Software Model Checking
CSE 519

Richard Anderson
Department of Computer Science and Engineering
University of Washington
Symbolic Model Checking of State Machine Based Software Specifications

Richard Anderson, Paul Beame, Steve Burns, William Chan, Francesmary Modugno, David Notkin, Jon Reese

Department of Computer Science and Engineering
University of Washington
Software Model Checking

System Specification
 Reactive Systems
 Air Traffic Control
 Automotive (Cruise Control, Anti-lock Braking)

Hierarchical State Machine Specification
 Statecharts (Harel)
 RSML (Leveson)

Goal: Increase confidence in the correctness of the specification
Symbolic Model Checking

Evaluate Temporal Properties of Finite State Systems

Very Important for Hardware Verification

Does it apply to Software???
This work

Applied model checking to the specification of TCAS II

Traffic Alert and Collision Avoidance System

In use on commercial aircraft in US

Translation Process (RSML to SMV)
Model Checking (Dealing with BDD's)
Analyzing TCAS
Outline

Hierarchical State Machine Specifications

Symbolic Model Checking

TCAS

Our Experiences analyzing TCAS
Reactive Systems

Inputs Outputs

Internal Events
Clock
State Machine Description

Languages

Statecharts (Harel)
RSML (Leveson et al.)

State machines with:
Hierarchical States
Parallel States
Event Driven Transitions
State Machine

Temperature: Too Hot, Hot, Okay, Cold

Rod Movement: Ready, Just Moved, Move Up, Move Down

Rod Configuration: Up, Midway, Down

- Off
- On
- Panic
Transition

Ready → Move Down

Trigger_Event:
 Temp_Update
Condition:
 Rod_Movement in state Ready
 AND
 Temperature in state Hot
Output_Action:
 Initiate_Move
Properties to Check

If Temperature is in state Hot, then eventually temperature is in state Okay or Rod_Configuration is in state Down

Rod_Configuration only changes in response to a Move_Finished event
TCAS

Warn pilots of traffic

Issue resolution advisories

Vertical resolution only

Relies on transponder data.
TCAS

Irvine Safety Group (Leveson et al.)
Specified in RSML as a research project
FAA adopted RSML version as "Official"

400 pages

This study: Version 6.00, March 1993
TCAS

Own_Aircraft

- Sensitivity Levels, Alt_Layer, Advisory_Status

Other_Aircraft

- Tracked, Intruder_Status, Range_Test, Crossing, Sense Descend/Climb
Model Checking

Does a temporal logic formula hold for a finite state system

Temporal Logic

 until, eventually, next, always . . .

Model checking can be done in linear time (in size of state space) for many logics
Symbolic Model Checking

State space can be HUGE, 2^{1000}

Implicit representation

Data structure represents transition relation (boolean formula)

Algorithmically manipulate the data structure to explore the state space

Key: efficiency of the data structure
Binary Decision Diagrams (BDD's)

"Folded decision tree"

Fixed Variable Order

Many functions have small BDD's (notable exception, multiplication)
SMV

BDD based tool to check CTL specifications for finite state systems
Iteration

Correcting specification (or SMV version of specification)

Clarifying temporal formula

Modelling environment

Refining specification

Environment

Modelled Part of Specification

Abstracted Part of Specification
Non-determinism

Inputs from environment
Altitude := {1000. . . 8000};

Simplification of functions
Alt_Rate := 0.25 * (Alt_Baro - ZP) / Delta_t
Alt_Rate := {-2000 . . . 2000};

Unmodelled parts of specifications
States of Other_Aircraft treated as non-deterministic input variables
RSML → SMV

MODULE main
VAR
state: {ON, OFF};
on_event: boolean;
off_event: boolean;
ASSIGN
init(state) := OFF;
next(state) := case
 state = ON & off_event: OFF;
 state = OFF & on_event: ON;
1: state;
esac;
Transitions

VAR RC : {Out, Mid, In};

ASSIGN
T_Out_Mid := Move_Finished & RC = Out &
 &Rod_Move = Move_In;

next(RC) := case
 T_Out_Mid : Mid; T_Mid_In : In;
 T_Mid_Out : Out; T_In_Mid : Mid;
 1 : RC;
 esac;
Obstacles

Initial attempts generated BDDs requiring 200 M memory.

First successful check took 13 hours

(this has been reduced to minutes)

Partitioning BDDs

Ordering Variables:

\[x_1, x_2, x_3, y_1, y_2, y_3 \text{ vs. } x_1, y_1, x_2, y_2, x_3, y_3 \]

Implementing Search
Software Checking

Domain Independent
- Deterministic state transitions
- Function consistency
- Complete Initialization

Domain Dependent
- Output agreement
- Safety properties
Results

Used SMV to analyze Own_Aircraft module of TCAS

Investigated

Transition Consistency
Function Consistency
Output Agreement
Safety Properties
Disclaimer

The intent of this work is to evaluate symbolic model checking of state-based specifications, not to evaluate the TCAS II specification. We used a preliminary version of the specification, the version 6.00, dated March, 1993 in our study. We did not have access to later versions, so we do not know if the issues identified here are present in later versions.
Transition Consistency

Same conditions allow multiple transitions (non determinism)
Previously discovered by other methods (Heimdahl & Leveson)

$$\text{AG } !\langle T_{254} \& T_{257} \rangle$$

Identical conditions gave transition from Effective Sensitivity Level 4 to ESL 2 and from ESL 4 to ESL 5
Function Consistency

Definition by Cases

\[
F := \begin{cases}
 V_1 & \text{if } C_1 \\
 V_2 & \text{if } C_2 \\
 V_3 & \text{if } C_3
\end{cases}
\]

Function is inconsistent if \(C_i \) and \(C_j \) can be true simultaneously

\[
AG \neg (\left(C_1 \land C_2 \right) \lor \left(C_1 \land C_3 \right) \lor \left(C_2 \land C_3 \right))
\]
Display_Model_Goal

Tells pilot the desired rate of altitude change

Checking for consistency gave a counter example: Other_Aircraft reverses from an Increase-Climb to an Increase-Descend advisory

Other_Aircraft modeled non-deterministically, and Other_Aircraft logic apparently prohibits this.

Otherwise okay
Output Agreement

Related outputs should be consistent

Resolution Advisory

Increase-Climb, Climb, Descend, Increase-Descend

Display_Model_Goal

Desired rate of altitude change
Between -3000 ft/min to 3000 ft/min

Presumably, on a climb advisory, DMG should be positive . . .
Output Agreement Check

If the Resolution Advisory is climb, then display_Model_Goal is positive
AG (RA = Climb -> DMG > 0)

Counter-example:

\[t_0 : RA = \text{Descend}, \quad DMG = -1500 \]

\[t_1 : RA = \text{Increase-Descend}, \quad DMG = -2500 \]

\[t_2 : RA = \text{Climb}, \quad DMG = -1500 \]
Safety Properties

An airplane at low altitude should not be told to reduce elevation

$\text{AG} \ ! (\text{Alt} \leq 1450 \ & \ \text{RA} = \text{Increase-Descend})$

FALSE!

Error in preliminary version of spec (typo during reverse engineering, not in other documentation).
Performance Results

<table>
<thead>
<tr>
<th>Property</th>
<th>Result</th>
<th>Time</th>
<th>No. of BDD Nodes</th>
<th>Mem Mb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Rel.</td>
<td>N/A</td>
<td>46.6</td>
<td>124K</td>
<td>7.1</td>
</tr>
<tr>
<td>Trans. Consist.</td>
<td>false</td>
<td>387.0</td>
<td>717K</td>
<td>16.4</td>
</tr>
<tr>
<td>Funct. Consist.</td>
<td>false</td>
<td>289.5</td>
<td>387K</td>
<td>11.5</td>
</tr>
<tr>
<td>Step Termination true</td>
<td></td>
<td>57.2</td>
<td>142K</td>
<td>7.4</td>
</tr>
<tr>
<td>Descend Inhibit true</td>
<td>true</td>
<td>166.8</td>
<td>429K</td>
<td>11.8</td>
</tr>
<tr>
<td>Increase-Desc. false</td>
<td></td>
<td>193.7</td>
<td>282K</td>
<td>9.9</td>
</tr>
<tr>
<td>Output Agree. false</td>
<td></td>
<td>325.6</td>
<td>376K</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Timings on a Sun SPARCstation 10 with 128 Mb Memory. SMV Release 2.4.4.
Discussion I

This study provides a positive data point for applying model checking to software

Translation and construction of BDDs
Identified several issues

Iterative use of model checking

Refine specification
Use non-determinism to reduce size
Debugging specification
Discussion II

Limits for checking specifications

Specification size
Numerical Issues (multiply, divide)

To what extent is software model checking different from hardware model checking?

Word level vs. bit level
Event structure

Domain expertise necessary

Thanks, Jon!
Future Work I

Specification Checking

TCAS (Other_Aircraft)
Other Applications

Handling Environment

Theory

Representation
Model Checking Algorithms
Future Work

Integration with other tools
- Automatic translation
- Use with state machine editor/simulator

Optimization of Model Checker for Software
- Better handling of numbers
- Cascades of micro events, stability
- Timing and timeouts
Model Checking Software

- Theory
- Software Engineering
- Hardware Verification
- Domain Expertise

CSE 519, October 8, 1996
Department of Computer Science and Engineering
University of Washington
For More Information

FSE Paper
Talk transparencies
Quals Projects

http://www.cs.washington.edu/homes/wchan
http://www.cs.washington.edu/homes/anderson