Dictionary Implementations So Far

<table>
<thead>
<tr>
<th></th>
<th>Unsorted linked list</th>
<th>Sorted Array</th>
<th>BST</th>
<th>AVL</th>
<th>Splay (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hash Tables

- Constant time accesses!
- A hash table is an array of some fixed size, usually a prime number.
- General idea:
 - key space (e.g., integers, strings)
 - TableSize – 1
 - hash table
 - hash function: h(K)

Example

- key space = integers
- TableSize = 10
- h(K) = K mod 10
- Insert: 7, 18, 41, 94

Another Example

- key space = integers
- TableSize = 6
- h(K) = K mod 6
- Insert: 7, 18, 41, 34

Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:
Sample Hash Functions:

- key space = strings
- $s = s_0 \ s_1 \ s_2 \ ... \ s_{k-1}$

1. $h(s) = s_0 \mod \text{TableSize}$
2. $h(s) = \left(\sum_{i=0}^{k-1} s_i\right) \mod \text{TableSize}$
3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^i\right) \mod \text{TableSize}$

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)

Separate Chaining

- Separate chaining: All keys that map to the same hash value are kept in a list (or “bucket”).

Analysis of find

- Defn: The load factor, λ, of a hash table is the ratio:
 - $\lambda \leftarrow \frac{\text{no. of elements}}{\text{table size}}$
 - For separate chaining, λ = average # of elements in a bucket

- Unsuccessful find:

- Successful find:

How big should the hash table be?

- For Separate Chaining:

<tableSize: Why Prime?

- Suppose
 - data stored in hash table: 7160, 493, 60, 55, 321, 900, 810
 - tableSize = 10
 - data hashes to 0, 3, 0, 5, 1, 0, 6
 - tableSize = 11
 - data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends to have a pattern

Being a multiple of 11 is usually not the pattern ☹
Open Addressing

Linear Probing

- \(f(i) = i \)

- Probe sequence:
 - 0\(^{th}\) probe = \(h(k) \mod \text{TableSize} \)
 - 1\(^{st}\) probe = \((h(k) + 1) \mod \text{TableSize} \)
 - 2\(^{nd}\) probe = \((h(k) + 2) \mod \text{TableSize} \)
 - \ldots
 - \(i^{th} \) probe = \((h(k) + i) \mod \text{TableSize} \)

Linear Probing – Clustering

- "Open Hashing" equals "Closed Hashing"
- "Separate Chaining"
- "Open Addressing"

Load Factor in Linear Probing

- For any \(\lambda < 1 \), linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search: \(\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) \)
 - unsuccessful search: \(\frac{1}{2} \left(1 + \frac{1}{1 - \lambda^2} \right) \)
- Linear probing suffers from primary clustering
- Performance quickly degrades for \(\lambda > 1/2 \)

Quadratic Probing

- \(f(i) = i^2 \)

- Probe sequence:
 - 0\(^{th}\) probe = \(h(k) \mod \text{TableSize} \)
 - 1\(^{st}\) probe = \((h(k) + 1) \mod \text{TableSize} \)
 - 2\(^{nd}\) probe = \((h(k) + 4) \mod \text{TableSize} \)
 - 3\(^{rd}\) probe = \((h(k) + 9) \mod \text{TableSize} \)
 - \ldots
 - \(i^{th} \) probe = \((h(k) + i^2) \mod \text{TableSize} \)

Terminology Alert!

- "Open Hashing" equals "Closed Hashing"
- "Separate Chaining"
- "Open Addressing"
Quadratic Probing

Quadratic Probing Example

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - Show for all $0 \leq i, j \leq \text{size}/2$ and $i \neq j$
 - $(h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}$
 - By contradiction: suppose that for some $i \neq j$:
 - $(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}$
 - $i^2 \mod \text{size} = j^2 \mod \text{size}$
 - $(i^2 - j^2) \mod \text{size} = 0$
 - $[(i + j)(i - j)] \mod \text{size} = 0$

 Because size is prime $(i-j)$ or $(i+j)$ must be zero, and neither can be zero.

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad
- But what about keys that hash to the same spot?
 - Secondary Clustering!

Double Hashing

$f(i) = i \times g(k)$ where g is a second hash function

- Probe sequence:
 - 0th probe = $h(k) \mod \text{TableSize}$
 - 1st probe = $(h(k) + g(k)) \mod \text{TableSize}$
 - 2nd probe = $(h(k) + 2g(k)) \mod \text{TableSize}$
 - 3rd probe = $(h(k) + 3g(k)) \mod \text{TableSize}$
 - ...
 - ith probe = $(h(k) + ig(k)) \mod \text{TableSize}$
Resolving Collisions with Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43

Hash Functions:

\[H(K) = K \mod M \]
\[H_2(K) = 1 + ((K/M) \mod (M-1)) \]

M =

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

• When to rehash?
 – half full (\(\lambda = 0.5 \))
 – when an insertion fails
 – some other threshold

• Cost of rehashing?

Java hashCode() Method

- Class Object defines a hashCode method
 – Intent: returns a suitable hashcode for the object
 – Result is arbitrary int; must scale to fit a hash table (e.g. obj.hashCode() % nBuckets)
 – Used by collection classes like HashMap
- Classes should override with calculation appropriate for instances of the class
 – Calculation should involve semantically “significant” fields of objects

hashCode() and equals()

- To work right, particularly with collection classes like HashMap, hashCode() and equals() must obey this rule:
 if a.equals(b) then it must be true that
 a.hashCode() == b.hashCode()
 – Why?
- Reverse is not required

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.