
Lecture 13: Randomized Algorithms
Anup Rao

November 13, 2018

In this lecture, we start to talk about randomized algorithms.

Probability Spaces

A probability space is a set Ω such that every element a ∈ Ω is as-
signed a number 0 ≤ Pr[a] ≤ 1 (called the probability of a), and
∑a∈Ω Pr[a] = 1.

An event in this space is a subset E ⊆ Ω. The probability of the
event is ∑a∈E Pr[a]. For example, imagine we toss a fair coin n times.
Then the probability space consists of the 2n possible outcomes of the
coin tosses. If E is the event that the first k coin tosses are heads, this
event has probability exactly 2−k. Given two events E, E′, we write
Pr[E|E′] to denote Pr[E ∩ E′]/ Pr[E′]. This is the probability that E
happens given that E′ happens. We say that E, E′ are independent if
Pr[E ∩ E′] = Pr[E] · Pr[E′]. In other words, E, E′ are independent if
Pr[E|E′] = Pr[E].

A real valued random variable is a function X : Ω → R. The number
of heads in the coin tosses is a random variable. The expected value
of a random variable X is defined as E [X] = ∑a∈Ω Pr[a] · X(a). The
following lemma is a very useful fact about random variables.

Lemma 1 (Linearity of expectation). If X, Y are real random variables,
then E [X + Y] = E [X] + E [Y].

Proof

E [X + Y] = ∑
a∈Ω

Pr[a] · (X(a) + Y(a))

= ∑
a∈Ω

Pr[a] ·Y(a) + ∑
a∈Ω

Pr[a] · X(a)

= E [X] + E [Y] .

Here is an expectation basic magic
trick: Tell your audience to generate
two sequences of coin tosses—one
generated using 200 flips of a coin,
and the second generated by hand.
You leave the room, and they write
both sequences on a black board. Then
you come back into the room and
immediately point out the sequence
that was generated by hand. The trick:
a random sequence is very likely to
have a run of 7 heads or tails, while
people tend to not insert such a long
run into a sequence that they think
looks random.

For example, let us calculate the expected number of runs of see-
ing 7 contiguous heads or tails in a 200 coin tosses. Let Xi be 1 if
there are 7 heads or tails that start at the i’th position, and 0 other-
wise. If 1 ≤ i ≤ 194, then E [Xi] = Pr[Xi = 1] = 2 · 2−7 = 1/64. If
i ≥ 196, then Xi = 0. On the other hand, the total number of such
runs is ∑194

i=1 Xi. So by linearity of expectation, the expected number
of such runs is 194/64 ≈ 3.031.

lecture 13: randomized algorithms 2

In class, we discussed the waiting time to see the first heads. Sup-
pose you keep tossing a fair coin until you see heads. Let T be the
number of tosses you make. What is the expected value of T? The
key observation is that if the first toss is a heads, you stop with
T = 1. Otherwise, the rest of the experiment is exactly the same
as the original random experiment. So, we get:

E [T] = (1/2) · 1 + (1/2) · (1 + E [T])

⇒E [T] · (1− 1/2) = 1

⇒E [T] = 2.

Randomized Algorithms

We shall give a few examples of problems where randomness helps
to give very effective solutions.

Matrix Product Checking

Suppose we are given three n× n matrices A, B, C, and want to check
whether A · B = C. One way to do this is to just multiply the ma-
trices, which will take much more than n2 time. Here we give a ran-
domized algorithm that takes only O(n2) time.

Input: 3 n× n-matrices A, B, C
Result: Whether or not A · B = C.
Sample an n coordiante column vector r ∈ {0, 1}0,1 uniformly at
random ;

if A(B(r)) = C(r) then
Output “Equal”;

else
Output “Not equal”;

end

Algorithm 1: Algorithm for Multiplication Checking

The algorithm only takes O(n2) time. For the analysis, observe
that if AB = C, then the algorithm outputs “Equal” with probability
1. If AB 6= C, the algorithm outputs “Equal” only when ABr = Cr ⇒
(AB− C)r = 0. We shall show that this happens with probability at
most 1/2.

Let D = AB − C. Then D 6= 0, so let dij be a non-zero entry of
D. Then we have that the i’th coordinate (Dr)i = ∑k dik · rk. This

lecture 13: randomized algorithms 3

coordinate is 0 exactly when rj = (1/dij)∑k 6=j dikrk. Finally, observe

Pr

[
rj = (1/dij) ∑

k 6=j
dikrk

]

= ∑
a

Pr

[
a = (1/dij) ∑

k 6=j
dikrk

]
· Pr

[
rj = a|a = (1/dij) ∑

k 6=j
dikrk

]

≤ 1/2 ∑
a

Pr

[
a = (1/dij) ∑

k 6=j
dikrk

]
= 1/2.

Exercise: Modify the above algorithm so that the probability the
algorithm outputs “Equal” when AB 6= C is at most 1/4.

2-SAT

A two SAT formula is a CNF formula where each clause has exactly
2-variables. Here we give a randomized algorithm that can find a
satisfying assignment to such a formula, if one exists.

Input: A two sat formula φ

Result: A satisfying assignment for φ if one exists
Set a = 0 to be the n-bit all 0 string;
for i = 1, 2, . . . , 100n2 do

if φ(a) = 1 then
Output a;

end
Let ai, aj be the variables of an arbitrary unsatisfied clause.
Pick one of them at random and flip its value ;

end
Output “Formula is not satisfiable”;

Algorithm 2: Algorithm for 2 SAT

If φ is not satisfiable, then clearly the algorithm has a correct out-
put. Now suppose φ is satisfiable and b is a satisfying assignment,
so φ(b) = 1. We claim that the algorithm will find b (or some other
satisfying assignment) within 100n2 steps with high probability. To
understand the algorithm, let us keep track of the number of coordi-
nates that a, b disagree in during the run of the algorithm. Observe
that during each run of the for loop, the algorithm picks a clause that
is unsatisfied under a. Since b satisfies this clause, a, b must disagree
in one of the two variables of this clause. Thus the algorithm reduces
the distance from a to b with probability 1/2.

Thus we can think of the algorithm as doing a random walk on the

lecture 13: randomized algorithms 4

line. There are n + 1 points on the line, and at each step, if the algo-
rithm is at position i it moves to position i + 1 with probability 1/2
and to position i − 1 with probability at least 1/2. We are interested
in the expected time before the algorithm hits position 0. Let

ti = E [# steps before hitting position 0 from position i] .

Then we have the following equations:

t0 = 0,

ti = (1/2)ti+1 + (1/2)ti−1 + 1 i 6= 0, n

⇒ ti − ti−1 = ti+1 − ti + 2

tn = 1 + tn−1.

Thus we can compute:

tn = (tn − tn−1) + (tn−1 − tn−2) + . . . + (t1 − t0)

= 1 + 3 + . . .

=
n

∑
j=1

(2j− 1) = 2

(
n

∑
j=1

j

)
− n = n(n + 1)− n = n2.

Thus the expected time for the algorithm to find a satisfying as-
signment is n2.

Lemma 2.

Pr[algorithm does not find satisfying assignment in 100n2 steps] < 1/100.

Proof We have that

n2 ≥ E [# steps to find assignment]

=
∞

∑
s=0

s · Pr[s steps to find assignment]

≥ Pr[at least 100n2 steps are taken] · 100n2.

Therefore,

Pr[more than 100n2 steps are taken] < 1/100.

Examples not discussed in class

Max Cut

Given a graph G = (V, E), a subset S ⊂ V is called a cut of the graph.
The size of the cut is the number of edges that cross from S to V − S.

lecture 13: randomized algorithms 5

It is known to be NP-hard to compute the MAX-cut of a graph. Here
we give a simple randomized algorithm that will compute a cut that
is half as big as the biggest cut in expectation.

The algorithm is just to pick the subset S at random, by includ-
ing every vertex in S with probability half. For each edge e, let Xe be
the random variable that is 1 if e goes from S to V − S, and 0 other-
wise. Then we see that the size of the cut is exactly ∑e∈E Xe. We can
compute E [Xe] = 1/2, and so by linearity of expectation,

E

[
∑
e∈E

Xe

]
= ∑

e∈E
E [Xe] = |E|/2.

Fingerprinting

Suppose Alice has an n-bit string x and Bob has an n-bit string y,
and they want to check that they are equal. Naively this takes n
bits of communication between them. We can do much better using
randomization.

Alice samples a random prime number p from the set of primes
that are less than cn ln n, for some constant c that we shall pick later.
She then sends p and x mod p to Bob. Bob checks that x mod p is
equal to y mod p. Thus they only need to communicate O(log n) bits
in this process.

If x = y, this will always produce the right outcome. We shall
argue that if x 6= y, the probability that they make a mistake is going
to be very small. To do this, we need a theorem:

Theorem 3 (Prime number theorem). Let π(a) denote the number of
primes that are at most a. Then lima→∞

π(a)
a/ ln a = 1.

When x 6= y, the above process fails only when p divides x − y.
Since |x − y| ≤ 2n, x − y can have at most n prime factors. On the
other hand, by the prime number theorem, the number of primes of
size up to cn ln n is at least cn ln n/(ln(cn ln n)) = Ω(cn). Thus the
probability that the prime Alice picks divides x− y is at most O(1/c).

	Probability Spaces
	Randomized Algorithms
	Examples not discussed in class

