
Lecture 10: Space
Anup Rao

October 30, 2018

In this lecture, we begin our exploration of space. Recall, So far, we have only discussed time
complexity.that the space complexity of an execution of a Turing machine is

defined to be the maximum value attained by the pointer to the work
tape during the execution. So, it is just a count of the number of cells
used on the work tape during the execution of the algorithm.

There is a subtle issue that came up last time in lecture. I think the
best way to resolve this issue is use a slightly different definitino of
Turing machines: we add the constraint that the pointer to the input
tape can never exceed n—it is not allowed to move past the last bit
of the input. If the code tries to move the pointer to the right beyond
this last input bit, the machine simply leaves the pointer where it is.
This does not affect any of the theorems or facts we proved in past This is to address an issue with the

number of possible configurations of
the machines before. I will discuss the
issue again below.

lectures.
The smallest space class that makes sense is L = DSPACE(log n).

This is because even maintaining a pointer to the input takes log n
work space. While we do not necessarily need to maintain such
pointers in the work tape, if we want to be able to design algorithms
that have the same complexity regardless of the specific choices made
for the Turing machine, then we need to maintain such pointers in
order to simulate one Turing machine by another. For example, if we are designing an

algorithm to add two n-bit integers a, b,
then if a, b are written on two different
tapes (or interleaved on one tape), the
computation can be carried out with
O(1) space. If, on the other hand, the
inputs are written on one tape a, b, then
we need space O(log n) in order to
correctly maintain counters to allow us
to scan between the corresponding bits
ai and bi .

As usual the non-deterministic version of this class is when the
machine can make non-deterministic choices, and is called NL =

NSPACE(log n). There is a subtle issue about the definition of NL: if
we allow the machine to remember the non-deterministic choices that
it made for free (for example by giving it access to a guess tape that
it can read from), then the power of the class changes significantly.
Another interesting class is PSPACE =

⋃
c DSPACE(nc). The corre-

sponding non-deterministic class is actually equal to PSPACE, as we
shall prove below.

A very useful fact when composing space bounded computations
is the following:

Claim 1. If it takes space s1(n) ≥ log n to compute f and space s2(n) ≥
log n to compute g, then one can compute the composition f (g(x)) in space
O(s1(n) + s2(n)).

The idea is that in the computation of f , every time we need to
lookup an output symbol of g(x), we can recompute it. Thus, as long
as s1(n), s2(n) are enough to store pointers into the output locations,



lecture 10: space 2

we actually only need to sum the spaces to compute the composition.

Savitch’s Algorithm

One of the most interesting small space algorithms is Savitch’s graph
search algorithm.

Theorem 2 (Savitch). Given a directed graph G with two special vertices
s, t, there is an algorithm that can compute whether or not there is a path
from s to t in the graph, using space O(log2 n).

Proof We shall give a recursive algorithm that can compute the
values A(u, v, i) as defined below:

A(u, v, i) =

1 if there is a path from u to v of length 2i,

0 else.

Note that A(u, v, i) = 1 if and only if ∃z such that A(u, z, i− 1) = 1
and A(z, v, i− 1) = 1. Thus, to compute A(u, v, i), do

1. For all z, recursively compute A(u, z, i− 1) and A(z, v, i− 1), and
output 1 if both computations result in 1.

2. Otherwise output 0.

If the size of the graph is 2s, there are s + 1 recursive calls, where
A(u, v, 0) can be computed trivially by looking up the corresponding
bit in the input. In each recursive call, the algorithm needs to store
only the vertices u, v, z, which takes O(log n) space. Thus the total
space used is O(log2 n).

One reason Savitch’s algorithm is so important is because, in some
sense, graph search is a complete problem for small space computa-
tion. Let us discuss this point next.

Configuration Graphs

Given an input x to a (possibly non-deterministic) Turing machine
M, the configuration graph GM,x is the directed graph where there
is a distinct vertex for every possible value of the pointers to the
input and work tapes, the value of the string written in the work tape
and the current line-number of the line of code that is about to be
executed in the machine. There is an edge from u to v if and only if
the configuration u could possibly become the configuration v after
one step of the program is executed.



lecture 10: space 3

start

output 1

output 0

Figure 1: An example of a configuration
graph.

Lemma 3. If the machine uses space s(n) ≥ Ω(log n), then the number of
vertices in the configuration graph is at most 2O(s(n)).

Proof The number of options for locations of the pointers is at The number of options for the pointer
that points to the input tape is at
most n. This is because we do not
allow the pointer on the input tape
to move past the actual input. As we
discussed in class, even if we did not
place this restriction, we can prove that
if the Turing machine moves the input
pointer more than 2O(s(n)) steps beyond
the input, then the machine does not
halt. So, even without this restriction,
the number of possible values for the
input pointer is at most 2O(s(n)).

most n · s(n). The number of options for the contents of the work
tape is at most 2O(s(n)). The number of options for the lines of code is
O(1). Thus, the number of different vertices in the graph is at most
the product of these numbers, which is at most 2O(s(n)).

One can check that the configuration graph GM,x can be computed
efficiently:

Theorem 4. If M is a space s(n) machine, then for every x, GM,x can be
computed in space O(s(n)).

The algorithm that computes GM,x is straightforward—on input
M, x, the algorithm enumerates all possible configurations. For each
one, it simulates a single execution step of the machine M to deter-
mine where the out edges from the corresponding configuration go.

Consequences to Space Complexity Classes

One consequence of the notion of configuration graphs is that small
space machines must have bounded time complexity.

Theorem 5. If s(n) ≥ log n, then DSPACE(s(n)) ⊆ DTIME(2O(s(n))).

Proof Consider any machine M computing a function f ∈ DSPACE(s(n)).
We claim that its running time must be at most 2O(s(n). For any fixed
input, the configuration graph has at most 2O(s(n)) vertices by Lemma
3. If the running time is more than the number of vertices , the turing
machine must repeat a configuration, and then it will enter an infinite
loop and will never halt. That contradicts the fact that M computes f .



lecture 10: space 4

Corollary 6. L ⊆ P.

Corollary 7. PSPACE ⊆ EXP.

Moreover, given any non-deterministic machine, one can simulate
it deterministically by first computing its configuration graph, and
then running Savitch’s algorithm. This gives:

Theorem 8 (Savitch). For any space-constructible s : N→N,

NSPACE(s(n)) ⊆ DSPACE(s(n)2).

We obtain the following corollaries to Theorem 8.

Corollary 9. NL ⊆ L2 = DSPACE(log2 n).

Corollary 10. PSPACE = NPSPACE.


	Savitch's Algorithm
	Configuration Graphs
	Consequences to Space Complexity Classes

