CSE431: Complexity Theory

May, 2016

Lecture 16 Parity $\notin \mathbf{AC}_0$

Lecturer: Anup Rao

Scribe:

1 The Class AC₀

We start today by giving another beautiful proof that uses algebra. This time it is in the arena of circuits.

We shall work with the circuit class \mathbf{AC}_0 : polynomial sized, constant depth circuits with \wedge, \vee and \neg gates of *unbounded* fan-in. For example, in this class, we can compute the function $x_1 \wedge x_2 \wedge \ldots \wedge x_n$ using a single \wedge gate. \mathbf{AC}_0 consists of all functions that can be computed using polynomial sized, constant depth circuits of this type.

Our main goal will be to prove the following theorem:

Theorem 1. The parity of n bits cannot be computed in AC_0 .

In order to prove this theorem, we shall once again appeal to polynomials, but carefully, carefully. The theorem will be proved in two steps:

- 1. We show that given any AC_0 circuit, there is a *low degree* polynomial that approximates the circuit.
- 2. We show that parity cannot be approximated by a low degree polynomial.

It will be convenient to work with polynomials over a prime field \mathbb{F}_p , where $p \neq 2$ (since there is a polynomial of degree 1 that computes parity over \mathbb{F}_2). For concreteness, let us work with \mathbb{F}_3 .

1.1 Some math background

We shall need the following facts, which we have already proved:

Fact 2. Every function $f : \mathbb{F}_p^n \to \mathbb{F}$ is computed by a unique polynomial if degree at most p-1 in each variable.

Proof Given any $a \in \mathbb{F}_p^n$, consider the polynomial $1_a = \prod_{i=1}^n \prod_{z_i \in \mathbb{F}_p, z_i \neq a_i} \frac{(X_i - z_i)}{(a_i - z_i)}$. We have that

$$1_a(b) = \begin{cases} 1 \text{ if } a = b, \\ 0 \text{ else.} \end{cases}$$

Further, each variable has degree at most p-1 in each variable.

Now given any function f, we can represent f using the polynomial:

$$f(X_1,\ldots,X_n) = \sum_{a \in \mathbb{F}_p^n} f(a) \cdot 1_a.$$

To prove that this polynomial is unique, note that the space of polynomials whose degree is at most p-1 in each variable is spanned by monomials where the degree in each of the variables is

16 Parity
$$\notin \mathbf{AC_0}$$
-1

at most p-1, so it is a space of dimension p^n (i.e. there are p^{p^n} monomials). Similarly, the space of functions f is also of dimension p^n (there are p^{p^n} functions). Thus this correspondence must be one to one.

We shall also need the following estimate on the binomial coefficients, that we do not prove here:

Fact 3. $\binom{n}{i}$ is maximized when i = n/2, and in this case it is at most $O(2^n/\sqrt{n})$.

1.2 A low degree polynomial approximating every circuit in AC_0

Suppose we are given a circuit $\mathcal{C} \in \mathbf{AC}_0$.

We build an approximating polynomial gate by gate. The input gates are easy: x_i is a good approximation to the *i*'th input. Similarly, the negation of f_i is the same as the polynomial $1 - f_i$.

The hard case is a function like $f_1 \vee f_2 \vee \ldots \vee f_t$, which can be computed by a single gate in the circuit. The naive approach would be to use the polynomial $\prod_{i=1}^{t} f_i$. However, this gives a polynomial whose degree may be as large as the fan-in of the gate, which is too large for our purposes.

We shall use a clever trick. Let $S \subset [t]$ be a completely random set, and consider the function $\sum_{i \in S} f_i$. Then we have the following claim:

Claim 4. If there is some j such that $f_j \neq 0$, then $\Pr_S[\sum_{i \in S} f_i = 0] \leq 1/2$.

Proof Observe that for every set $T \subseteq [n] - \{j\}$, it cannot be that both

$$\sum_{i \in T} f_i = 0$$

and

$$f_j + \sum_{i \in T} f_i = 0.$$

Thus, at most half the sets can give a non-zero sum. \blacksquare

Note that

$$2^2 = 1^2 = 1 \mod 3$$

and

 $0^2 = 0 \mod 3.$

So squaring turns non-zero values into 1. So let us pick independent uniformly random sets $S_1, \ldots, S_\ell \subseteq [t]$, and use the approximation

$$g = 1 - \prod_{k=1}^{\ell} \left(1 - \left(\sum_{i \in S_k} f_i \right)^2 \right)$$

Claim 5. If each f_i has degree at most r, then g has degree at most $2\ell r$, and

$$\Pr[g \neq f_1 \lor f_2 \lor \ldots \lor f_t] \le 2^{-\ell}.$$

16 Parity $\notin \mathbf{AC_0}$ -2

Overall, if the circuit is of depth h, and has s gates, this process produces a polynomial whose degree is at most $(2\ell)^h$ that agrees with the circuit on any fixed input except with probability $s2^{-\ell}$ by the union bound. Thus, in expectation, the polynomial we produce will compute the correct value on a $1 - s2^{-\ell}$ fraction of all inputs.

Setting $\ell = \log^2 n$, we obtain a polynomial of degree $\mathsf{polylog}(n)$ that agrees with the circuit on all but 1% of the inputs.

1.3 Low degree polynomials cannot compute parity

Here we shall prove the following theorem:

Theorem 6. Let f be any polynomial over \mathbb{F}_3 in n variables whose degree is d. Then f can compute the parity on at most $1/2 + O(d/\sqrt{n})$ fraction of all inputs.

Proof Consider the polynomial

$$g(Y_1,\ldots,Y_n) = f(Y_1-1,Y_2-1,\ldots,Y_n-1) + 1.$$

The key point is that when $Y_1, \ldots, Y_n \in \{1, -1\}$, if f computes the parity of n bits, then g computes the product $\prod_i Y_i$. Thus, we have found a degree d polynomial that can compute the same quantity as the product of n variables. We shall show that this computation cannot work on a large fraction of inputs, using a counting argument.

Let $T \subseteq \{1, -1\}^n$ denote the set of inputs for which $g(y) = \prod_i y_i$. To complete the proof, it will suffice to show that T consists of at most $1/2 + O(d/\sqrt{n})$ fraction of all strings.

Consider the set of all functions $q: T \to \mathbb{F}_3$. This is a space dimension |T|. We shall show how to compute every such function using a low degree polynomial.

By Fact 2, every such function q can be computed by a polynomial. Note that in any such polynomial, since $y_i \in \{1, +1\}$, we have that $y_i^2 = 1$, so we can assume that each variable has degree at most 1. Now suppose $I \subseteq [n]$ is a set of size more than n/2, then for $y \in T$,

$$\prod_{i \in I} y_i = \left(\prod_{i=1}^n y_i\right) \left(\prod_{i \notin I} y_i\right) = g(y) \left(\prod_{i \notin I} y_i\right)$$

In this way, we can express every monomial of q with low degree terms, and so obtain a polynomial of degree at most n/2 + d that computes q.

The space of all such polynomials is spanned by $\sum_{i=0}^{n/2+d} \binom{n}{i}$ monomials. Thus, we get that

$$|T| \le \sum_{i=0}^{n/2+d} \binom{n}{i} \le 2^n/2 + \sum_{i=n/2+1}^d \binom{n}{i} \le 2^n/2 + O(d \cdot 2^n/\sqrt{n}) = 2^n(1/2 + O(d/\sqrt{n})) \le 2^n/2 + O(d \cdot 2^n/\sqrt{n}) \le 2^n/2 +$$

where the last inequality follows from Fact 3.

Thus, any circuit $C \in AC_0$ cannot compute the parity function. **Remark** Note that the above proof actually proves something much stronger: it proves that there is no circuit in AC_0 that computes parity on 51% of all inputs.

16 Parity $\notin \mathbf{AC_{0}}$ -3