
CSE 421
Algorithms

Richard Anderson
Lecture 6

Greedy Algorithms

Greedy Algorithms

• Solve problems with the simplest possible
algorithm

• The hard part: showing that something
simple actually works

• Pseudo-definition
– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a
simple rule

Scheduling Theory

• Tasks
– Processing requirements, release times,

deadlines
• Processors
• Precedence constraints
• Objective function

– Jobs scheduled, lateness, total execution time

• Tasks occur at fixed times
• Single processor
• Maximize number of tasks completed

• Tasks {1, 2, . . . N}
• Start and finish times, s(i), f(i)

Interval Scheduling

What is the largest solution? Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I,
A is the rule determining the greedy algorithm

I = { }

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for
each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest
finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm
is Optimal

• Key idea: Earliest Finish Algorithm stays
ahead

• Let A = {i1, . . ., ik} be the set of tasks found
by EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks
found by a different algorithm in increasing
order of finish times

• Show that for r<= min(k, m), f(ir) <= f(jr)

Stay ahead lemma

• A always stays ahead of B, f(ir) <= f(jr)
• Induction argument

– f(i1) <= f(j1)
– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr)

Completing the proof
• Let A = {i1, . . ., ik} be the set of tasks found by

EFA in increasing order of finish times
• Let O = {j1, . . ., jm} be the set of tasks found by

an optimal algorithm in increasing order of finish
times

• If k < m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

Scheduling all intervals

• Minimize number of processors to
schedule all intervals

How many processors are needed
for this example?

Prove that you cannot schedule this set
of intervals with two processors

Depth: maximum number of
intervals active Algorithm

• Sort by start times
• Suppose maximum depth is d, create d

slots
• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an
item, we always have an open slot

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
– Lateness = fi – di if fi >= di

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

Homework Scheduling

• Tasks to perform
• Deadlines on the tasks
• Freedom to schedule tasks in any order

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal: minimize maximum lateness
– Lateness = fi – di if fi >= di

Example

2

3

2

4

DeadlineTime

2 3

23

Lateness 1

Lateness 3

Determine the minimum lateness

2

3

4

5

6

4

5

12

DeadlineTime

Greedy Algorithm

• Earliest deadline first
• Order jobs by deadline

• This algorithm is optimal

Analysis

• Suppose the jobs are ordered by deadlines,
d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled
before i where j > i

• The schedule A computed by the greedy
algorithm has no inversions.

• Let O be the optimal schedule, we want to show
that A has the same maximum lateness as O

List the inversions

2

3

4

5

4

5

6

12

DeadlineTime

a1

a2

a3

a4

a4 a2 a3a1

Lemma: There is an optimal
schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques
– This type of can be important for keeping proofs clean
– It allows us to make a simplifying assumption for the

remainder of the proof

a4 a2 a3 a1

Lemma

• If there is an inversion i, j, there is a pair of
adjacent jobs i’, j’ which form an inversion

Interchange argument

• Suppose there is a pair of jobs i and j, with
di <= dj, and j scheduled immediately
before i. Interchanging i and j does not
increase the maximum lateness.

di djdi dj

j i ji

Proof by Bubble Sort

a4a2 a3 a1

a4a2 a3

a4a2 a3a1

a4a2 a3a1

a1

a4a2 a3a1

Determine maximum lateness

d1 d2 d3 d4

Real Proof

• There is an optimal schedule with no
inversions and no idle time.

• Let O be an optimal schedule k inversions,
we construct a new optimal schedule with
k-1 inversions

• Repeat until we have an optimal schedule
with 0 inversions

• This is the solution found by the earliest
deadline first algorithm

Result

• Earliest Deadline First algorithm
constructs a schedule that minimizes the
maximum lateness

Extensions

• What if the objective is to minimize the
sum of the lateness?
– EDF does not seem to work

• If the tasks have release times and
deadlines, and are non-preemptable, the
problem is NP-complete

• What about the case with release times
and deadlines where tasks are
preemptable?

Optimal Caching

• Caching problem:
– Maintain collection of items in local memory
– Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

• If you know the sequence of requests,
what is the optimal replacement pattern?

• Note – it is rare to know what the requests
are in advance – but we still might want to
do this:
– Some specific applications, the sequence is

known
– Competitive analysis, compare performance

on an online algorithm with an optimal offline
algorithm

Farthest in the future algorithm

• Discard element used farthest in the future
A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

• Sketch
• Start with Optimal Solution O
• Convert to Farthest in the Future Solution

F-F
• Look at the first place where they differ
• Convert O to evict F-F element

– There are some technicalities here to ensure
the caches have the same configuration . . .

