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1 Intersection Theorems

1.1 Intersecting sets

Consider all the subsets of {1, 2, . . . , n} that contain 1. Every two such sets intersects each other.
This gives 2n/2 sets with this property, and the lemma below shows that you can’t do better:

Lemma 1. Let A1, . . . , Ar ⊆ {1, 2, . . . , n} be distinct sets that pairwise intersect. Then r ≤ 2n/2.

Proof For every set S ⊆ {1, 2, . . . n}, either S or its complement must not be in the list of sets.
So the list can contain only half of all sets.

If we restrict our attention to sets of size `, then picking all the sets of size k that contain 1
gives

(
n−1
k−1
)

sets, and we can’t do better:

Theorem 2 (Erdös, Ko, Rado). If F is an intersecting family of sets of size k, then F has at most(
n−1
k−1
)

elements.

Proof (Due to Katona)
We start by understanding the special case when all the sets are intervals. For each s ∈ [n],

define the cyclic interval sets Bs = {s, s+ 1, . . . , s+ k − 1}, where the numbers are viewed mod n.

Claim 3. At most k of the sets Bs can belong to F .

Note that Bi is disjoint from Bi+k. Thus if B0 is included, then −(k − 1) ≤ s ≤ (k − 1) for all
other sets of F , but only half of these remaining ones can be included since only one of each pair
(B−(k−1), B1), . . . , (B−1, Bk−1) can be included. That proves the claim.

Now apply a random permutation to the universe. Any fixed k-set can get mapped to
(
n
k

)
positions by the permutation, of which n correspond to intervals. Thus the probability that the
set becomes an interval is exactly n/

(
n
k

)
. Thus the expected number of intervals from the family is

|F| · n ·
(
n
k

)
≤ k ⇒ |F| ≤

(
n−1
k−1
)
.

1.2 The Sunflower Lemma

A sunflower is a collection of sets S1, . . . , Sp that have exactly the same pairwise intersection. p
will be called the number of petals.

Lemma 4. Let F be a family of sets of cardinality `. If |F| > `!(p − 1)`, then F contains a
sunflower with p petals.
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Proof We use induction on `. For ` = 1, there are more than p − 1 disjoint sets that form a
sunflower.

For larger `, let D be a maximal collection of pairwise disjoint sets from F . If |D| ≥ p, we are
done, since D is a sunflower. Otherwise, let A be the union of the sets of D. Then |A| ≤ (p− 1)`,
and every set in F must intersect some set of A by the maximality of A. Thus, there must be some
element of x ∈ A that is in F/(p − 1)` = (` − 1)!(p − 1)`−1 sets. Construct a family F ′ by taking
these sets out, and removing x from them. By induction, F ′ has a sunflower with p petals, from
which we obtain a sunflower in F by adding back the element x.

It is not known whether this is the right bound or not. Let A1, . . . , A` be disjoint sets of size
p − 1. Consider the family of sets {S : ∀i, |S ∩ Ai| = 1}. This family has (p − 1)` sets, yet no
sunflower with p petals.

So here is a conjecture that is open:

Conjecture 1. For every p, there is a constant C such that any family with C` sets of size ` must
have a sunflower with p petals.

2 Monotone Circuits and Functions

Given the difficulty of proving lower bounds on general circuits, most success stories have to do
with restricted classes of circuits. Last time, we considered the setting of linear functions and linear
circuits. Today we shall discuss a different kind of restriction.

A monotone function f : {0, 1}n → {0, 1} is a function that has the property that increasing
the value of any input can only increase the value of the output. A monotone circuit is a boolean
circuit that only uses ∧ and ∨ gates (recall x∧ y = 1 if and only if x = y = 1, and x∨ y = 0 if and
only if x = y = 0).

Claim 5. Every monotone function has a monotone circuit of size 2n.

Many interesting functions are in fact monotone. For example, the decision version of the
CLIQUE problem is a monotone function: given an input graph, output 1 if and only if the graph
has a clique of size k. Since this problem is NP-hard, showing that there is no polynomial sized
circuit computing it would show that P is not equal to NP.
Remark By using DeMorgan’s law, and the fact that ∧,∨,¬ form a boolean basis, you can
always rewrite every circuit so that the only negations are applied directly to the inputs, and the
rest of the circuit is made of ∧ and ∨ gates.

3 A lower bound for the monotone complexity of CLIQUE

We can represent a graph on n vertices using
(
n
2

)
bits where each bit indicates whether an edge is

present or not. Given any graph G represented this way, and any set S ⊆ [n], set

KS(G) =

{
1 if G contains a clique on the vertices of S,

0 else.
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For a parameter k, set

Kk =
∨

S⊆[n],|S|=k

KS

to be the function that outputs 1 if and only if the input has a clique of size k. Both Kk and KS

are monotone. Beautiful ideas of Razborov (that were built on by others) lead to the following
theorem:

Theorem 6. Let ε > 0 be any constant. Then for k large enough in terms of ε, if k < n1/3−ε, any

monotone circuit that computes Kk must have size at least 2
√
k.

3.1 Ready, Steady,

In order to motivate some of the ideas in the proof, let us start by considering a special case.
Imagine that we are given a circuit where the gates can be divided into two layers. The bottom
layer is all ∧ gates, and the top layer is all ∨ gates. In other words, there are sets of edges E1, . . . , Er,
and

Kk =
∨
i

∧
e∈Ei

xe.

In this case, we shall try to prove that r must be very large. The first idea to do this is something
that is reminiscent of the lower bound on the size of a resolution proof for the pigeon hole principle:

Idea 1. We restrict the inputs to be cliques.

Each term
∧
e∈Ei

xe can be made much better if we assume that the only inputs that have a
k-clique will be those that have edges exactly in one k-clique. Let Si be the set of vertices that
are touched by the edges of Ei. Then under this assumption, we might as well replace each

∧
e∈Ei

with KSi ! Indeed, if the input does contain a clique, then by our assumption, the edges of Ei are
included only if the edges of Si are included. On the other hand, if the input does not contain a
clique, KSi is always smaller than

∧
e∈Ei

xe, so our circuit must still work. Thus we are now left
with the circuit ∨

i

KSi .

This starts to make the circuit look like the definition of Kk, for which we know r =
(
n
k

)
must be

large. Observe that if |Si| < k for some i, we can make the circuit fail by putting a clique on Si.
However, if all |Si| ≥ k and there are less than

(
n
k

)
sets, there must be some k-set that does not

contain any of the Si’s. The circuit will fail on this k-set.
Simple as that proof was, it actually contains the beginnings of several ideas that are needed in

the general case.

3.2 Go!

The idea is to show that any monotone circuit can be approximated by an OR of clique functions as

before. Given any monotone circuit of size 2
√
k that computesKk, we shall show how to approximate

each gate f by a function f∗ that is either a constant or
∨
iKSi , where here |Si| ≤

√
k, and there

are at most t terms in the OR. Note that every monotone function can be written as an OR of
AND’s, but in general we cannot bound the number of terms by the size of the circuit. For example
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the function
∧n
i=1(xi ∨ yi) has 2n terms when written as an OR of AND’s. This is seems like a

major obstacle. Razborov hurdles by using the sunflower lemma.
Recall that a sunflower is a collection of sets, where the i’th set is of the form Zi ∪ C, the Zi’s

are disjoint and non-empty and C is also disjoint from all the Zi’s. The lemma is that if any family
of sets has more than `!(p− 1)` sets of size at most `, then there must be a sunflower with p petals
in the family.

If you have the OR of a sunflower of cliques, then you can replace it with KC , where C is
the core. This can only increase the value of the circuit. Maybe it will increase it too much? To
avoid this danger, we restrict our clique-free inputs as well. We shall focus on graphs that are
(k − 1)-partite (and hence do not have a k-clique). Then we have the following lemmas:

Lemma 7. If G is a random (k − 1)-partite graph, and S ⊆ [n] is a set with |S| ≤
√
k, then

Pr [KS(G) = 1] > 1/2.

Proof The probability that any fixed pair of vertices is excluded in a random (k − 1)-partite
graph is exactly 1/(k − 1). Thus the probability that any edge is excluded is at most(√

k

2

)
/(k − 1) = (1/2)(k −

√
k)/(k − 1) < 1/2.

Lemma 8. If U1, . . . , Up are a sunflower with core C and sets of size ≤
√
k, then

∨
iKUi ≤ KC ,

and if G is a random (k − 1)-partite graph, Pr [
∨
iKUi(G) < KC(G)] < 2−p.

Proof If there is a clique on any Ui, then there is certainly a clique on C, so KC ≥ KUi . Sample
a random (k − 1)-partite graph by coloring each of the vertices of C with colors from [k − 1], and
then do the same for the rest of the graph. We have

Pr[KUi(G) = 1] = Pr[KC(G) = 1] · Pr[KUi(G) = 1|KC(G) = 1].

By Lemma 7, Pr[KUi(G) = 1] > 1/2, so Pr[KUi(G) = 0|KC(G) = 1] < 1/2. Given the coloring on
C, the events KUi(G) = 1 are mutually independent. Thus

Pr

[∨
i

KUi(G) = 0
∣∣∣KC(G) = 1

]
< 2−p.

Lemma 8 means we can always replace a sunflower configuration in our approximators by the
core. In order to use the lemma, for a small positive constant α > 0, we set

t = 2(1+α)
√
k log k ≥ (

√
k)! · (3

√
k log k)

√
k,

which will guarantee that (for k large enough), any t sets of size
√
k contain a sunflower with

p = 3 ·
√
k log k petals. Next we formally define the approximating functions.

• If f = xe is an input variable corresponding to the edge e, then it computes the function
f∗ = Ke.
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• If f = g ∨ h,
g∗ ∨ h∗ = KU1 ∨ · · · ∨KUc ,

where the Ui’s are distinct sets. f∗ is obtained by repeatedly replacing the sunflowers with
their cores until there are no more sunflowers (this may result in f∗ = 1).

• If f = g ∧ h,

g∗ ∧ h∗ =
∨
i,j

KSi ∧KTj .

In this case, we shall do three approximation steps:

1. a∗ is obtained by replacing each term KSi ∧KTj with KSi∪Tj .

2. b∗ is obtained by dropping all terms KU , where |U | >
√
k (if all sets are dropped we are

left with the function 0).

3. f∗ is obtained by repeatedly replacing the sunflowers with their cores until there are no
more sunflowers (this may result in f∗ = 1).

In this way we have defined an approximation f∗ for every gate f of the circuit. Let q denote the
output gate of the circuit.

The structure of the rest of the proof will be similar to our warm-up case. We shall first show
the following two lemmas:

Lemma 9. If G is a random (k − 1)-partite graph, then Pr[q∗(G) > q(G)] < 1/2.

Lemma 10. q∗ 6= 0.

If q∗ 6= 0, then Lemma 7 implies that q∗ accepts a random (k−1)-partite graph with probability
at least 1/2, which implies that q(G) = 1 for some (k − 1)-partite graph, a contradiction. Next we
prove the two lemmas.

Proof of Lemma 9 We proceed inductively on the gates of the circuit.

• For an input gate f , f∗ = f , so the lemma is true.

• If f = g ∨ h, by Lemma 8, replacing each sunflower by its core does not change its value
except with probability 2−p. Since there are at most t2 replacement steps,

Pr[f∗(G) 6= g∗(G) ∧ h∗(G)] < t22−p.

• If f = g ∧ h,

1. KSi(G) ∧KTj (G) ≥ KSi∪Tj (G), so a∗(G) ≤ g∗(G) ∧ h∗(G).

2. Dropping terms can only decrease the value, so b∗(G) ≤ a∗(G) ≤ g∗(G) ∧ h∗(G).

3. By Lemma 8, Pr[f∗(G) 6= b∗(G)] < t22−p.
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By the union bound, Pr[q∗(G) > q(G)] < 2
√
kt22−p ≤ 2

√
k+2(1+α)

√
k log k−3

√
k log k < 1/2.

Proof of Lemma 10 We claim that there there is a k-clique G such that q∗(G) ≥ q(G) = 1.
G will be a k-clique that does not contain any set U dropped in approximating the ∧ functions.
Indeed, each ∧ can generate at most t2 sets U that are dropped. Each such U is contained in

exactly
(n−√k
k−
√
k

)
sets of size k. We have,

2
√
kt2
(n−√k
k−
√
k

)(
n
k

) < t2
(

2k

n−
√
k

)√k
< t2

(
4k

n

)√k
≤ 2

√
k(2+(3+2α) log k−logn) < 1,

for α small enough, since k < n1/3−ε.
So such a k-clique G does exist. We shall prove inductively that f∗(G) ≥ f(G) for every gate

f of the circuit, which will prove the lemma.

• For any input gate f , f = f∗.

• If f = g ∨ h, by Lemma 8, f∗(G) ≥ g∗(G) ∨ h∗(G) ≥ g(G) ∨ h(G).

• If f = g ∧ h,

1. For any sets Si, Tj , KSi(G) ∧KTj (G) = KSi∪Tj (G), so a∗(G) = g∗(G) ∧ h∗(G).

2. Since G does not contain any clique U that has been dropped, b∗(G) = a∗(G) = g∗(G)∧
h∗(G).

3. By Lemma 8, f∗(G) ≥ b∗(G) = g∗(G) ∧ h∗(G) ≥ g(G) ∧ h(G).
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