
Lecture 6: Non-deterministic Polynomial Time
Anup Rao

October 16, 2018

In the last class, we introduced the concept of complexity classes.
We saw the classes P, L, E, EXP and PSPACE. These classes were Recall: L ⊆ P ⊆ PSPACE ⊆ EXP.

obtained by considering functions that can be computed with limited
time or limited space. Today, we explore a different kind of class, the
class NP.

NP is interesting chiefly because many problems that we would
like to solve efficiently with a computer, but cannot solve, belong
to NP. The list of such problems includes essentially all problems
solved today with machine learning, and many other practically
important problems. Before giving the definition of NP, let us see
some examples of problems in NP.

Independent Set Given a graph G and a number k, does the graph
have an independent set of size k? Let ISet(G, k) = 1 if the graph
has an independent set, and 0 otherwise. Recall that an independent set is a set of

nodes that does not contain any edges.
Subset sum : Given a list of numbers a1, . . . , a`, t, is there some subset

of the numbers a1, . . . , a` that sums to t? Let SubSum(a1, . . . , a`, t) =
1 if there is such a subset, and 0 otherwise.

Composite numbers : Given a number N, decide if it is composite or
not. Let Comp(N) = 1 if N is composite, and 0 otherwise.

Matching : Given a graph G and a number k, are there k disjoint
edges in the graph? Let Match(G, k) be 1 if there are k such edges,
and 0 otherwise.

All of these problems have something in common: although it
may be hard to efficiently compute the functions they define, it is
very easy to check a solution if one is given to us! For example, if
ISet(G, k) = 1, then there is a an independent set S of size k, and
given G, S, k, one can check that S is an independent set of size k in
polynomial time. Similarly, if SubSum(a1, . . . , a`, t) = 1, then there is
a subset of the numbers S ⊆ {a1, . . . , a`}, that if given as input can be
verified to have the sum t.

NP is the class of all functions f that have the above property,
where if f (x) = 1, then this can be checked efficiently by an efficient
verifier:

Definition 1. f : {0, 1}∗ → {0, 1} is in NP if there exists a polynomial p

lecture 6: non-deterministic polynomial time 2

and a polynomial time machine V such that for every x ∈ {0, 1}∗,

f (x) = 1⇔ ∃w ∈ {0, 1}p(|x|), V(x, w) = 1
The witness w is restricted to being
of polynomial length to ensure that
the running time of V is actually
polynomial in the length of x. If we
allowed the witness to be arbitrarily
long, then V would be allowed to run
very long computations on x.

V is usually called the verifier and w is usually called the witness
or certificate or proof. For example, in the independent set problem
above, the witness w would correspond to an independent set, and
the verifier V would be the program that checks that w is in fact an
independent set of size k in the input graph.

Many important combinatorial optimization problems can be cast
as problems in NP.

P, NP and EXP

Fact 2. P ⊆ NP ⊆ EXP.

To see the first containment, observe that if f ∈ P, there is a poly-
nomial time Turing machine M with M(x) = f (x). But M itself is a
verifier for f (with a witness of length 0) proving that f ∈ NP.

For the second containment, if f ∈ NP, then f has a verifier
V(x, w). Consider the algorithm that on input x runs over all possible
w and checks if V(x, w) = 1. If any witness makes V(x, w) = 1, the
algorithm outputs 1, otherwise it outputs 0. This algorithm computes
f and runs in exponential time, so f ∈ EXP.

Nondeterministic Machines, and a Hierarchy Theorem

The original definition of NP was by considering Turing machines
that are allowed to make non-deterministic choices: namely after
each step, the machine is allowed to make a guess about which state
to transition to in the next step. The machine computes 1 if there is a
single accepting computational path, and 0 otherwise.

We can define NTIME(t(n)) in the same way as DTIME(t(n)), it
is the set of functions computable by non-deterministic machines in
time O(t(n)), and then you can check that NP =

⋃
c NTIME(nc). Just

as for deterministic time, there is a non-deterministic time hierarchy
theorem:

Theorem 3. If r, t are time-constructible functions satisfying r(n + 1) =

o(t(n)), then
NTIME(r(n)) (NTIME(t(n)).

Polynomial time Reductions

One of the central questions in complexity theory is whether or not
P = NP. Although we don’t know the answer to this question, we

lecture 6: non-deterministic polynomial time 3

can prove a lot about the class NP, via the concept of polynomial
time reductions:

Definition 4. A function f is polynomial time reducible to a function g if
there is a polynomial time computable function h such that f (x) = g(h(x)).
We write f ≤P g.

Note that the above definition is not the only one that makes
sense. In general it makes sense to allow our reductions to make
multiple calls to the problem being reduced to. However, we will be
able to prove many of our results using the stronger notion above, so
that is what we shall use.

Definition 5. We say f is NP-hard if g ≤P f for every g ∈ NP. We say f
is NP-complete if f is NP-hard and f ∈ NP.

Theorem 6. Here are some easy facts that one can prove about reductions:

• If f ≤P g and g ≤P h, then f ≤P h.

• If f is NP-hard and f ∈ P, then P = NP.

• If f is NP-complete, then P = NP if and only if f ∈ P.

NP-complete problems

The above definitions make sense because we do know of examples
of NP-complete problems.

Circuit-Sat

Definition 7. CircuitSat : {0, 1}∗ → {0, 1} is the function that views its
input as a circuit C and outputs 1 iff ∃x such that C(x) = 1.

I have claimed in class that circuits can simulate Turing Machines.
Here is what you can actually prove in this regard:

Theorem 8. If a function f : {0, 1}∗ → {0, 1} can be computed in
time t(n) by a Turing machine, then for every n there is a circuit of size
O (t(n) log t(n)) that computes f restricted to the inputs of size n.

Although we did not prove this theorem in class, we sketched
how you could find a circuit of size O(t(n)2) that computes f . The
idea was to add a layer of gates that maintains the entire state of the
Turing machine—contents of all tapes, pointers, and the line of code
being executed. Then we add a new layer that computes this con-
figuration after one execution step of the Turing machine, using the
earlier configuration as input. A single configuration can be written

lecture 6: non-deterministic polynomial time 4

down using O(t(n)) gates since we only need to write down the val-
ues of the tapes up to O(t(n)) coordinates. The new configuration
can be computed from the old one with O(t(n)) gates as well. After
repeating this O(t(n)) times, we obtain the final configuration of the
Turing machine, which must include the value of f (x).

Theorem 9. CircuitSat is NP-complete.

Proof It is clear that CircuitSat is in NP. Next we show that for
every f ∈ NP, f ≤P CircuitSat. Let V be a verifier for f . Then to
compute f (x), the reduction will build the circuit Cx(w) that com-
putes V(x, w), where here w are the input variables to the circuit
and x is the input. Since f (x) = 1 if and only if there exists w such
that Cx(w) = 1, we can determine the value of f by computing
CircuitSat(Cx).

	P, NP and EXP
	Nondeterministic Machines, and a Hierarchy Theorem
	Polynomial time Reductions
	NP-complete problems

