Lecture 15: The Schwartz-Zippel Lemma and the
 Determinant

Anup Rao

November 27, 2018

Schwartz-Zippel Lemma

Recall that a polynomial $p(x, y, z)$ is an expression of the form

$$
14 x^{2} y^{5} z^{8}-3 x^{3}+17 y^{6} z^{3}
$$

The degree of the polynomial is the maximum of the sums of the powers of the variables in any monomial. So in the last example, the degree is 15 .

The Schwartz-Zippel Lemma turns out to be quite useful for randomized algorithms:

Lemma 1. Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial of degree d, such that p is not the 0 polynomial. Let S be any set of numbers, and let a_{1}, \ldots, a_{n} be n random numbers drawn from S. Then $\operatorname{Pr}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq d /|S|$.

Proof We prove the lemma by induction on n. When $n=1$, the theorem follows from the fact that any non-zero degree d polynomial in one variable has at most d roots. Thus $p(a)=0$ only when a is a root, which happens with probability at most d.

For the general case. Let us write the polynomial in the form

$$
p\left(x_{1}, \ldots, x_{n}\right)=x_{n}^{\ell} \cdot q\left(x_{1}, \ldots, x_{n-1}\right)+r\left(x_{1}, \ldots, x_{n}\right),
$$

where here r is a polynomial in which the degree of x_{n} is at most $\ell-1$. So we simply gather all the terms which have maximum degree in x_{n}.

Now let E_{1} be the event that $p\left(a_{1}, \ldots, a_{n}\right)=0$, and let E_{2} be the event that $q\left(a_{1}, \ldots, a_{n-1}\right)=0$. Then we have that

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]+\operatorname{Pr}\left[E_{1} \wedge \neg E_{2}\right] \\
& =\operatorname{Pr}\left[E_{2}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]+\operatorname{Pr}\left[\neg E_{2}\right] \cdot \operatorname{Pr}\left[E_{1} \mid \neg E_{2}\right] \\
& \leq \operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{1} \mid \neg E_{2}\right] .
\end{aligned}
$$

By induction, since q is a degree $d-\ell$ polynomial, $\operatorname{Pr}\left[E_{2}\right] \leq(d-$ $\ell) /|S|$. Since after x_{1}, \ldots, x_{n-1} are fixed in $\neg E_{2}$, we have that $p\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$ is a non-zero polynomial of degree ℓ, we have that $\operatorname{Pr}\left[E_{1} \mid \neg E_{2}\right] \leq$ $\ell /|S|$. Thus $\operatorname{Pr}\left[E_{1}\right] \leq d /|S|$.

Application: Algorithm for Perfect Matching

Given a bipartite graph G with n vertices on the left and n vertices on the right, a perfect matching in the graph is a set of n disjoint edges in the graph. Here we give a simple randomized algorithm for computing whether or not a given graph contains a perfect matching.

Recall that the determinant of an $n \times n$ matrix M is defined to be

$$
\operatorname{det}(M)=\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) \prod_{i=1}^{n} M_{i \pi(i)}
$$

where here S_{n} is the set of permutations on n elements, and $\operatorname{sign}(\pi)$ is either 1 or -1 depending on the permutation. We have algorithms for computing the determinant that run in time $O\left(n^{3}\right)$.

Now consider the matrix obtained from the input graph by setting

$$
M_{i j}= \begin{cases}x_{i j} & \text { if }(i, j) \text { is an edge }, \\ 0 & \text { otherwise }\end{cases}
$$

Then we have that $\operatorname{det}(M)$ is non-zero if and only if the graph has a perfect matching! Thus to test whether or not the graph has a perfect matching, it is enough to determine whether the polynomial $\operatorname{det}(M)$ is non-zero or not. Observe that $\operatorname{det}(M)$ is a polynomial of degree at most n. Calculating this polynomial explicitly is too time consuming, since in general it may have an exponential number of monomials. Instead the following randomized algorithm works:

Input: A bipartite graph G with n vertices on each side.
Result: Whether or not G contains a perfect matching For $i, j \in[n]$, sample $a_{i j}$ uniformly at random from the set $\{1,2, \ldots, 10 n\}$;
Set

$$
A_{i j}= \begin{cases}a_{i j} & \text { if }(i, j) \text { is an edge }, \\ 0 & \text { otherwise } ;\end{cases}
$$

```
if \(\operatorname{det}(A)=0\) then
    Output "No perfect matching";
else
    Output "There is a perfect matching";
end
```

Algorithm 1: Algorithm for deciding perfect matching
If the graph has no perfect matching, then clearly the polynomial $\operatorname{det}(M)=0$, so the algorithm always outputs that there is no perfect
matching. However, when the graph does contain a perfect matching, the probability that $\operatorname{det}(A)=0$ is at most $1 / 10$ by the SchwartzZippel lemma.

