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Resources of Turing Machines

Once we have fixed the model, we can start talking about the com-
plexity of computing a particular function f : {0, 1}∗ → {0, 1}. Fix
a turing machine M that computes a function f . There are two main
things that we can measure:

• Time. We can measure how many steps the turing machine takes
in order to halt. Formally, the machine has running time T(n) if on
every input of length n, it halts within T(n) steps.

• Space. We can measure the maximum value of j during the run of
the turing machine. We say the space is S(n) if on every input of
length n, j never exceeds S(n).

The following fact is immediate:

Fact 1. The space used by a machine is at most the time it takes for the
machine to run.

Robustness of the model: Extended Church-Turing Thesis

The reason Turing machines are so important is because of
the Extended Church-Turing Thesis. The thesis says that every efficient
computational process can be simulated using an efficient Turing
machine as formalized above. Here we say that a Turing machine is The original (non-extended) thesis

made a much tamer claim: that any
computation that can be carried out by
a human can be carried out by a Turing
machine.

efficient if it carries out the computation in polynomial time.
The Church-Turing Thesis is not a mathematical claim, but a wishy

washy philosophical claim about the nature of the universe. As far
as we know so far, it is a sound one. In particular if one changed
the above model slightly (say by providing 10 arrays to the machine
instead of just 3, or by allowing it to run in parallel), then one can
simulate any program in the new model using a program in the
model we have chosen.

Claim 2. A program written using symbols from a larger alphabet Γ that
runs in time T(n) can be simulated by a machine using the binary alphabet
in time O(log |Γ| · T(n)).

Sketch of Proof We encode every element of the old alphabet in
binary. This requires O(log |Γ|) bits to encode each alphabet sym-
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bol. Each step of the original machine can then be simulated using
O(log |Γ|) steps of the new machine.

Claim 3. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program for a 3-tape machine in time O(L · T(n)2).

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first
L locations on the work tape to store the first bit from each of the L
arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we
increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine.

The following theorem should not come as a surprise to most of
you. It says that there is a machine that can compile and run the code
of any other machine efficiently:

Theorem 4. There is a turing machine M such that given the code of
any Turing machine α and an input x as input to M, if α takes T steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input
x, the machine halts after t(|x|) steps (here |x| is the length of the
string x). Similarly, we can measure the space complexity of the ma-
chine. The crucial point is that small changes to the model of Turing
machines does not affect the time/space complexity of computing
a particular function in a big way. Thus it makes sense to talk about
the running time for computing a function f , and this measure is not
really model dependent.

Boolean Circuits

A boolean circuit computing a function f : {0, 1}n → {0, 1} is a
directed acyclic graph with the following properties. Every vertex
(also called a gate) has at most 2 edges coming in to it. If there are 0
edges coming in, then the vertex is labeled with an input variable xi,
or the constants 0 or 1. Otherwise, the vertex is labeled with one of
the boolean operators ∧,∨,¬, and computes the specified operation
on the bits that come in along the incoming edges. One of the gates
in the circuit is designated the output node. This is the node whose
value is the output of the circuit.



lecture 2: turing machines and boolean circuits 3

X1 X2 X3 X4 X5 X6

∧

∨

∧

∧

∨

∨

¬

∨
Figure 1: An example of a boolean
circuit.

When every gate has out-degree at most 1, the circuit is called a
formula. In the case of a formula, the graph of the circuit looks like a
tree after edges have been converted into undirected edges.

A circuit can also be viewed as a program in a simple program-
ming language, where every line is an assignment. For example, the
circuit in Figure 1 is equivalent to this program:

1. y1 = x1 ∧ x2

2. y2 = x3 ∨ x4

3. y3 = ¬x5

4. y4 = x5 ∧ x6

5. y5 = y1 ∨ y2

6. y6 = x5 ∨ y4

7. y7 = y5 ∧ y3

8. y8 = y7 ∨ y6

There are two major quantities we can measure to capture the
complexity of a circuit:

Definition 5. The size of the circuit is the number of gates in the circuit.

Since every gate in the circuit has at most 2 incoming edges, the
size of the circuit is proportional to the number of edges in the graph
that defines the circuit:

Fact 6. The size of the circuit is the same as the number of edges in the
circuit, up to a factor of 2.
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We can also measure the depth of the circuit:

Definition 7. The depth of the circuit is the length of the longest input to
output path.

The depth complexity is a measure of how much parallel time
it takes to compute the function. We can prove the following easy
relationship between the size and depth of a circuit. Essentially, the
size is at most exponential in the depth, since the worst case is that
the circuit looks like the full binary tree:

Fact 8. Every function computed by a circuit of depth d can be computed by
a circuit of size at most 2d+1.

Proof We prove by induction on the depth that the circuit can be
computed using at most 2d + 2d−1 + . . . + 1 = 2d+1 − 1 gates. When
the depth d = 0, the circuit must just output the value of a variable,
and so has size at most 1.

When d > 1, consider the output gate. This gate has two gates
that feed into it, each of depth at most d − 1. So by induction, the
computations of each of those gates can be carried out by circuits of
size 2d−1 + 2d−2 + . . . + 1. Thus the overall circuit can be computed
with size 1 + 2 ·

(
2d−1 + 2d−2 + . . . + 1

)
= 2d + 2d−1 + . . . + 1, as

required.
Can we prove the converse? Is it true
that every function that can be com-
puted by a circuit of size s can be com-
puted by a circuit of depth O(log s)?
Surprisingly, we have no idea how to
prove or disprove that statement. Most
people believe that it is not true—for it
would imply that any algorithm can be
parallelized to be exponentially faster!

Given a function f : {0, 1}∗ → {0, 1}, we say that the function has
a size s(n) circuit family if for every n, there is a circuit of size s(n)
that computes the function correctly on inputs of length n. Similarly,
we can talk about the depth complexity of computing a function.
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