
CSE431: Complexity Theory February 27, 2012

Lecture 14 Proof of PCP Theorem

Lecturer: Anup Rao Scribe:

References

1 Overview

Recall that we wish to prove a theorem of the type:

Theorem 1. For every constant ε > 0, there is a polynomial time computable function f mapping
3SAT formulas to 3SAT formulas such that if φ is a satisfiable formula, f(φ) is also satisfiable, and
if φ is not satisfiable, then any assignment can satisfy at most (7/8 + ε) fraction of all clauses in
f(φ).

We shall work with Constraint Gaphs.
A constraint graph with alphabet size k is an undirected graph on n vertices, such that every

edge e = {u, v} is labeled with a constraint function ce : [k] × [k] → {0, 1}. Throughout, we shall
think of k as a constant. The graph is satisfiable, if every vertex can be assigned a value from [k]
in such a way that the constraint of every edge is satisfied.

One can actually prove the following theorem:

Theorem 2. For every constant ε > 0, there is a constant k and a polynomial time computable
function f mapping constraint graphs to constraint graphs with alphabet size k such that if G is
a satisfiable graph, f(G) is also satisfiable, and if G is not satisfiable, then any assignment can
satisfy at most ε fraction of the edges of G.

Theorem 2 allows one to prove some version of Theorem 1 as follows. Start with any 3SAT
instance, and build the following bipartite constraint graph. Every vertex on the left corresponds
to a clause of the formula, and every vertex on the right corresponds to a variable of the formula.
The alphabet size will be 8. There is an edge between a clause vertex and a variable vertex if and
only if the clause contains the variable.

Any assignment to a clause vertex corresponds to assigning values to all the variables of that
clause (there are 8 possible ways to do this) and any assignment to a variable vertex corresponds to
assigning a binary value to the variable: say that the value is 0 if and only if the assigned value is 1.
The constraint between a clause and a variable is satisfied if and only if the clause is satisfied by the
assignment and the corresponding assignment to the variable is consistent with the value that the
variable is given in the assignment to the clause. So, for example, if the clause is (x1 ∨x2 ∨x3) and
the assignment to the vertex corresponding to x1 is 1 and the assignment to the clause is (0, 1, 1),
then the corresponding constraint is not satisfied.

Then observe that the constraint graph is satisfiable if and only if the formula is satisfiable.
Indeed, if the formula is satisfiable, one can simply use the obvious assignment to satisfy the
constraint graph. On the other hand, if the constraint graph is satisfiable, the assignment to the
variable vertices must satisfy all clauses. Thus we can use Theorem 2 on the resulting constraint

14 Proof of PCP Theorem-1

graph. Now suppose we have an arbitrary constraint graph with alphabet size k. Every assignment
to the variables can be encoded with a binary string, and each constraint ce can be encoded with
a 3SAT formula φe, whose size depends only on k, on the binary variables that corresponds to the
assignment to the vertices of the edge e. Then consider the formula

∧
e φe. If each small formula

has m clauses, then we get that if the original graph was satisfiable, so is this formula, but if the
original graph was not satisfiable, then any assignment can satisfy at most ε edges in the graph,
and so can satisfy at most 1 − (1 − ε)/m = 1 − Ω(1) fraction of the clauses of the final formula!
Thus, although we don’t get a result as strong as 7/8 + ε, we do get some constant fraction of
clauses that will not be satisfied.

Our main goal will be to prove Theorem 2 (or some variant of it). The idea for doing this is
similar in spirit to the Zig-Zag construction. We shall give several transformations on constraint
graphs. All of these transformations will preserve the property that the new graph is satisfiable if
and only if the old graph is. The goal is it to reduce the fraction of satisfiable edges:

Degree reduction Takes an arbitrary constraint graph G with edges E and outputs a new graph
G′ with edges E′ such that |E′| = O(|E|).

14 Proof of PCP Theorem-2

