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1 Powering

We start with a constraint graph G that is an expander with eigenvalue bound λ, degree d and
alphabet size k. Our goal is to generate G′ that is at most a constant factor bigger than G, such
that G′ is satisfiable if and only if G is satisfiable, and if every assignment to G leaves at least γ
fraction of constraints unsatisfied, then every assignment to G′ leaves at least Ω(tγ) fraction of the
constraints unsatisfied. Here we don’t care about the dependence on d, k, λ.

2 Construction

2.1 Before Stopping Random Walk

In order to describe the construction, we need to understand a particular kind of random walk on
regular graphs. Consider the following process that samples a walk in the graph:

1. Sample a random vertex u1. Set i = 1.

2. With probability 1/t terminate and return the walk sampled so far.

3. Sample a random neighbor ui+1 of ui.

4. Set i = i+ 1 and go to step 2.

2.2 After Stopping Random Walk

1. Sample a random vertex u1. Set i = 1.

2. Sample a random neighbor ui+1 of ui.

3. With probability 1/t terminate and return the walk sampled so far.

4. Set i = i+ 1 and go to step 2.

The result of the sampling process is a sequence u1, . . . , ur.

Lemma 1. In the after stopping random walk, E [r] = t.
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Proof Since after one step, the distribution of the remaining steps is the same, we have

E [r] = 1/t+ (1− 1/t)(1 + E [r])

⇒ E [r] = t.

Next we describe the constraint graph G′:

Vertices The vertex set is the same as in G.

Edges Every edge in G′ with end points u, v corresponds to a unique random walk whose length
is at most 2t. The degree of G′ is thus

∑2t
i=1 d

i. We shall add multiple edges so that picking a
random edge in G′ corresponds to taking a random walk in G, conditioned on the event that
the walk has length at most 2t.

Alphabet Let B(u, t) = {v|dist(u, v) ≤ B}, namely B(u, t) is the ball of radius t around u in G′.
We shall interpret an assignment of `′ to the vertices of G′ as defining a function on each
vertex u,

`′u : B(u, t)→ [k],

that gives an opinion about what the assignment to all the vertices in the ball should be in
the original graph G. The alphabet size is kO(dB), where B = O(t) is a parameter that we
shall set later.

Constraints Given an edge {u, v} in G′, let u = u0, . . . , ut = v be the corresponding path. The
constraint will check that for each ui, `

′
u(ui) = `′v(ui) and that `′u(ui), `

′
u(ui+1) satisfy the

constraint of the edge {ui, ui+1} in G.

3 Analysis

It is clear that if G is satisfiable, then so is G′. We shall prove:

Theorem 2. Suppose every assignment to the vertices of G must leave γ < 1/t fraction of the edge
constraints unsatisfied. Then every assignment to the vertices of G′ leaves Ω(tγ) fraction of the
constraints in G′ unsatisfied.

We shall first outline the proof at a high level, and then fill in the details. Let `′ be an arbitrary
assignment to G′. Then we shall first construct a related assignment ` to G. For now, think of `v as
being set to the “majority” opinion of `′u(v) where u ∈ B(v, t). We shall define it more concretely
later when we see how it should be defined.

Now consider the set of edges F that are violated by the assignment `. We know that
|F |/(nd/2) = γ. We will show that Ω(tγ) fraction of the edges in G′ will correspond to paths
that use an edge of F .

To this end, we use the concept of line-graphs. The line graph of a graph H, denoted L(H) is
the graph whose vertex set is the edge set of H, and two vertices are connected in L(H) if and only
if the corresponding edges share a vertex in H. We shall prove:
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Lemma 3. If H is a regular graph, then the eigenvalues of L(H) are the same as the eigenvalues
of H except that L(H) may have additional eigenvalues which are 0.

In particular, Lemma 3 implies that L(G) is an expander.
Then we shall prove:

Theorem 4. Let S be any subset of the vertices in an expander graph such that the density of S
is γ. Then the probability that a random path of length t touches S is at least Ω(γt).

Let us prove this theorem now.

3.1 Analyzing ASRW

Lemma 5. Consider the distribution of an ASRW conditioned on making exactly k (u, v) steps,
for a fixed edge {u, v}. Let a be the initial vertex and b be the final vertex. Then b has the same
distribution as the final vertex of a BSRW starting at v, and a is like the final vertex of BSRW
starting at u, and the initial and final vertices are independent.

Proof If we were conditioning on k ≥ 1 then the case of the final vertex would be clear, since
we would just fix the path up to the first k visited vertices.

Let Y denote number of u, v steps, then

Pr[b = w|Y ≥ k] = Pr[b = w|Y ≥ 1]

=
Pr[b = w ∧ Y ≥ 1]

Pr[Y ≥ 1]

=
Pr[b = w ∧ Y = 1] + Pr[b = w ∧ Y ≥ 2]

Pr[Y = 1] + Pr[Y ≥ 2]
,

but Pr[b=w∧Y≥2]
Pr[Y≥2] = Pr[b = w|Y ≥ 1]. Thus Pr[b = w|Y = 1] = Pr[b = 2|Y ≥ 1].

Consider any random path X1, . . . , Xt in the graph. Let N denote the number of vertices of
this path that lie in S. Then we have:

Lemma 6. Pr[N > 0] ≥ E [N ]2 /E
[
N2
]
.

This is an easy application of the second moment method:

Lemma 7. For any real valued random variables A,B, |E [AB] | ≤
√

E [A2] · E [B2].

Proof Let pa,b denote Pr[A = a,B = b]. Then

|E [AB] | ≤
∑
a,b

pa,b|a||b|

=
∑
a,b

√
pa,b|a| ·

√
pa,b|b|

≤
√∑

a,b

pa,ba2 ·
√∑

a,b

pa,bb2

=
√

E [A2] · E [B2]
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Proof of Lemma 6: Define

Y =

{
1 if N > 0,

0 else.

Then by Lemma 7, E [N ]2 = E [NY ]2 ≤ E [N ] · E [Y ] = E
[
N2
]
· Pr[N > 0], which proves what

we want.

To use Lemma 6, first note that each vertex of a random path is uniformly distributed, and so
lands inside S with probability γ. Thus,

Claim 8. E [N ] = tγ.

To bound E
[
N2
]
, we shall need the expander mixing lemma, which you have proved in class:

Lemma 9. If U, V are subsets of vertices in a d-regular expander graph with eigenvalue bound
λ < 1, and E denotes the number of edges from U to V , then∣∣∣∣E − d|U ||V |

n

∣∣∣∣ ≤ λd√|U ||V |
Lemma 10. If γ < 1/t, E

[
N2
]

= O(tγ).

Proof Define the binary random variables

Yi =

{
1 if the i’th vertex of the path lies in S,

0 else.

Thus N =
∑t

i=1 Yi, and N2 =
∑

i≤j YiYj . If i = j, E [YiYj ] = E [Yi] = γ. If i < j, then

E [YiYj ] = Pr[Yj = 1|Yi = 1] Pr[Yi = 1]

= γ Pr[Yj = 1|Yi = 1]

= γ Pr[Xj ∈ S|Xi ∈ S].

Now Xj , Xi have the same distribution as taking a random step in the expander that is the
j − i + 1’th power of G. The eigenvalue of this expander is λj−i+1. Thus, the expander mixing
lemma says that of the total dj−i+1|S| edges coming out of S in this power, at most dj−i+1|S|2/n+
λj−i+1dj−i+1|S| = dj−i+1|S|(γ + λj−i+1) of them go back to S.
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Thus,

E
[
N2
]

= E

∑
i≤j

YiYj


≤

t∑
i=1

γ

1 +
t∑

j=i+1

(γ + λj−i+1)


≤

t∑
i=1

γ (1 + tγ +O(1))

≤
t∑

i=1

γ (1 +O(1)) ≤ O(tγ)

By Lemma 10, Claim 8 and Lemma 6, we have proved Theorem 4.
Define ` in such a way that for a random walk u1, . . . , ut and a random i ∈ [t], Pr[`′u1

(ui) = `ui ]
is maximized. More concretely, we think of each path of length t, u1, . . . , ut as voting the value
`′u1

(ui) for the value of `u1 , and then we set `ui to be the symbol that got the most votes.
Now returning to the PCP. There are two cases. In the first case, the assignments `′v(v) violate

half the edges of F (i.e. γ/2 fraction). In this case, every path that passes through F will detect
this violation, so we are done.

If this is not true, then consider the set of vertices S = {u : `u 6= `′u(u)}. It must be that S
constitutes an Ω(γ) fraction of all vertices.

Now let u1, . . . , ut be a random path, and let N =
∑t

i=1Ni denote the number of vertices ui
such that `ui 6= `′u1

(ui). Then, since `u the value that got at least 1/k fraction of the votes, we
must have that 1/k fraction of all paths that
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