
Lecture 1: Computational Models
Anup Rao

Semptember 27, 2018

In this first lecture, we discuss what computation is, and see a few
examples of computational models.

Our goal in this course is to mathematically capture the concept
of computation. A program is certainly a recipe for carrying out a
computation, but is this the only type of computation that makes
sense?

A first attempt at defining a computation might be to say that
it is a process that manipulates information in some way, or has an
input-output behavior. For example, when reading this sentence, your
brain takes the information encoded graphically and translates that
information into letter, words and ideas, and so performs a compu-
tation. At this point you may argue that we have made the model One can think of the weather as a

computational process: given the
current state of clouds, ocean currents
and many other factors, the laws of the
universe produce an outcome that uses
the information about the current state
to generate a new state. But is there any
benefit to thinking about the weather
this way?

too general to be useful, so it might be useful to explain what is not
computation. A useful mathematical abstraction that captures some
of the things we have discussed is the abstraction of functions. Given
two sets D, R, a function

f : D → R

assigns a value f (x) ∈ R to every element of x ∈ D. So, if we think of
D as the set of all possible images, and R as the set of all sentences, f
can be defined to be the function that maps the picture of a sentence
to the actual sentence. This abstraction misses something that is
inherent about physical computational processes: computations are
local. At any point, the state of two parts of the brain that are far
away from each other cannot affect each other.

Informally, a computational process is a process that manipulates
information in some local or restricted way. Interesting computational
processes are ones that manage to have a complicated global effect
through incremental local steps. There are many such computational
processes, and we will not be able to talk about all of them in de-
tail in this course. The aim of this course is to show you, in broad
strokes, how you can start to reason about such computational pro-
cesses and their complexity.

Computational Complexity

How can we distinguish computational processes that are doing
something complicated from processes that are doing something



lecture 1: computational models 2

simple. What makes some things easy and other things hard?
In order to tackle this kind of question, we first need mathematical

models that captures exactly what the process we are interested in
can do cheaply, and what takes more effort. We would like our mod- For example, we are very good at

reading text, but multiplying 100
digit numbers takes us considerably
more time, even though the amount of
information is contained in a picture
is much more than the information
contained in a 100 digit number.

els to be general enough that they capture most real computational
processes, and simple enough that we can ask and understand easy
questions about them.

A crucial issue is how the information being manipulated is en-
coded. For example, if numbers are encoded using their prime fac-
torization (both in the input and output), then it is slightly easier for
us to multiply two 100 digit numbers than if they are encoded us-
ing their digits. Under this representation, addition of numbers, and
comparing two numbers becomes harder. Addition is hard when numbers are

represented in terms of their factor-
ization because we would have to
factor the sum to bring it back in this
representation. We do not know of
any efficient algorithms for factoring
numbers.

So, given a function f : D → R, we would like to be able to
quantify how difficult it is to compute this function. We shall make
two immediate simplifications.

• We shall identify the the input domain with the set of binary
strings of arbitrary length {0, 1}∗, or the set of strings of some
fixed length {0, 1}n. Since every countable set can be mapped to
the first set, and every finite set can be mapped to the second, this
does not lose too much generality.

• We shall often restrict the output domain to be R = {0, 1}. This
does lose some generality, but it will turn out that most of our
ideas will easily translate to the situation when the output do-
main is bigger. Further, for most examples of functions to bigger
domains that are hard to compute, we shall be able to easily find
corresponding boolean functions that are hard to compute.

Next we give several examples of computational models, and
discuss some strengths and weaknesses of each of them.

Finite Automata

A finite automaton can be used to compute functions f :
{0, 1}∗ → {0, 1}. An example is shown in Figure 1. One starts at
the start state (labeled S), and reads the input bit by bit, transition-
ing on the states. The output is 1 if and only if we ever hit the accept
state (labeled A).

The weaknesses of this model:

• The set of functions f : {0, 1}∗ → {0, 1} that can be computed by
any finite automaton is not very general. Even more damning— Only functions that represent regular

languages can be computed by a finite
automaton.



lecture 1: computational models 3

S

A

0
0

1

1

Figure 1: A finite state automaton that
accepts strings that have a 1 in some
odd location.

finite automata cannot compute functions that we can efficiently
compute in practice. Try to prove that no finite automaton

can compute the function whose out-
put is 1 if and only if the input is a
palindrome?

• It does not give a way to measure the complexity of computing
functions. We can count the number of states in the automaton,
but since this is always a constant independent of n, this measure
of complexity doesn’t scale with the input size, and so is not very
meaningful.

Finite automata are a uniform model of computation. This means
that there is a single description of the process that can be used to
carry out the computation no matter how long the length of the input
is.

Branching Programs

Branching programs are very similar to finiate automata. This
is a model that computes functions f : {0, 1}n → {0, 1}.

A branching program is a directed acyclic graph where every
vertex is labeled by either a variable or an output value. Every vertex
that is labeled by a variable has exactly two edges coming out of it,
one labeled 1 and the other labeled 0. There is a special designated
start node in the graph. To carry out the computation, we start at
the start state, and follow the indicated path by reading the variable
that labels the state that we are on in each step. When we hit a node
labeled by an output value, the output of the computation is that
output value.

This model has the advantage that it can actually compute all
functions:



lecture 1: computational models 4

X1

X2

X2

X3

X3

0

1
1
1
0

0

X4

X4

1
1
0

0

Xn

Xn

0

1

1
1
0

0

Figure 2: A branching program that
computes whether or not the number of
1’s in the input is even.

Fact 1. Every function f : {0, 1}n → {0, 1} can be computed by a
branching program with 2n+1 nodes.

Proof Consider the branching program that is a rooted tree, where
every node at level i reads the variable xi. The program simply re-
members the entire input. Each of the 2n inputs x gets mapped to a
distinct leaf, so that leaf can be labeled by the value f (x) to compute
f .

In class, we discussed how every finite
automaton for a function f : {0, 1}∗ →
{0, 1} can be used to get a branching
program of size O(n) that computes f
on all the inputs of length n.

Moreover, it comes with a meaningful measure of complexity: we
can count the number of nodes in the branching program and use
that as a measure of how complex the computation is. Branching
programs will be used later in the course as a way to capture com-
putations that use a small amount of space (or memory). The main
drawback of branching programs is that there are algorithms which
run very quickly on computers in practice that we don’t know how
to model as small branching programs. So, the branching program
complexity doesn’t seem to capture everything we want to capture
about efficient computation.

Branching programs define a non-uniform model of computation.
The program only tells you how carry out computation on an input
of length n. To talk about the asymptotic complexity of computing a
function f : {0, 1}∗ → {0, 1} that is defined on strings of all lengths,
we need to talk about families of branching programs, and discuss
the complexity of the programs as n gets larger and larger.

Linear Programs

We did not discuss linear programs in class. Nevertheless,
many of you may encounter linear programs in other classes, so I will
discuss them here in the notes.

Linear programs are an extremely popular way to define algo-
rithms in practice. Given an n bit input x, a linear program defines an
m× k matrix Ax, a m× 1 column vector bx and a 1× k vector c. The



lecture 1: computational models 5

output of the program is the solution to:

minimize cxy

subject to Axy ≤ bx,

where here Axy ≤ bx asserts that every coordinate of Axy is at most
bx.

For example, suppose the input x is a directed graph on n vertices,
and we wish to compute the length of the shortest path from s to t.
For every potential edge e = (u, v), setting

xe =

1 if e is an edge in the graph,

n otherwise,

one can show that the output of the following linear program (with
ye being a variable for each edge e) is the length of the shortest path
from s to t:

minimize ∑
e

xe · ye

subject to ∑
e out of s

ye ≥ 1,

∑
e into t

ye ≥ 1,

∑
e into v

ye = ∑
e out of v

ye, for every v 6= s, t

ye ≥ 0, for every v 6= s, t

The complexity of the program is the number of equations used
to define it. There is something we left out of this model: we gave
no way to measure the complexity of computing Ax, bx, cx from x.
If we allow arbitrarily complex ways to get to Ax, bx, cx from x, you
can compute any function with this model: just set cx = f (x), and
Ax = bx = 0 to compute f (x). It is known that linear programs cannot

be used to compute whether or not a
graph has a perfect matching, which
is an algorithmic problem that we do
know how to solve efficiently, if Ax , bx
are not allowed to depending on x.

Communication Complexity

Communication complexity has been a very useful model
for proving lower bounds. In this model, there are two parties Alice
and Bob. Alice is given an n-bit string x, and Bob is given an n-bit
string y. In order to compute a function f (x, y), they exchange mes-
sages about their inputs.

So, Alice sends Bob a message m1(x). Bob responds with a mes-
sage m2(y, m1). In this way, they exchange messages until someone



lecture 1: computational models 6

fa(x) = 0

b

c

a

fb(x) = 1

fc(y) = 1

0

owned by Bob

owned by Alice Figure 3: An execution of a protocol.

knows the value of f . The communication complexity of f is the min-
imum number of bits that must be communicated before the players
know the value of f .

To formally define a communication protocol, we use a protocol
tree. See Figure 3. This is a rooted binary tree where every node is
associated with one of the players, and associated with a boolean
function. To execute the protocol, Alice and Bob start at the root
of the tree. If the root is owen by Alice, she evaluates the function
associated with the root on her input and sends the result to Bob.
The result of the evaluation determines which of the two children
the protocol moves to next. In this way, the players reach a leaf of the
tree, which is labeled with the output of the computation. The cost of
the tree is simply its depth, which determines the maximum number
of bits that may be exchanged during any execution of the protocol.

The main drawback of this model is that it is not very practical:
just because a function has an efficient communication protocol
doesn’t mean that we can compute it efficiently in practice. For ex-
ample, in this model, one can compute any boolean function of x
with 1 bit of communication. However most functions cannot be
computed efficiently in practice.

The main advantage of this model is that almost every other com-
putational model seems to involve communication. So lower bounds
on the communication complexity of functions are extremely useful
to prove lower bounds on the complexity of computing functions in
other models of computation.

Turing Machines

A Turing Machine is essentially a program written in a par-
ticular programming language. The program has access to three



lecture 1: computational models 7

arrays and three pointers:

• x which is accessed using the pointer i. x is an array that can be
read but not written into.

• y which is accessed using the pointer j. y can be read and written
into.

• z which is accessed using the pointer k. z can only be written into.

The machine is described by its code. Each line of code reads the
bits xi, yj, zk, and based on those values, writes new bits into yj, zk,
and then possibly after incrementing or decrementing i, j, k, jumps
to a different line of code or stops computing. Initially, the input is
written in x and the goal is for the output to be written in z at the
end. i, j, k are all set to 1 to begin with. The arrays all have a special
symbol to denote the beginning of the tape and a special symbol to
denote the blank parts of the tape.

For example here is a program that copies the input to the output
using a single line:

1. If xi is empty, then HALT. Else set zk = xi and increment each of
i, k. Jump to step 1.

Here is another that outputs the input bits which are in odd loca-
tions:

1. If xi is empty, then HALT. Else set zk = xi, increment each of i, k
and jump to step 2.

2. If xi is empty, then HALT. Else increment each of i, k and jump to
step 1.

The exact details of this model are not important. The main reason
we introduce it is to have a fixed model of computation in mind. For
example, it is easy to show that adding more tapes or increasing the
alphabet size does not change the model significantly, as we shall
discuss further next time.


	Computational Complexity
	Finite Automata
	Branching Programs
	Linear Programs
	Communication Complexity
	Turing Machines

