CSE431: Complexity Theory	February 27, 2012
Lecture 15 Proof of PCP Theorem (Part 2)	
Lecturer: Anup Rao	Scribe:

References

1 Powering

We start with a constraint graph G that is an expander with eigenvalue bound λ, degree d and alphabet size k. Our goal is to generate G^{\prime} that is at most a constant factor bigger than G, such that G^{\prime} is satisfiable if and only if G is satisfiable, and if every assignment to G leaves at least γ fraction of constraints unsatisfied, then every assignment to G^{\prime} leaves at least $\Omega(t \gamma)$ fraction of the constraints unsatisfied. Here we don't care about the dependence on d, k, λ.

2 Construction

2.1 Before Stopping Random Walk

In order to describe the construction, we need to understand a particular kind of random walk on regular graphs. Consider the following process that samples a walk in the graph:

1. Sample a random vertex u_{1}. Set $i=1$.
2. With probability $1 / t$ terminate and return the walk sampled so far.
3. Sample a random neighbor u_{i+1} of u_{i}.
4. Set $i=i+1$ and go to step 2 .

2.2 After Stopping Random Walk

1. Sample a random vertex u_{1}. Set $i=1$.
2. Sample a random neighbor u_{i+1} of u_{i}.
3. With probability $1 / t$ terminate and return the walk sampled so far.
4. Set $i=i+1$ and go to step 2 .

The result of the sampling process is a sequence u_{1}, \ldots, u_{r}.
Lemma 1. In the after stopping random walk, $\mathbb{E}[r]=t$.

Proof Since after one step, the distribution of the remaining steps is the same, we have

$$
\begin{aligned}
& \mathbb{E}[r]=1 / t+(1-1 / t)(1+\mathbb{E}[r]) \\
& \Rightarrow \mathbb{E}[r]=t
\end{aligned}
$$

Next we describe the constraint graph G^{\prime} :
Vertices The vertex set is the same as in G.
Edges Every edge in G^{\prime} with end points u, v corresponds to a unique random walk whose length is at most $2 t$. The degree of G^{\prime} is thus $\sum_{i=1}^{2 t} d^{i}$. We shall add multiple edges so that picking a random edge in G^{\prime} corresponds to taking a random walk in G, conditioned on the event that the walk has length at most $2 t$.

Alphabet Let $B(u, t)=\{v \mid \operatorname{dist}(u, v) \leq B\}$, namely $B(u, t)$ is the ball of radius t around u in G^{\prime}. We shall interpret an assignment of ℓ^{\prime} to the vertices of G^{\prime} as defining a function on each vertex u,

$$
\ell_{u}^{\prime}: B(u, t) \rightarrow[k],
$$

that gives an opinion about what the assignment to all the vertices in the ball should be in the original graph G. The alphabet size is $k^{O\left(d^{B}\right)}$, where $B=O(t)$ is a parameter that we shall set later.

Constraints Given an edge $\{u, v\}$ in G^{\prime}, let $u=u_{0}, \ldots, u_{t}=v$ be the corresponding path. The constraint will check that for each $u_{i}, \ell_{u}^{\prime}\left(u_{i}\right)=\ell_{v}^{\prime}\left(u_{i}\right)$ and that $\ell_{u}^{\prime}\left(u_{i}\right), \ell_{u}^{\prime}\left(u_{i+1}\right)$ satisfy the constraint of the edge $\left\{u_{i}, u_{i+1}\right\}$ in G.

3 Analysis

It is clear that if G is satisfiable, then so is G^{\prime}. We shall prove:
Theorem 2. Suppose every assignment to the vertices of G must leave $\gamma<1 / t$ fraction of the edge constraints unsatisfied. Then every assignment to the vertices of G^{\prime} leaves $\Omega(t \gamma)$ fraction of the constraints in G^{\prime} unsatisfied.

We shall first outline the proof at a high level, and then fill in the details. Let ℓ^{\prime} be an arbitrary assignment to G^{\prime}. Then we shall first construct a related assignment ℓ to G. For now, think of ℓ_{v} as being set to the "majority" opinion of $\ell_{u}^{\prime}(v)$ where $u \in B(v, t)$. We shall define it more concretely later when we see how it should be defined.

Now consider the set of edges F that are violated by the assignment ℓ. We know that $|F| /(n d / 2)=\gamma$. We will show that $\Omega(t \gamma)$ fraction of the edges in G^{\prime} will correspond to paths that use an edge of F.

To this end, we use the concept of line-graphs. The line graph of a graph H, denoted $L(H)$ is the graph whose vertex set is the edge set of H, and two vertices are connected in $L(H)$ if and only if the corresponding edges share a vertex in H. We shall prove:

Lemma 3. If H is a regular graph, then the eigenvalues of $L(H)$ are the same as the eigenvalues of H except that $L(H)$ may have additional eigenvalues which are 0.

In particular, Lemma 3 implies that $L(G)$ is an expander.
Then we shall prove:
Theorem 4. Let S be any subset of the vertices in an expander graph such that the density of S is γ. Then the probability that a random path of length t touches S is at least $\Omega(\gamma t)$.

Let us prove this theorem now.

3.1 Analyzing ASRW

Lemma 5. Consider the distribution of an ASRW conditioned on making exactly $k(u, v)$ steps, for a fixed edge $\{u, v\}$. Let a be the initial vertex and b be the final vertex. Then b has the same distribution as the final vertex of a BSRW starting at v, and a is like the final vertex of BSRW starting at u, and the initial and final vertices are independent.
Proof If we were conditioning on $k \geq 1$ then the case of the final vertex would be clear, since we would just fix the path up to the first k visited vertices.

Let Y denote number of u, v steps, then

$$
\begin{aligned}
\operatorname{Pr}[b=w \mid Y \geq k] & =\operatorname{Pr}[b=w \mid Y \geq 1] \\
& =\frac{\operatorname{Pr}[b=w \wedge Y \geq 1]}{\operatorname{Pr}[Y \geq 1]} \\
& =\frac{\operatorname{Pr}[b=w \wedge Y=1]+\operatorname{Pr}[b=w \wedge Y \geq 2]}{\operatorname{Pr}[Y=1]+\operatorname{Pr}[Y \geq 2]},
\end{aligned}
$$

but $\frac{\operatorname{Pr}[b=w \wedge Y \geq 2]}{\operatorname{Pr}[Y \geq 2]}=\operatorname{Pr}[b=w \mid Y \geq 1]$. Thus $\operatorname{Pr}[b=w \mid Y=1]=\operatorname{Pr}[b=2 \mid Y \geq 1]$.
Consider any random path X_{1}, \ldots, X_{t} in the graph. Let N denote the number of vertices of this path that lie in S. Then we have:
Lemma 6. $\operatorname{Pr}[N>0] \geq \mathbb{E}[N]^{2} / \mathbb{E}\left[N^{2}\right]$.
This is an easy application of the second moment method:
Lemma 7. For any real valued random variables $A, B,|\mathbb{E}[A B]| \leq \sqrt{\mathbb{E}\left[A^{2}\right] \cdot \mathbb{E}\left[B^{2}\right]}$.
Proof Let $p_{a, b}$ denote $\operatorname{Pr}[A=a, B=b]$. Then

$$
\begin{aligned}
|\mathbb{E}[A B]| & \leq \sum_{a, b} p_{a, b}|a||b| \\
& =\sum_{a, b} \sqrt{p_{a, b}}|a| \cdot \sqrt{p_{a, b}}|b| \\
& \leq \sqrt{\sum_{a, b} p_{a, b} a^{2}} \cdot \sqrt{\sum_{a, b} p_{a, b} b^{2}} \\
& =\sqrt{\mathbb{E}\left[A^{2}\right] \cdot \mathbb{E}\left[B^{2}\right]}
\end{aligned}
$$

15 Proof of PCP Theorem (Part 2)-3

Proof of Lemma 6: Define

$$
Y= \begin{cases}1 & \text { if } N>0 \\ 0 & \text { else }\end{cases}
$$

Then by Lemma $7, \mathbb{E}[N]^{2}=\mathbb{E}[N Y]^{2} \leq \mathbb{E}[N] \cdot \mathbb{E}[Y]=\mathbb{E}\left[N^{2}\right] \cdot \operatorname{Pr}[N>0]$, which proves what we want.

To use Lemma 6, first note that each vertex of a random path is uniformly distributed, and so lands inside S with probability γ. Thus,

Claim 8. $\mathbb{E}[N]=t \gamma$.
To bound $\mathbb{E}\left[N^{2}\right]$, we shall need the expander mixing lemma, which you have proved in class:
Lemma 9. If U, V are subsets of vertices in a d-regular expander graph with eigenvalue bound $\lambda<1$, and E denotes the number of edges from U to V, then

$$
\left|E-\frac{d|U||V|}{n}\right| \leq \lambda d \sqrt{|U||V|}
$$

Lemma 10. If $\gamma<1 / t, \mathbb{E}\left[N^{2}\right]=O(t \gamma)$.
Proof Define the binary random variables

$$
Y_{i}= \begin{cases}1 & \text { if the } i \text { 'th vertex of the path lies in } S \\ 0 & \text { else. }\end{cases}
$$

Thus $N=\sum_{i=1}^{t} Y_{i}$, and $N^{2}=\sum_{i \leq j} Y_{i} Y_{j}$. If $i=j, \mathbb{E}\left[Y_{i} Y_{j}\right]=\mathbb{E}\left[Y_{i}\right]=\gamma$. If $i<j$, then

$$
\begin{aligned}
\mathbb{E}\left[Y_{i} Y_{j}\right] & =\operatorname{Pr}\left[Y_{j}=1 \mid Y_{i}=1\right] \operatorname{Pr}\left[Y_{i}=1\right] \\
& =\gamma \operatorname{Pr}\left[Y_{j}=1 \mid Y_{i}=1\right] \\
& =\gamma \operatorname{Pr}\left[X_{j} \in S \mid X_{i} \in S\right] .
\end{aligned}
$$

Now X_{j}, X_{i} have the same distribution as taking a random step in the expander that is the $j-i+1$ 'th power of G. The eigenvalue of this expander is λ^{j-i+1}. Thus, the expander mixing lemma says that of the total $d^{j-i+1}|S|$ edges coming out of S in this power, at most $d^{j-i+1}|S|^{2} / n+$ $\lambda^{j-i+1} d^{j-i+1}|S|=d^{j-i+1}|S|\left(\gamma+\lambda^{j-i+1}\right)$ of them go back to S.

Thus,

$$
\begin{aligned}
\mathbb{E}\left[N^{2}\right] & =\mathbb{E}\left[\sum_{i \leq j} Y_{i} Y_{j}\right] \\
& \leq \sum_{i=1}^{t} \gamma\left(1+\sum_{j=i+1}^{t}\left(\gamma+\lambda^{j-i+1}\right)\right) \\
& \leq \sum_{i=1}^{t} \gamma(1+t \gamma+O(1)) \\
& \leq \sum_{i=1}^{t} \gamma(1+O(1)) \leq O(t \gamma)
\end{aligned}
$$

By Lemma 10, Claim 8 and Lemma 6, we have proved Theorem 4.
Define ℓ in such a way that for a random walk u_{1}, \ldots, u_{t} and a random $i \in[t], \operatorname{Pr}\left[\ell_{u_{1}}^{\prime}\left(u_{i}\right)=\ell_{u_{i}}\right]$ is maximized. More concretely, we think of each path of length t, u_{1}, \ldots, u_{t} as voting the value $\ell_{u_{1}}^{\prime}\left(u_{i}\right)$ for the value of $\ell_{u_{1}}$, and then we set $\ell_{u_{i}}$ to be the symbol that got the most votes.

Now returning to the PCP. There are two cases. In the first case, the assignments $\ell_{v}^{\prime}(v)$ violate half the edges of F (i.e. $\gamma / 2$ fraction). In this case, every path that passes through F will detect this violation, so we are done.

If this is not true, then consider the set of vertices $S=\left\{u: \ell_{u} \neq \ell_{u}^{\prime}(u)\right\}$. It must be that S constitutes an $\Omega(\gamma)$ fraction of all vertices.

Now let u_{1}, \ldots, u_{t} be a random path, and let $N=\sum_{i=1}^{t} N_{i}$ denote the number of vertices u_{i} such that $\ell_{u_{i}} \neq \ell_{u_{1}}^{\prime}\left(u_{i}\right)$. Then, since ℓ_{u} the value that got at least $1 / k$ fraction of the votes, we must have that $1 / k$ fraction of all paths that

