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Project Description

A key stumbling block in our attempt to understand the algorithmic complexity of many problems
is our inability to prove lower bounds. It is quite possible that there are linear time algorithms for
problems that we consider hard, such as boolean satisfiability, even though we do not even know
of subexponential time algorithms for them1. Closing this gap in our knowledge is of fundamental
importance. This proposal is directed at finding techniques to prove better lower bounds on complexity.

Given this failure to prove lower bounds on algorithmic complexity, it is natural to try and prove
lower bounds on models of computation that are easier to reason about. This has been an enduring
line of research in complexity theory. Sometimes, as in the study of bounded depth circuits, the models
are weaker than general algorithms. Sometimes, as in the study of communication complexity, the
models are much stronger than algorithms. And sometimes, as in the study of data structures, the
models are of incomparable computational strength. We hope that developing a theory that is able to
prove lower bounds on these diverse, yet theoretically tractable models will equip us with techniques
that are relevant to all computational models. Proving new lower bounds on algorithms is a mountain
that we eventually need to scale; my goal is to identify the next steps on this difficult journey.

I propose to investigate questions about communication complexity, data structures, certain re-
stricted families of boolean circuits, and the extension complexity of linear programs. I make the
case that there is a rich interplay of ideas relevant to proving lower bounds on these models, even
though the models themselves seem very different. Moreover, I am uniquely placed to make the con-
nections and advance this research program—I already have a track record of success with answering
some fundamental questions in these domains. My focus is on simple, concrete models of computa-
tion. This is intentional—my main goal is to discover widely applicable techniques, and I believe that
methods developed for simple models are more likely to be widely applicable. Some of the models,
like linear programs and data structures, are extremely relevant to practice. Others, like communica-
tion complexity, are more theoretically motivated. I believe that all of them must be studied in any
comprehensive theory of computation.

Communication Complexity

Communication is at the heart of most computational processes, and so the study of communication
complexity (introduced by Yao [99]) has had many applications in computer science. It is fair to
say that no other single model has had a bigger impact on the project of proving lower bounds in
computational complexity. The model is general enough that it captures something essential about
all computational processes, yet simple and natural enough that beautiful ideas from a wide range of
mathematical disciplines can be used to prove powerful lower bounds. Lower bounds on communication

1We do know that there are functions that require exponential time to compute—this follows from the time hierarchy
theorem. The challenge is to develop methods that can prove useful lower bounds for functions that we actually want
to compute.
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have been translated to lower bounds on boolean circuits, proof complexity, data structures, linear
programs, distributed systems and streaming algorithms, and the list is still growing. The ideas used
to prove lower bounds draw from results in probability theory, information theory, analysis, geometry
and algebra.

Over the past few years, I have made a serious effort to advance the state of the art in communi-
cation complexity. My collaborators and I have found the best known results to several fundamental
longstanding open problems, and new connections to other models of computation. I have been an
organizer for semester long programs and workshops on the subject. Amir Yehudayoff and I have writ-
ten a book about communication complexity and its applications2. We have worked hard to ensure
that proofs appearing in the book are significantly simpler and easier to understand than the proofs
that appear in the literature. I elaborate on these efforts in the Broad Impacts section.

Communication complexity measures the number of bits two or more parties need to send each
other in order to compute some joint function of their inputs. Next, I discuss the relevant history for
a couple of fundamental directions of research in communication complexity.

Direct Sums and Information Complexity

The direct sum question is a natural question one can ask about any computational model. Given a
function f(x), we define the function fk(x1, . . . , xk) = (f(x1), f(x2), . . . , f(xk)). Then the direct sum
question is: How does the complexity of computing fk relate to the complexity of computing f? If f
has complexity c, what is the best lower bound we can prove on the complexity of fk?

The goal is to prove results about direct sums that hold for all choices of f—such a result identifies
something fundamental about the model of computation. In most reasonable models of computation,
the complexity of computing fk is at most c ·k. For models like boolean circuits, where the measure of
complexity is the size of the smallest circuit computing f , we know of examples where the complexity
of computing fk can be significantly smaller3 than c · k. In fact, if one could show that the circuit
complexity of computing fk is ω(c · log2 k), this would be a major breakthrough—it would imply that
there is no linear time algorithm for matrix multiplication.

For deterministic 2-party communication complexity, if f depends on n bits and has complexity c,
Feder, Kushilevitz, Naor and Nisan showed that at least Ω(k(

√
c− log n)) communication is required

for fk [36]. No stronger lower bound is known. Alon and Orlitsky [5] showed that if the parties
are trying to compute a relation rather than a function, then there is an example where computing k
copies requires only O(c+k) bits of communication. When the 2 parties are allowed to use randomized
protocols, the best known lower bound was proved by the PI along with Barak, Braverman and Chen.
We showed that fk requires Ω(c

√
k/ log(ck)) bits of communication [12]. Subsequently, with Braver-

man, Weinstein and Yehudayoff, we built on these ideas and new observations of Jain, Pereszlényi and
Yao [51] to show the stronger result that if c bits of communication are required to compute f with
probability of success 2/3, then any protocol that uses communication � c

√
k/ log(ck) can compute

fk with probability at most 2−Ω(k) [23]. When the measure of complexity is average-case, and the
inputs are promised to be independent of each other, we prove stronger bounds (Ω(ck/ log2(ck))).
The results I was involved in proving are the best known lower bounds for direct sums in randomized
communication complexity today.

The lower bounds on direct sums in randomized communication complexity were obtained by
studying a new definition—the notion of the information complexity of a protocol. The evolution of
this definition is illustrative of the broad impact good definitions can have. As far as I know, the story
begins with attempts to prove lower bounds on the randomized communication complexity of disjoint-
ness, an important problem in communication complexity. Kalyanasundaram and Schnitger were the
first to prove that disjointness requires linear randomized communication [53]. Their proof involved

2A draft of the book can be seen here: https://homes.cs.washington.edu/~anuprao/pubs/book.pdf.
3The examples rely on fast algorithms for matrix multiplication. One can show that there is are many n×n matrices

A for which computing f(x) = Ax requires a circuit of size Ω(n2/ logn) when x is an n-bit column vector. Yet for any
such f , fn can be computed with a circuit of size � n3/ logn using the best known algorithms for matrix multiplication.
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measuring information in communication protocols by reasoning about Kolmogorov complexity. The
proof was subsequently simplified by Razborov [79], who used Shannon’s entropy function, and then
by Bar-Yossef, Jayram, Kumar and Sivakumar [11], who used Shannon’s mutual information. Similar
concepts were used by Raz [77] (subsequently simplified by Holenstein [48]) in a technical tour de force
to prove the parallel repetition theorem, a key result in the study of hardness of approximation and
probabilistically checkable proofs. I first became familiar with these concepts when I used them to
prove stronger bounds for the parallel repetition theorem [74]. Meanwhile, Chakrabarti, Shi, Worth
and Yao had made attempts to answer the direct sum question for randomized communication using
ideas from information theory [25]. In [12], we gave a new definition for the information content of
communication protocols that was inspired by the definitions used to prove the parallel repetition the-
orem. We combined this definition with an approach following the intuition of [25] to prove our lower
bounds for the direct sum problem. So, the ideas for understanding the flow of information originated
in the study of disjointness in communication complexity, made their way to the world of approxi-
mation algorithms and PCP’s, and eventually came back to answer questions about direct sums in
randomized communication complexity. Following our work on direct sums, Braverman and Garg took
the ideas back in the other direction once again, giving new bounds for the parallel repetition theorem
[19]. Thus, there has been a healthy exchange of ideas between the study of fundamental concepts in
communication complexity and ideas useful to prove results about the hardness of approximation.

The result of this evolution of ideas was the definition of the internal information of a com-
munication protocol. If X,Y are the inputs to a communication protocol, and M is the vari-
able containing the public randomness and messages of the protocol, the internal information is
I = I(M ;X|Y )+I(M ;Y |X). Here I(·; ·) is Shannon’s notion of mutual information. Each of the terms
in this expression measures the information learnt by one of the parties during the execution of the
protocol. Today it is clear that this is the right definition for the information of a 2-party protocol—it
allows one to prove results like the direct sum theorem and reason about combinatorial problems like
disjointness. Braverman and I [22] showed that under this definition, information complexity is the
same as amortized communication complexity, giving a very natural equivalent definition of the same
quantity.

If a protocol has communication c and internal information I, how many bits of communication
are required to simulate the protocol? This is a fundamental question in its own right. Braverman
and I showed that proving optimal direct sum theorems is equivalent to finding ways to compress
protocols according to their internal information [22]. Ever since Shannon’s seminal paper [83], we
have known how to encode a message so that its length is essentially the same as its entropy. Can we
get a similar savings in an interactive setting with the notion of information defined above? In [12],
we showed that the compression can be carried out with O(

√
cI log c) bits of communication. For the

case of single messages, the Braverman and I showed that near optimal compression of I + o(I) is
possible [22]. Subsequently, Braverman gave a different simulation with 2O(I) bits of communication
[18]. My student Ramamoorthy and I showed that if the information learnt by one of the parties is
Ia, and the information learnt by the second party is Ib, then the simulation can be carried out with

O(Ia + I
1/4
b · c3/4 log c) bits of communication, a result that is useful when understanding protocols

where the information revealed is asymmetric.
All of these results are about efficient ways to compress communication protocols. Ganor, Kol

and Raz [41, 42] were the first to place non-trivial limits on how strong such compression schemes
could be. They showed that there is a function that can be computed with information I, but cannot
be computed with communication 2o(I), proving that Braverman’s simulation is tight, and showing
that one cannot hope for the strongest possible direct sum theorem in randomized communication
complexity. Their proof implies that for every ε > 0, there is a function f with communication
complexity c so that fk can be computed with εck bits of communication. My student Sinha and I
simplified the proof of this separation between information and communication [75]. It remains open
to understand whether or not the other compression schemes, most notably that of [12], are tight.
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Disjointness and the Number-on-Forehead Model

If there is a most important communication problem, it is the set disjointness problem. Each of
k parties is given a subset of {1, 2, . . . , n} as input, and they wish to determine whether or not the
intersection of all of their sets is empty. As we discussed above, attempts to prove lower bounds on the
communication complexity of disjointness have led to the discovery of fundamentally new techniques
like information complexity. Moreover, many lower bounds in other models, like data structures,
extension complexity, streaming algorithms and distributed computing are proved by reduction to the
lower bounds on the communication complexity of set disjointness.

When the number of parties k = 2, the key idea for all known lower bounds on the randomized
communication complexity of disjointness [53, 79, 11, 21] is to count the information: one can identify
a distribution on inputs and prove that any protocol with small communication must be devoting only
a small fraction of its communication towards a typical element of {1, 2, . . . , n}. These arguments give
the optimal lower bounds for randomized 2-party protocols computing disjointness.

The number-on-forehead model is the most important communication model [26] where optimal
lower bounds still elude us. Here there are k parties, and each party has an n-bit input written on
their forehead—each party can see the k − 1 inputs written on the other parties’ foreheads, but not
their own. This is an extremely powerful model. For example, k parties can compute any degree
k − 1 polynomial of their inputs very cheaply in this model—the variables of each monomial in such
a polynomial are completely visible to one of the parties, so the parties can exress the polynomial as
a sum of k polynomials that are computable by the parties. Then communication is needed only to
compute the sum of the polynomials, which can be done cheaply.

Lower bounds on multiparty communication complexity are important because several computa-
tional models such as circuits, branching programs, and propositional proofs can be used to obtain
efficient communication protocols. Strong enough communication complexity lower bounds for the
computation of any explicit function can therefore be used to prove lower bounds on these models
[26, 10, 30, 9, 78, 96]. In particular, lower bounds on the communication complexity of disjointness
have found applications to proof systems [14], circuit lower bounds [46, 81, 95, 50], lower bounds on
communication for problems related to combinatorial auctions [31, 64, 63, 32, 45, 66], lower bounds
in distributed computing [33], and oracle separations for complexity classes [1] (see the survey [29]).
Proving lower bounds for the number-on-forehead model is much more challenging, because the parties
share a lot of common information. Although we can prove optimal lower bounds in the number-in-
hand model, here the best known lower bounds are of the type n/2Θ(k). Counting arguments show
that there are functions that require communication Ω(n), but we do not know of specific functions
that such large communication. The information theory based approaches used in the past seem to
run into serious technical obstacles because of the strong correlations between the inputs.

Grolmusz described a clever protocol for disjointness in the number-on-forehead model, where the
parties need to communicate only O(log2 n+ k2n/2k) bits [44, 8].

A wide range of ideas have been employed to prove increasingly stronger lower bounds on the
communication complexity of disjointness in the number-on-forehead model. When k is large, Tesson
[92] and Beame, Pitassi, Segerlind and Wigderson [15] proved that the deterministic communication
complexity is Ω(log(n)/k). Sherstov [85, 86] introduced the pattern matrix method for proving lower
bounds in the case k = 2. The method was used to separate certain circuit classes by relating their
complexity to analytic properties of boolean functions, like their approximate degree. This tech-
nique was generalized to k > 2 by Chattopadhyay [27], Lee and Shraibman [59], and Chattopadhyay

and Ada [28]. These last two papers proved lower bounds of the type Ω
(
n1/(k+1)/22O(k))

on the
randomized communication complexity of disjointness. Beame and Huynh-Ngoc [13] extended these

methods further to prove that the randomized communication complexity is at least 2Ω
(√

log(n)/k
)
2−k.

Sherstov [87, 88] proved the best known lower bounds on randomized communication complexity of
Ω(
√
n/(k2k)). These results use powerful techniques such as Fourier analysis, Gowers norms, direc-

tional derivatives, and bounds on the approximate degree.
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In a somewhat anticlimactic paper, Yehudayoff and I [76] proved that the deterministic communi-
cation complexity of disjointness is at least Ω(n/4k), which almost matches Grolmusz’s upper bound.
In addition, we recovered Sherstov’s bounds of Ω(

√
n/(k2k)) with a simpler (though still sophisticated)

proof. Surprisingly, our deterministic lower bound does not use most of the complicated methods de-
veloped by past work—it uses a discrepancy based argument with a counterintuitive twist. It remains
open to prove the optimal lower bound of n/2Θ(k) on the randomized communication complexity.

Research Directions

Goal: New approaches to protocol compression. As far as we know, there could be a method
to compress protocols giving communication at most I logC. Such strong results were already proved
by [12] for external information. Recently Sherstov [89] gave better bounds for product distributions,
and Braverman and Kol [20] gave improved bounds for external information. These ideas seem to fall
short of proving better bounds for internal information, but they give new ways to think about these
problems.

Goal: Counterexamples to optimal compression. It is possible that known compression results
are already optimal. In some ways this would be an even more interesting outcome to this line of
research. The ideas developed in [41, 42, 75] suggest a way to generalize the counterexample to prove
the stronger lower bounds required to show that [12] is tight. The example is too technical to discuss
here.

Goal: Compression for multiparty protocols. All of our work on compression and direct sums
had to do with two party communication complexity. One could ask similar questions for the multi-
party scenario. While our results that have to do with information measured from the point of view of
an external observer do carry over to the multiparty setting, the direct sum results do not carry over.
The problem seems to be a matter of definition. The naive extension of the definition of information
from the viewpoint of the parties, namely I(XY Z;M |X) + I(XY Z;M |Y ) + I(XY Z;M |Z), where
X,Y, Z are the inputs and M are the messages in the protocol, does not make sense—one can show
that every boolean function can be computed with constant information when the inputs X,Y, Z are
distributed according to the number on the forehead model. It is an open question to find the right
definitions for this scenario. I feel that this question is closely related to the goal of proving better
lower bounds on the number-on-forehead model, which I discuss below.

Goal: Randomized lower bounds for disjointness in the number-on-forehead model. Can
we prove lower bounds on the randomized communication to match our deterministic lower bounds
[76]? The linear lower bounds for k = 2 are based on methods from information theory, and it is not
clear why similar methods will not eventually give lower bounds in the number-on-forehead setting.

Let me outline a new approach towards obtaining such lower bounds that I am pursuing. Here
I discuss the approach at a high level, omitting many details. A useful fact is that when k = 2,
the set of inputs x, y that lead to a given sequence of messages forms a combinatorial rectangle: the
set is of the form A × B for some sets A and B. Rectangles have the extremely useful feature that
if x, y are independent, then they remain independent even if we condition on the event that they
belong to the rectangle. This fact is used crucially in all information based methods to proving lower
bound. Now when k > 2, the relevant set of inputs has less structure—it is a cylinder intersection.
This is a set whose indicator function can be expressed as a product of functions χ1 · χ2 · . . . χk,
where χi does not depend on the i’th input. Cylinder intersections do not share the crucial feature of
combinatorial rectangles discussed above. For example, if k = 3, and x, y, z are mutually independent,
then conditioning on their being in a cylinder intersection can make them dependent. Thus, we cannot
rely on this property to give lower bounds for cylinder intersections.

My approach is to rely on a different feature shared by both cylinder intersections and rectangles.
Suppose x0, x1, y0, y1, z0, z1 ⊆ {1, 2, . . . , n} are 6 sets. Then call the set of tuples

P = {x0, x1} × {y0, y1} × {z0, z1} − {(x1, y1, z1)}
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a punctured cube. It is easy to see that if a cylinder intersection contains P , then it must contain
(x1, y1, z1) as well. Indeed, this is (nearly) a defining feature of cylinder intersections. The analogous
fact holds for rectangles on x, y using the analogous definition for 2 dimensional punctured cubes.

Suppose x, y, z are uniformly random disjoint sets, and S is an arbitrary set such that

P[(x, y, z) ∈ S] ≥ 2−n/100.

Then I conjecture that S must contain a punctured cube P as above, and moreover there must be an
element j for which j /∈ x0, y0, z0 but j ∈ x1, y1, z1. I know how to use information based methods to
prove the corresponding statement when k = 2. This leads to a new proof of the disjointness lower
bound that seems much more amenable to generalization to the cases where k > 2. If this approach
works, it would give a way to prove lower bounds on the randomized communication complexity of
disjointness when k > 2. We would let S be the large cylinder intersections witnessing that the inputs
are disjoint, and then the conjecture can be used to show that the error of the protocol must be too
large.

Goal: Optimal lower bounds in the number-on-forehead model. Essentially the only known
technique for proving lower bounds on the number-on-forehead model relies on using the Cauchy-
Schwartz inequality k times [10]. This kind of proof can prove a lower bound of at most n/2k. It is a
tantalizing goal to adapt information based methods to this setting and so prove stronger lower bounds.
A first step is to carry out the approach described above for proving lower bounds on disjointness.
If that approach is successful, then I would consider it feasible to generalize the approach to proving
stronger lower bounds for functions other than disjointness.

Data Structures

The concept of a data structures is one of the most basic concepts in computer science, with widespread
applications from increasing the efficiency of algorithms to providing efficient databases. The cell-probe
model, introduced by Yao [100], is the standard way to model data structures when proving lower
bounds—it is simple, yet general enough that any reasonable implementation of a data structure can
be described with it. The data structure is represented as an array of cells, each containing w bits.
Each access to an element of the array takes one unit of time. In static data structure problems,
an input x is preprocessed to give the array. Then, at run-time, an algorithm answers a query y by
accessing this array to compute a function f(x, y). The parameters of interest are the space (length of
the array), and the time (number of accesses required to answer queries). In dynamic data structure
problems, we maintain an object x. The algorithm of the data structure allows both updates to the
data x as well as queries to it. For example, we may want to maintain a graph while retaining the
ability to quickly add and remove edges, and ask whether two vertices are connected or not. The key
parameter of interest for dynamic data structures is the time (number of cell reads) required to carry
out all operations on the data.

Methods from communication complexity have found great success in proving lower bounds on
the space and time complexity for many data structure problems. A key observation, first made by
Miltersen, is that every data structure involves a communication protocol [62, 61]. The parties get the
inputs x, y involved in the static problem. If the data structure makes t queries to an array of size s to
compute f(x, y), then we obtain a protocol with t rounds of communication. In each round, the party
holding x sends log s bits to indicate the location of the cell being read, and the second party responds
with the contents of the corresponding cell. This reduction does loses something: one can never prove
that t log s > |x| using such an approach, because the trivial communication protocol where the first
party sends x can always be used to compute f(x, y) in the communication world. Consequently, if y
is an n-bit input, and the number of choices for x is polynomial4 in n, then the best lower bound on

4This is the most common setting of parameters for practically motivated data structure problems.
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time that one can hope for using communication is at most O(log n). One can use this approach and
lower bounds on the disjointness problem to give many tight lower bounds [68, 69].

A second way to leverage information theory based methods to prove lower bounds was found
by Fredman and Saks [39], who invented the chronogram technique to prove lower bounds on dy-
namic data structures. These ideas were used extensively by others to prove lower bounds on a wide
range of problems [70, 67, 71, 57, 101, 97]. A third technique to prove lower bounds, called the
cell-sampling technique, was pioneered by Panigrahy, Talwar and Wieder [65]. In a breakthrough,
Larsen [57] combined the chronogram technique with cell-sampling to prove lower bounds of the type
Ω(log2 n/ log log n) for dynamic data structure problems. These remain the strongest lower bounds
that we know how to prove in the dynamic setting.

I find data structure lower bounds attractive because many basic questions about the complexity
of data structures remain completely wide open, including problems that are very relevant to practice.
This suggests that there is something fundamentally new that one must discover in order to prove
lower bounds. For example, we do not know whether or not it is possible to have a deterministic
dynamic data structure that maintains a set of numbers S ⊆ {1, 2, . . . , n}, where all operations take
O(1) time, and the word size is O(log n). I suspect that the answer is that it is impossible to do this.
Here the operations we would like to support include inserting new numbers into S, deleting numbers
from S and querying whether or not a number belongs to S. There is a simple randomized data
structure that can do this, but is there a deterministic one? An even harder task is to maintain such a
set and allow for queries that compute the minimum element or median element of the set. Again, as
far as we know, all of these operations can be supported in O(1) time. The best known data structure
for these problems is the van Emde Boas tree, which can handle all such queries in time O(log log n)
[94]. It is curious that such basic questions about simple algorithmic primitives remain unresolved.

Together with Ramamoorthy [73], we made some progress in addressing some of these questions
under the assumption that the data structures are required to be non-adaptive. Prior to our work,
no other lower bounds were known for these problems in the cell-probe model. An operation is non-
adaptive if the identity of the cells being accessed is determined by the operation being performed
and independent of the contents of the cells read during the operation. Non-adaptive data structures
are useful in practice, because they require only one parallel time step to load the contents of cells
into memory. If S is maintained using a binary search tree, then numbers can be inserted, deleted
and queried non-adaptively in time O(log n), and one can compute the minimum and median of the
numbers adaptively in time O(log n). We showed that any data structure that handles insertions
non-adaptively cannot do much better—we prove that the time required for some operation must be
at least Ω(log n/ log log n). We obtained a number of different bounds for other basic problems based
on the same approach. Several past works have proved lower bounds on various computational models
under the assumption of non-adaptivity (see for example [55]). In the context of data structures, Brody
and Larsen [24] showed polynomial lower bounds for various dynamic problems in the non-adaptive
setting. Among other results, they showed that any data structure for reachability in directed graphs
that non-adaptively checks for reachability between pairs of vertices must take time Ω(n/w), where n
is the size of the underlying graph. [4, 43] proved non-adaptive lower bounds on static data structures
for the dictionary problem in the bit probe model.

Our results were obtained via an application of the famous sunflower lemma of Erdős and Rado
[35]. The sunflower lemma was used in the past to prove lower bounds on dynamic data structures by
Frandsen and Milterson [38] and then again for static data structures by Gal and Milterson [40]. The
lemma proves that any large collection of sets must contain a sunflower—a collection of sets whose
pairwise intersections are the same. The common intersection of all the sets in the sunflower is called
the core of the sunflower. In our work, we combine the lemma with the chronogram technique of
Fredman and Saks to prove our tight lower bounds. Given any data structure for maintaining a set
of numbers S as above, we let X1, . . . , Xn be sets of cells, where Xi is the set of cells accessed when
the algorithm inserts the element i. By the sunflower lemma, this collection of sets must contain a
sunflower. Our proof can be viewed as describing a communication process where each party only
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reads and writes to the core of the sunflower. Thus, the size of the core is related to the communication
in this process. Our lower bounds are proved by showing that the core must be large.

Research Directions

Goal: Understanding the cost of parallelizing data structures, and compressing data
structures. If a particular static data structure problem can be solved with m memory, and q
queries, and these parameters are best possible, how much memory does it take when the data struc-
ture gets k independent queries? Because of the connection to communication complexity listed above,
this question is closely related to the direct sum for asymmetric communication protocols. In many
respects it is more subtle. It would be interesting to understand if our work on compressing asym-
metric communication has application to the data structures problem given above. We have not yet
understood the connections clearly.

Goal: Lower bounds on basic data structures maintaining sets of numbers. Our results in
[73] only apply to non-adaptive data structures. However, the intuition of the results does make sense
to me even for adaptive data structures. Intuitively, if the data structure run in time O(1), then there
can be very little information exchanged between subsequent operations of the data structure. There
is a communication process hiding in the data structure that one might be able to exploit to prove
lower bounds. An important goal is to prove lower bounds for such data structures that can compute
the minimum, median or predecessors of numbers.

Goal: Prove superlogarithmic lower bounds for static data structures. As we discussed
above, any argument that uses communication complexity to prove a lower bound on static data
structures cannot possibly prove superlogarithmic lower bounds. So, an interesting goal is to find a
technique that circumvents this barrier. Although communication complexity itself cannot be used to
achieve this goal, one can open the box of communication complexity, and attempt to use the various
tools there to attack this problem. For example, can we directly used methods based on discrepancy
or arguments analogous to those that were used to prove direct sum theorems to reason about data
structures? These are questions that I find very interesting.

Boolean Circuits

A boolean circuit is a general model of computation for computing functions f(x), where x is an n-bit
string. It is a directed acyclic graph where every vertex is called a gate. Each gate has in-degree
either 2 or 0. If the gate has in-degree 0, it is labeled by an input variable, otherwise it is labeled by a
function mapping 2 bits to 1 bit. Sometimes, the gates are restricted to coming from the De Morgan
basis, but I prefer to allow arbitrary gates. The circuit is evaluated by successively evaluating each
gate that can be evaluated. The circuit computes a function f if some gate in the circuit evaluates to
the value of the function. The size of the circuit is the number of gates, and the depth is the length
of the longest path in the graph.

From the perspective of proving lower bounds, boolean circuits are very similar to algorithms—
every algorithm with running time t(n) can be simulated by a boolean circuit whose size isO(t(n) log t(n)).
The depth of the circuit can be viewed as a measure of how much time it takes to compute the output
when the gates are evaluated in parallel. Shannon showed that random functions require depth n and
size Ω(2n/n) with high probability [84], and Lupanov showed that every boolean function of n bits
has circuit depth at most n, and size at most O(2n/n) [60]. Is there a function that has a polynomial
sized circuit yet still requires circuits of depth n? Is there an explicit example of a function that
requires circuit size bigger than O(n)? These kinds of questions remain far out of reach of our current
techniques. It is easy to prove that any function that depends on all n of its inputs requires a circuit
of size at least n just to read all the inputs. We know of no argument that beats this trivial bound.
In my opinion, these are two of the most important open problems in complexity theory.
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There is a huge body of work in understanding bounded-depth circuits. Here the gates are restricted
to computing the logical AND, OR, or NOT functions, and the number of alternations between AND
and OR’s are restricted to being a constant. Note that without restricting the number of alternations
in the circuit, the first condition is not really a restriction—one can compute any function of 2 bits
with a small number of AND, OR and NOT gates. This work on bounded depth circuits has led
to such gems as Hastad’s famous switching lemma [47], and Smolensky and Razborov’s algebraic
methods for proving lower bounds [91, 80]. One can show that even computing the parity function
(
∑
i xi mod 2) requires exponential sized circuits with such restrictions.
In recent years, I have been thinking about other kinds of reasonable circuit models that one might

consider to guide the search for techniques that might lead to lower bounds on general boolean circuits.
Pavel Hrubeš and I considered the model of boolean circuits where each gate can compute an arbitrary
boolean function of k bits, where k is a parameter [50]. We called these circuits of medium fan-in. This
model of computation is much stronger than the general model of boolean circuits described above,
which corresponds to k = 2. Counting arguments show that most functions require exponential size
even when k = n/2. In our work we managed to prove non-trivial lower bounds when k = Θ(n). The
trivial lower bound says that O(1) gates are sufficient for the circuit to read all of its inputs, whereas
our work shows that there are simple functions that require Ω(log2 n) gates. This result is proved
by appealing to lower bounds on the number-on-forehead model of communication. Indeed, optimal
lower bounds in the number-on-forehead model would lead to lower bounds of the type

√
n for our

circuit model. We also consider circuits of depth 2 in this model, and showed that one can define
simple functions that require nΩ(1) gates.

Indeed, we showed that our model occupies a central place in understanding many other concrete
models of computation. For example, our model can simulate oblivious branching programs, and the
results we proved recover the best known lower bounds for oblivious branching programs. Moreover,
we showed that any lower bound of the type Ω(n/ log log n) would imply that the same function cannot
be computed by a boolean circuit with k = 2, size O(n) and depth O(log n). Thus, even a sublinear
lower bound in our model would imply new lower bounds for the standard model of boolean circuits.
This is interesting, because many of the techniques used to prove lower bounds on concrete models, like
counting entropy, fail to work exactly because one cannot fix the values in the computation without
fixing the input. However, if we are only aiming to prove sublinear lower bounds, then these techniques
come back into play.

Another direction I have pursued recently is in response to a nice question posed by Kulikov and
Podolskii [56]. They consider a model for boolean circuits where every gate can only compute the
majority function of at most k bits. If the depth of the circuit is restricted to being 2, how large
does k need to be for the circuit to compute the majority of all n of its input bits? The question is
related to a long sequence of works in complexity theory. In their famous paper, Ajtai, Komlós and
Szemerédi [2] constructed a sorting network of depth O(log n). This is a network that sorts n numbers
by comparing pairs of numbers in each step. Each such sorting operation can be simulated by the
majority of 2 inputs and a constant, and the majority of n bits is simply the middle number in the
sorted order of all the bits. So, their construction shows that the majority of n bits can be expressed
as a tree of majorities of depth O(log n), each taking only 3 bits as input. This was followed by a
simple non-explicit construction of such a tree by Valiant [93]. More recently, Allender and Koucký
[3] showed that the majority of n bits can be computed by a constant depth circuit with gates that
compute the majority of nε bits, for any constant ε < 1. All of this work is intimately connected to
understanding the class TC0 of constant depth circuits using threshhold gates (see [52] for details).

Kulikov and Podolskii found several non-trivial circuits of depth 2 that compute majority for small
values of n, and proved that one requires k ≥ Ω(n0.7+o(1)). Amano and Yoshida [6] showed that for
every odd n ≥ 7, one can compute the majority with k = n− 2. Engels, Garg, Makino and I showed
that such a circuit must have k ≥ Ω(n4/5). Our lower bound was proved using classical techniques from
discrepancy theory. In very recent work, Hrubeš, Ramamoorthy, Yehudayoff and I gave essentially
tight bounds [49], proving that k = Ω(n). Interestingly, our approach is completely different from all
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of the results mentioned here. We use algebra and finite fields to reason about these circuits.
There is an important open problem in this domain that looks quite similar to direct sum questions.

It was proposed by Karchmer, Raz and Wigderson [54]. Karchmer and Wigderson showed that the
circuit depth of a boolean function is equivalent to the 2-party communication complexity of a game
associated with the function. Given a function f mapping n bits to 1 bit, set fn to be the function
mapping n2 bits to 1 bit as follows: first apply f n times to each block of n bits, and then apply f
one more time to the n outputs obtained. The goal here is to show that if f requires circuits of large
depth, then fn must require circuits of even larger depth. If it takes c bits of communication to solve
the corresponding game for f , how many bits must it take to do it for fn? [54] showed that even
a mild lower bound would separate logarithmic depth circuits from polynomial size circuits. In fact,
[54] managed to use this approach to successfully separate circuits of depth O(log n) from polynomial
sized circuits, when all circuits only use AND and OR gates.

Research Directions

Goal: Prove new lower bounds on circuits of medium fan-in. This is likely to be a challenging
task, because any new lower bounds would imply new lower bounds on well studied models like
oblivious branching programs. Moreover, this model appears to be stuck at bounds that require new
lower bounds on the number-on-forehead model.

Goal: Study other models of depth-2 circuits. Kulikov and Podolskii’s question inspires many
similar questions about depth-2 circuits. For example, if our goal is to compute the majority of n bits,
and each of our circuits can compute an arbitrary symmetric function, can we still prove strong lower
bounds on k? What other classes of functions can be studied in this context? The methods developed
in [50, 34, 49] are all quite different. They give us a family of techniques that can be applied to answer
questions of this type.

Goal: Understand the Karchmer-Raz-Wigderson conjecture. I have returned to the topic
of trying to prove bounds on boolean composition on and off over the years, but have never made
substantial progress on it. I hope to find a variant of these questions that is both tractable and gives
insights that I feel constitute progress on this approach.

Extension Complexity of Linear Programs

Polytopes are subsets of Euclidean space that can be defined by a finite number of linear inequalities.
They are fundamental geometric objects that have been studied by mathematicians for centuries. Any
n× d matrix A and n× 1 vector b define the polytope P = {x ∈ Rd : Ax ≤ b}.

Besides being fundamental geometric objects, polytopes are useful from the perspective of algo-
rithm design, because many interesting computational problems can be reduced to the problem of
optimizing a linear function over some polytope—in other words, by writing a linear program. The
complexity of solving optimization problems using linear programming is related to the number of
facets of the polytope. Therefore, it is important to find polytopes that encode computational prob-
lems and have a small number of facets. A generic way to do this is via extensions of the polytope.
A polytope Q ⊆ Rk is an extension of a polytope P ⊆ Rd if there is a linear map L : Rk → Rd such
that L(Q) = P . The extension complexity of P is the minimum number of facets achieved by any
extension of P . The point is that efficient linear programming can be carried out using the extension
of P instead of P itself. This could give much more efficient linear programs.

Yannakakis was the first to attempt to prove lower bounds on the extension complexity of polytopes
that encode algorithmic problems [98]. He used such a lower bound to refute the existence of efficient
linear programs for the underlying problem. Starting with the breakthrough work of Fiorini, Massar,
Pokutta, Tiwary and de Wolf [37], a sequence of papers has shown how to use techniques for proving
lower bounds on communication complexity to prove lower bounds on the extension complexity of
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natural polytopes [16, 17, 21]. This approach has led to exponential lower bounds for the extension
complexity of the well known correlation polytope. The key observation is that proving lower bounds
on extension complexity is equivalent to proving that a particular bivariate distribution associated
with the polytope cannot be expressed as a convex combination of product distributions. This very
much like showing that a boolean matrix cannot be partitioned into monochromatic rectangles, and
the same techniques that are useful to show such results in communication complexity apply here.

One of the most celebrated lower bounds on extension complexity is an exponential lower bound on
the extension complexity of the matching polytope, proved by Rothvoß [82]. The matching polytope
is the convex hull of all matchings in a graph. Rothvoß’s proof is quite complicated. The proof does
not directly appear to use the connection to communication complexity described above. My student
Sinha and I simplified this proof and brought it into a form that is very close to the information based
lower bound on disjointness. This simplification will appear in our upcoming book with Yehudayoff,
and is already available in the draft of our book. Sinha [90] went on to significantly strengthen
Rothvoß’s result, and answer an open question posed by Rothvoß. Sinha showed that if K is any
polytope, and M is the matching polytope for graphs of size n, with M ⊆ K ⊆ (1 + ε)M , then the
extension complexity of K must be at least

(
n

O(1/ε)

)
. This bound is tight. This proves that not only

can linear programming not be used to optimize over the matching polytope, it cannot be used to
find approximate solutions any more efficiently than by using a known linear program. Sinha’s proof
opens the door to proving many lower bounds on extension complexity using techniques that I am
very familiar with.

Research Directions

Goal: Prove new lower bounds on the extension complexity of polytopes approximating
Knapsack. Avis and Tiwary, and Pokutta and Vyve [7, 72] have already shown that the extension
complexity of the Max-Knapsack polytope is exponential. Just like for the matching polytope, there
is a upper bound on approximate extension for this polytope, of size

(
n

1/ε

)
. This suggests that similar

techniques as used by Sinha for the matching polytope could be applicable to the Knapsack polytope.

Goal: Give communication complexity based lower bounds on the complexity of SDPs.
Lee, Raghavendra and Steurer have managed to prove strong lower bounds on the complexity of
semidefinite programs [58]. There is a strong analogy between their work and the work discussed above
proving lower bounds on the extension complexity of polytopes. The SDP’s correspond to quantum
communication protocols. It is an important goal to simplify this connection more concretely and find
simple proof for the extension complexity of SDPs.

Broad Impact

Our proposal aims to solve problems in a rich variety of areas. For a process to be considered a
computational process, it must necessarily move information around in some way. Given this, it is
not surprising how useful the methods used in communication complexity have been to proving lower
bounds on other models of computation. I believe that I am well placed to further extend these
connections. I hope that the work of my collaborators and I will have the effect of making researchers
in complexity theory more familiar with the beautiful tools available for in communication complexity.

Educational: I have already developed a graduate level course about the uses of information theory
in computer science, and a course on communication complexity. Similar courses have since been
taught by my collaborators Mark Braverman at Princeton, and by Amir Yehudayoff at the Technion.
I intend to encourage computer science students to learn techniques from information theory, and
allow students well versed in information theory to hear about computer science problems that they
are well placed to tackle.
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Communication Complexity Book: In recent years, communication complexity has emerged
as a master method for proving lower bounds in theoretical computer science. This progress has
happened so quickly that most researchers who use communication complexity are not aware of all
of the different ways it has been applied in different areas. Amir Yehudayoff and I are writing a
textbook on communication complexity to give a single reference for all of the basic methods that
have been discovered. An early draft of our text is available here: https://homes.cs.washington.

edu/~anuprao/pubs/book.pdf. The book will be published by Cambridge University Press in 2019.
We hope that it becomes a standard resource for communication complexity. Our goal is to keep an
online version of the book abreast with new developments in communication complexity, as much as
is possible.

Organizational Roles in Research Events: I plan to continue organizing research events to
encourage young researchers to enter the target research areas of this project. I have a strong track
record of helping to run such events in the past. I discuss these past contributions in the section
on Results from Prior NSF support. In the coming years, I plan to continue running a workship at
Banff on communication complexity, which has become a meeting point for researchers in areas related
to communication complexity. In addition, I would like to run organize additional semesters at the
Simons institute on lower bounds and communication complexity.

Relevant Results from Prior NSF Support

Project: Lower bounds on the Complexity of Parallelization This project investigated ques-
tions related to parallelizing computation. The goal was to prove lower bounds using information
complexity.

Intellectual Merit: In this project, my collaborators and I proved several results relating
information complexity and communication complexity. With his student Ramamoorthy, the PI
showed how protocols with asymmetric information complexity can be compressed. With my
(then) postdoc Hrubes, I proved new lower bounds for the boolean circuits of medium fan-in.
My student Sinha proved a new lower bound on the extension complexity of approximations
to the matching polytope supported by this project. With Yehudayoff, I proved nearly optimal
lower bounds on the communication complexity of disjointness in the number-on-forehead model.
Each of these results represents a fundamental advance in our state of knowledge in proving lower
bounds. The results are discussed below in the products section.

Broad Impact: I have been involved in organizing several workshops and academic semesters
built around the themes discussed in this research proposal. These include a weeklong workshops
at Banff International Research Station in 2014 and 2017, a Trimester at the Institute Henri
Poincare in 2016, and a semester long program at the Simons Institute in 2018. The research
in this proposal has the potential for interaction with several different research communities,
most notably information theory. The program we ran at the Institute Henri Poincare was
meant to bring together researchers from information theory and computer science. Hundreds
of researchers learnt about work happening in both areas. I have also organized sessions at
the Information Theory and Applications (ITA) center to communicate research from computer
science to information theorists.

Related Products:

• Anup Rao and Sivaramakrishnan Ramamoorthy. How to Compress Asymmetric Commu-
nication, CCC 2015. We study the relationship between communication and information
in 2-party communication protocols when the information is asymmetric. If IA denotes
the number of bits of information revealed by the first party, IB denotes the information
revealed by the second party, and C is the number of bits of communication in the protocol,
we show that one can simulate the protocol using order IA + IB +

4
√
IBC3 +

√
IBC logC
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bits of communication, and one can simulate the protocol using order IA · 2O(IB) bits of
communication. The first result gives the best known bound on the complexity of a simu-
lation when IA � IB , C3/4. The second gives the best known bound when IB � logC. In
addition we show that if a function is computed by a protocol with asymmetric informa-
tion complexity, then the inputs must have a large, nearly monochromatic rectangle of the
right dimensions, a fact that is useful for proving lower bounds on lopsided communication
problems.

• Anup Rao and Amir Yehudayoff. Simplified Lower Bounds on the Multiparty Communi-
cation Complexity of Disjointness, CCC 2015. We show that the deterministic number-
on-forehead communication complexity of set disjointness for k parties on a universe of
size n is Ω(n/4k). This gives the first lower bound that is linear in n, nearly matching
Grolmusz’s upper bound of O(log2(n) + k2n/2k). We also simplify Sherstov’s proof show-
ing an Ω(

√
n/(k2k)) lower bound for the randomized communication complexity of set

disjointness.

• Boaz Barak, Mark Braverman, Xi Chen and Anup Rao. How to compress interactive
communication, SICOMP 2013. Test of time award. We describe new ways to simulate
2-party communication protocols to get protocols with potentially smaller communication.
We show that every communication protocol that communicates C bits and reveals I bits
of information to the participating parties can be simulated by a new protocol involving
at most Õ(

√
CI) bits of communication. In the case that the parties have inputs that

are independent of each other, we get much better results, showing how to carry out the
simulation with Õ(I) bits of communication.

• Makrand Sinha. Lower bounds for Approximating the Matching Polytope. SODA 2018.
We prove that any extended formulation that approximates the matching polytope on n-
vertex graphs up to a factor of (1 + ε) for any 2/n ≤ ε ≤ 1 must have at least

(
n
αn

)
defining

inequalities, where 0 < α < 1 is an absolute constant. This is tight, as exhibited by the
(1 + ε) approximating linear program obtained by dropping the odd set constraints of size
larger than (1 + ε)/ε from the description of the matching polytope. Previously, a tight
lower bound of 2Ω(n) was only known for ε = O(1/n), whereas for 2/n ≤ ε ≤ 1, the best
known lower bound was 2Ω(1/ε). The key new ingredient in our proof is a close connection
to the non-negative rank of a lopsided version of the unique disjointness matrix.

• Anup Rao. Parallel Repetition in Projection Games and a Concentration Bound. STOC
2008. Invited to the SICOMP special issue. If the players cannot win a cooperative two
player game with probability better than (1−ε), what’s the best they can do in the repeated
game? We improve earlier results of [77] and [48], who showed that the players cannot win

all copies in the repeated game with probability better than (1− ε/2)Ω(nε2/c) (here c is the
length of the answers in the game), to show that the probability of winning all copies is
(1−ε/2)Ω(εn) as long as the game is a “projection game”, the type of game most commonly
used in hardness of approximation results.

• Pavel Hrubeš, Anup Rao. Circuits of Medium Fan-in, CCC 2015. We consider boolean
circuits in which every gate may compute an arbitrary boolean function of k other gates,
for a parameter k. We give an explicit function f : {0, 1}n → {0, 1} that requires at least
Ω(log2 n) non-input gates when k = 2n/3. When the circuit is restricted to being layered
and depth 2, we prove a lower bound of nΩ(1) on the number of non-input gates. When
the circuit is a formula with gates of fan-in k, we give a lower bound Ω(n2/k log n) on the
total number of gates.

Our model is connected to some well known approaches to proving lower bounds in complex-
ity theory. Optimal lower bounds for the Number-On-Forehead model in communication
complexity, or for bounded depth circuits in AC0, or extractors for varieties over small fields
would imply strong lower bounds in our model. On the other hand, new lower bounds for
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our model would prove new time-space tradeoffs for branching programs and impossibility
results for (fan-in 2) circuits with linear size and logarithmic depth. In particular, our
lower bound gives a different proof for a known time-space tradeoff for oblivious branching
programs.

As a consequence, we prove that the internal information cost (namely the information
revealed to the parties) involved in computing any relation or function using a two party
interactive protocol is exactly equal to the amortized communication complexity of com-
puting independent copies of the same relation or function. We also show that the only
way to prove a strong direct sum theorem for randomized communication complexity is
by solving a particular variant of the pointer jumping problem that we define. Our work
implies that a strong direct sum theorem for communication complexity holds if and only
if efficient compression of communication protocols is possible.

• Mark Braverman, Anup Rao, Omri Weinstein, Amir Yehudayoff. Direct Products in Com-
munication Complexity. FOCS 2013. We give exponentially small upper bounds on the
success probability for computing the direct product of any function over any distribution
using a communication protocol. Let suc(µ, f, C) denote the maximum success probability
of a 2-party communication protocol for computing the boolean function f(x, y) with C
bits of communication, when the inputs (x, y) are drawn from the distribution µ. Let µn

be the product distribution on n inputs and fn denote the function that computes n copies
of f on these inputs.

We prove that if T log3/2 T � (C − 1)
√
n and suc(µ, f, C) < 2

3 , then suc(µn, fn, T ) ≤
exp(−Ω(n)). When µ is a product distribution, we prove a nearly optimal result: as long
as T log2 T � Cn, we must have suc(µn, fn, T ) ≤ exp(−Ω(n)).
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[35] Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of London
Mathematical Society, 35:85–90, 1960.
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