Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed

- Tasks \{1, 2, \ldots N\}
- Start and finish times, s(i), f(i)

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

I = \{

While T is not empty

- Select a task t from T by a rule A
- Add t to I
- Remove t and all tasks incompatible with t from T
Simulate the greedy algorithm for each of these heuristics

- Schedule earliest starting task
- Schedule shortest available task
- Schedule task with fewest conflicting tasks

Greedy solution based on earliest finishing time

- Example 1
- Example 2
- Example 3

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $B = \{j_1, \ldots, j_m\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \leq \min(k, m)$, $f(i_r) \leq f(j_r)$

Stay ahead lemma

- A always stays ahead of B, $f(i_r) \leq f(j_r)$
- Induction argument
 - $f(i_1) \leq f(j_1)$
 - If $f(i_{r-1}) \leq f(j_{r-1})$ then $f(i_r) \leq f(j_r)$

Completing the proof

- Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $O = \{j_1, \ldots, j_m\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
- If $k < m$, then the Earliest Finish Algorithm stopped before it ran out of tasks

Scheduling all intervals

- Minimize number of processors to schedule all intervals
How many processors are needed for this example?

Prove that you cannot schedule this set of intervals with two processors

Depth: maximum number of intervals active

Algorithm

Scheduling tasks

Example

Time	Deadline
2 | 2
3 | 4

Lateness 1

Time	Lateness
2 | 3
3 | 2

Lateness 3
Homework Scheduling

• Tasks to perform
• Deadlines on the tasks
• Freedom to schedule tasks in any order

Scheduling tasks

• Each task has a length t_i and a deadline d_i
• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed
• Goal: minimize maximum lateness
 – Lateness = $f_i - d_i$ if $f_i \geq d_i$

Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Greedy Algorithm

• Earliest deadline first
• Order jobs by deadline
• This algorithm is optimal
Analysis

• Suppose the jobs are ordered by deadlines, \(d_1 \leq d_2 \leq \ldots \leq d_n \)
• A schedule has an \textit{inversion} if job \(j \) is scheduled before \(i \) where \(j > i \)
• The schedule \(A \) computed by the greedy algorithm has no inversions.
• Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)

List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>3</td>
</tr>
<tr>
<td>(a_2)</td>
<td>4</td>
</tr>
<tr>
<td>(a_3)</td>
<td>2</td>
</tr>
<tr>
<td>(a_4)</td>
<td>5</td>
</tr>
</tbody>
</table>

Lemma: There is an optimal schedule with no idle time

Lemma

• If there is an inversion \(i, j \), there is a pair of adjacent jobs \(i', j' \) which form an inversion

Interchange argument

• Suppose there is a pair of jobs \(i \) and \(j \), with \(d_i \leq d_j \), and \(j \) scheduled immediately before \(i \). Interchanging \(i \) and \(j \) does not increase the maximum lateness.

Proof by Bubble Sort

Determine maximum lateness
Real Proof

• There is an optimal schedule with no inversions and no idle time.
• Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
• Repeat until we have an optimal schedule with 0 inversions
• This is the solution found by the earliest deadline first algorithm

Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not seem to work
• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
• What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

• Caching problem:
 – Maintain collection of items in local memory
 – Minimize number of items fetched

Caching example

[Diagram of caching example with sequence A, B, C, D, A, E, B, A, D, A, C, B, D, A]

Optimal Caching

• If you know the sequence of requests, what is the optimal replacement pattern?
• Note – it is rare to know what the requests are in advance – but we still might want to do this:
 – Some specific applications, the sequence is known
 – Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm
Farthest in the future algorithm

- Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .