mL</td>
<td>Extract 4 mL from a vial. This will contain 2 g of MgSO₄. Add this to 6 mL of normal saline.</td>
</tr>
<tr>
<td>1 g in 2 mL (50% solution)</td>
<td>4 g in 20 mL (20% solution) OR 20 mL of a 20% solution</td>
<td>Add the contents of 4 vials (4 g total, 8 mL) to 12 mL of normal saline.</td>
</tr>
<tr>
<td>5 g as 50% solution</td>
<td>Combine the contents of 5 vials (5 g total, 10 mL). Use without dilution.</td>
<td></td>
</tr>
<tr>
<td>2 g as a 50% solution</td>
<td>Combine the contents from 2 vials (2 g, 4 mL). Use without dilution.</td>
<td></td>
</tr>
<tr>
<td>10 mL of a 20% solution (2 g) OR 2 g of a 20% solution (10 mL)</td>
<td>5 g in 1000 mL</td>
<td>Extract 4 mL from a vial. This will contain 2 g of MgSO₄. Add this to 6 mL of normal saline.</td>
</tr>
<tr>
<td>1 g in 2 mL (50% solution)</td>
<td>4 g in 20 mL (20% solution) OR 20 mL of a 20% solution</td>
<td>Add the contents of 4 vials (4 g total, 8 mL) to 12 mL of normal saline.</td>
</tr>
<tr>
<td>5 g as 50% solution</td>
<td>Combine the contents of 5 vials (5 g total, 10 mL). Use without dilution.</td>
<td></td>
</tr>
</tbody>
</table>
Community Health Worker Supervision

- Health workers not permitted to treat patients
 - CHW, ASHA, VHV, . . .
- Tracking pregnancies, promoting health practices, identifying disease suspects, collecting information
- Mobile applications
 - Job aids, data collection, supportive supervision
- Technology issues
 - Usability, low cost phones
C4D Capstone

- CSE Capstone course
 - Winter: Design seminar
 - Spring: Implementation
- Offered since 2008
Encouragement System for CHWs

- Develop system to for automatic reminders
- Allow different levels of escalation and triggers
- Key technical challenge: develop a finite state machine implementation
Smart Phone Vaccine Register

- Register to track children and immunizations
- Link to existing PC systems
Interactive Health Videos

- Digital Green Model
 - Community created content
 - Facilitated showings
- Work with Global2Local
Small mobile phone applications to support medical tasks
 - Calculators
 - Decision trees
 - Protocols

Allow public health professions to create mobile application through a wizard
Game based interface for public health modeling

- Geographic modeling
- User interface challenge
 - Setting scenarios
 - Manipulating facility information
- Idea: interface from games
Mobile phone integration with a health information system

- Health Information System
 - Internet based system for national reporting of health information

- Interface with smart phone for facility operations
 - Internet access by cellular network
 - Many advantages of mobile phone over desktop system
Contact Information

- Richard Anderson
 - anderson@cs.washington.edu

- Brian DeRenzi
 - bderenzi@cs.washington.edu