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1 The Class AC0

We start today by giving another beautiful proof that uses algebra. This time it is in the arena of
circuits.

We shall work with the circuit class AC0: polynomial sized, constant depth circuits with
∧,∨ and ¬ gates of unbounded fan-in. For example, in this class, we can compute the function
x1 ∧ x2 ∧ . . . ∧ xn using a single ∧ gate. AC0 consists of all functions that can be computed using
polynomial sized, constant depth circuits of this type.

Our main goal will be to prove the following theorem:

Theorem 1. The parity of n bits cannot be computed in AC0.

In order to prove this theorem, we shall once again appeal to polynomials, but carefully, carefully.
The theorem will be proved in two steps:

1. We show that given any AC0 circuit, there is a low degree polynomial that approximates the
circuit.

2. We show that parity cannot be approximated by a low degree polynomial.

It will be convenient to work with polynomials over a prime field Fp, where p 6= 2 (since there
is a polynomial of degree 1 that computes parity over F2). For concreteness, let us work with F3.

1.1 Some math background

We shall need the following facts, which we have already proved:

Fact 2. Every function f : Fn
p → F is computed by a unique polynomial if degree at most p− 1 in

each variable.

Proof Given any a ∈ Fn
p , consider the polynomial 1a =

∏n
i=1

∏
zi∈Fp,zi 6=ai

(Xi−zi)
(ai−zi) . We have that

1a(b) =

{
1 if a = b,

0 else.

Further, each variable has degree at most p− 1 in each variable.
Now given any function f , we can represent f using the polynomial:

f(X1, . . . , Xn) =
∑
a∈Fn

p

f(a) · 1a.

To prove that this polynomial is unique, note that the space of polynomials whose degree is at
most p − 1 in each variable is spanned by monomials where the degree in each of the variables is
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at most p− 1, so it is a space of dimension pn (i.e. there are pp
n

monomials). Similarly, the space
of functions f is also of dimension pn (there are pp

n
functions). Thus this correspondence must be

one to one.

We shall also need the following estimate on the binomial coefficients, that we do not prove
here:

Fact 3.
(
n
i

)
is maximized when i = n/2, and in this case it is at most O(2n/

√
n).

1.2 A low degree polynomial approximating every circuit in AC0

Suppose we are given a circuit C ∈ AC0.
We build an approximating polynomial gate by gate. The input gates are easy: xi is a good

approximation to the i’th input. Similarly, the negation of fi is the same as the polynomial 1− fi.
The hard case is a function like f1 ∨ f2 ∨ . . . ∨ ft, which can be computed by a single gate

in the circuit. The naive approach would be to use the polynomial
∏t

i=1 fi. However, this gives
a polynomial whose degree may be as large as the fan-in of the gate, which is too large for our
purposes.

We shall use a clever trick. Let S ⊂ [t] be a completely random set, and consider the function∑
i∈S fi. Then we have the following claim:

Claim 4. If there is some j such that fj 6= 0, then PrS [
∑

i∈S fi = 0] ≤ 1/2.

Proof Observe that for every set T ⊆ [n]− {j}, it cannot be that both∑
i∈T

fi = 0

and
fj +

∑
i∈T

fi = 0.

Thus, at most half the sets can give a non-zero sum.

Note that
22 = 12 = 1 mod 3

and
02 = 0 mod 3.

So squaring turns non-zero values into 1. So let us pick independent uniformly random sets
S1, . . . , S` ⊆ [t], and use the approximation

g = 1−
∏̀
k=1

1−

∑
i∈Sk

fi

2
Claim 5. If each fi has degree at most r, then g has degree at most 2`r, and

Pr[g 6= f1 ∨ f2 ∨ . . . ∨ ft] ≤ 2−`.
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Overall, if the circuit is of depth h, and has s gates, this process produces a polynomial whose
degree is at most (2`)h that agrees with the circuit on any fixed input except with probability s2−`

by the union bound. Thus, in expectation, the polynomial we produce will compute the correct
value on a 1− s2−` fraction of all inputs.

Setting ` = log2 n, we obtain a polynomial of degree polylog(n) that agrees with the circuit on
all but 1% of the inputs.

1.3 Low degree polynomials cannot compute parity

Here we shall prove the following theorem:

Theorem 6. Let f be any polynomial over F3 in n variables whose degree is d. Then f can compute
the parity on at most 1/2 + O(d/

√
n) fraction of all inputs.

Proof Consider the polynomial

g(Y1, . . . , Yn) = f(Y1 − 1, Y2 − 1, . . . , Yn − 1) + 1.

The key point is that when Y1, . . . , Yn ∈ {1,−1}, if f computes the parity of n bits, then g
computes the product

∏
i Yi. Thus, we have found a degree d polynomial that can compute the

same quantity as the product of n variables. We shall show that this computation cannot work on
a large fraction of inputs, using a counting argument.

Let T ⊆ {1,−1}n denote the set of inputs for which g(y) =
∏

i yi. To complete the proof, it
will suffice to show that T consists of at most 1/2 + O(d/

√
n) fraction of all strings.

Consider the set of all functions q : T → F3. This is a space dimension |T |. We shall show how
to compute every such function using a low degree polynomial.

By Fact 2, every such function q can be computed by a polynomial. Note that in any such
polynomial, since yi ∈ {1,+1}, we have that y2i = 1, so we can assume that each variable has
degree at most 1. Now suppose I ⊆ [n] is a set of size more than n/2, then for y ∈ T ,

∏
i∈I

yi =

(
n∏

i=1

yi

)(∏
i/∈I

yi

)
= g(y)

(∏
i/∈I

yi

)

In this way, we can express every monomial of q with low degree terms, and so obtain a polynomial
of degree at most n/2 + d that computes q.

The space of all such polynomials is spanned by
∑n/2+d

i=0

(
n
i

)
monomials. Thus, we get that

|T | ≤
n/2+d∑
i=0

(
n

i

)
≤ 2n/2 +

d∑
i=n/2+1

(
n

i

)
≤ 2n/2 + O(d · 2n/

√
n) = 2n(1/2 + O(d/

√
n)),

where the last inequality follows from Fact 3.

Thus, any circuit C ∈ AC0 cannot compute the parity function. Remark Note that the
above proof actually proves something much stronger: it proves that there is no circuit in AC0

that computes parity on 51% of all inputs.
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