CSE431: Complexity Theory	May, 2016
Lecture 16 Parity $\notin \mathbf{A C}_{\mathbf{0}}$	
Lecturer: Anup Rao	Scribe:

1 The Class $\mathrm{AC}_{\mathbf{0}}$

We start today by giving another beautiful proof that uses algebra. This time it is in the arena of circuits.

We shall work with the circuit class $\mathbf{A C}_{\mathbf{0}}$: polynomial sized, constant depth circuits with \wedge, \vee and \neg gates of unbounded fan-in. For example, in this class, we can compute the function $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}$ using a single \wedge gate. $\mathbf{A C}_{\mathbf{0}}$ consists of all functions that can be computed using polynomial sized, constant depth circuits of this type.

Our main goal will be to prove the following theorem:
Theorem 1. The parity of n bits cannot be computed in $\mathbf{A C}_{\mathbf{0}}$.
In order to prove this theorem, we shall once again appeal to polynomials, but carefully, carefully.
The theorem will be proved in two steps:

1. We show that given any $\mathbf{A C}_{\mathbf{0}}$ circuit, there is a low degree polynomial that approximates the circuit.
2. We show that parity cannot be approximated by a low degree polynomial.

It will be convenient to work with polynomials over a prime field \mathbb{F}_{p}, where $p \neq 2$ (since there is a polynomial of degree 1 that computes parity over \mathbb{F}_{2}). For concreteness, let us work with \mathbb{F}_{3}.

1.1 Some math background

We shall need the following facts, which we have already proved:
Fact 2. Every function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}$ is computed by a unique polynomial if degree at most $p-1$ in each variable.
Proof Given any $a \in \mathbb{F}_{p}^{n}$, consider the polynomial $1_{a}=\prod_{i=1}^{n} \prod_{z_{i} \in \mathbb{F}_{p}, z_{i} \neq a_{i}} \frac{\left(X_{i}-z_{i}\right)}{\left(a_{i}-z_{i}\right)}$. We have that

$$
1_{a}(b)=\left\{\begin{array}{l}
1 \text { if } a=b, \\
0 \text { else }
\end{array}\right.
$$

Further, each variable has degree at most $p-1$ in each variable.
Now given any function f, we can represent f using the polynomial:

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{a \in \mathbb{F}_{p}^{n}} f(a) \cdot 1_{a}
$$

To prove that this polynomial is unique, note that the space of polynomials whose degree is at most $p-1$ in each variable is spanned by monomials where the degree in each of the variables is
at most $p-1$, so it is a space of dimension p^{n} (i.e. there are $p^{p^{n}}$ monomials). Similarly, the space of functions f is also of dimension p^{n} (there are $p^{p^{n}}$ functions). Thus this correspondence must be one to one.

We shall also need the following estimate on the binomial coefficients, that we do not prove here:

Fact 3. $\binom{n}{i}$ is maximized when $i=n / 2$, and in this case it is at most $O\left(2^{n} / \sqrt{n}\right)$.

1.2 A low degree polynomial approximating every circuit in AC_{0}

Suppose we are given a $\operatorname{circuit} \mathcal{C} \in \mathbf{A C}_{\mathbf{0}}$.
We build an approximating polynomial gate by gate. The input gates are easy: x_{i} is a good approximation to the i 'th input. Similarly, the negation of f_{i} is the same as the polynomial $1-f_{i}$.

The hard case is a function like $f_{1} \vee f_{2} \vee \ldots \vee f_{t}$, which can be computed by a single gate in the circuit. The naive approach would be to use the polynomial $\prod_{i=1}^{t} f_{i}$. However, this gives a polynomial whose degree may be as large as the fan-in of the gate, which is too large for our purposes.

We shall use a clever trick. Let $S \subset[t]$ be a completely random set, and consider the function $\sum_{i \in S} f_{i}$. Then we have the following claim:

Claim 4. If there is some j such that $f_{j} \neq 0$, then $\operatorname{Pr}_{S}\left[\sum_{i \in S} f_{i}=0\right] \leq 1 / 2$.
Proof Observe that for every set $T \subseteq[n]-\{j\}$, it cannot be that both

$$
\sum_{i \in T} f_{i}=0
$$

and

$$
f_{j}+\sum_{i \in T} f_{i}=0 .
$$

Thus, at most half the sets can give a non-zero sum.
Note that

$$
2^{2}=1^{2}=1 \quad \bmod 3
$$

and

$$
0^{2}=0 \quad \bmod 3 .
$$

So squaring turns non-zero values into 1 . So let us pick independent uniformly random sets $S_{1}, \ldots, S_{\ell} \subseteq[t]$, and use the approximation

$$
g=1-\prod_{k=1}^{\ell}\left(1-\left(\sum_{i \in S_{k}} f_{i}\right)^{2}\right)
$$

Claim 5. If each f_{i} has degree at most r, then g has degree at most $2 \ell r$, and

$$
\operatorname{Pr}\left[g \neq f_{1} \vee f_{2} \vee \ldots \vee f_{t}\right] \leq 2^{-\ell} .
$$

16 Parity $\notin \mathbf{A C}_{\mathbf{0}}-2$

Overall, if the circuit is of depth h, and has s gates, this process produces a polynomial whose degree is at most $(2 \ell)^{h}$ that agrees with the circuit on any fixed input except with probability $s 2^{-\ell}$ by the union bound. Thus, in expectation, the polynomial we produce will compute the correct value on a $1-s 2^{-\ell}$ fraction of all inputs.

Setting $\ell=\log ^{2} n$, we obtain a polynomial of degree $\operatorname{poly} \log (n)$ that agrees with the circuit on all but 1% of the inputs.

1.3 Low degree polynomials cannot compute parity

Here we shall prove the following theorem:
Theorem 6. Let f be any polynomial over \mathbb{F}_{3} in n variables whose degree is d. Then f can compute the parity on at most $1 / 2+O(d / \sqrt{n})$ fraction of all inputs.

Proof Consider the polynomial

$$
g\left(Y_{1}, \ldots, Y_{n}\right)=f\left(Y_{1}-1, Y_{2}-1, \ldots, Y_{n}-1\right)+1
$$

The key point is that when $Y_{1}, \ldots, Y_{n} \in\{1,-1\}$, if f computes the parity of n bits, then g computes the product $\prod_{i} Y_{i}$. Thus, we have found a degree d polynomial that can compute the same quantity as the product of n variables. We shall show that this computation cannot work on a large fraction of inputs, using a counting argument.

Let $T \subseteq\{1,-1\}^{n}$ denote the set of inputs for which $g(y)=\prod_{i} y_{i}$. To complete the proof, it will suffice to show that T consists of at most $1 / 2+O(d / \sqrt{n})$ fraction of all strings.

Consider the set of all functions $q: T \rightarrow \mathbb{F}_{3}$. This is a space dimension $|T|$. We shall show how to compute every such function using a low degree polynomial.

By Fact 2, every such function q can be computed by a polynomial. Note that in any such polynomial, since $y_{i} \in\{1,+1\}$, we have that $y_{i}^{2}=1$, so we can assume that each variable has degree at most 1 . Now suppose $I \subseteq[n]$ is a set of size more than $n / 2$, then for $y \in T$,

$$
\prod_{i \in I} y_{i}=\left(\prod_{i=1}^{n} y_{i}\right)\left(\prod_{i \notin I} y_{i}\right)=g(y)\left(\prod_{i \notin I} y_{i}\right)
$$

In this way, we can express every monomial of q with low degree terms, and so obtain a polynomial of degree at most $n / 2+d$ that computes q.

The space of all such polynomials is spanned by $\sum_{i=0}^{n / 2+d}\binom{n}{i}$ monomials. Thus, we get that

$$
|T| \leq \sum_{i=0}^{n / 2+d}\binom{n}{i} \leq 2^{n} / 2+\sum_{i=n / 2+1}^{d}\binom{n}{i} \leq 2^{n} / 2+O\left(d \cdot 2^{n} / \sqrt{n}\right)=2^{n}(1 / 2+O(d / \sqrt{n})),
$$

where the last inequality follows from Fact 3 .

Thus, any circuit $\mathcal{C} \in \mathbf{A C}_{\mathbf{0}}$ cannot compute the parity function. Remark Note that the above proof actually proves something much stronger: it proves that there is no circuit in $\mathbf{A C}_{\mathbf{0}}$ that computes parity on 51% of all inputs.

