
2-Source Extractors Under Computational Assumptions and

Cryptography with Defective Randomness

Yael Tauman Kalai

Microsoft Research

yael@microsoft.com

Xin Li ∗

University of Texas at Austin

lixints@cs.utexas.edu

Anup Rao †

Institute for Advanced Study

arao@ias.edu

June 22, 2009

Abstract

We show how to efficiently extract truly random bits from two independent sources of linear
min-entropy, under a computational assumption. The assumption we rely on is the existence
of an efficiently computable permutation f , such that for any source X ∈ {0, 1}n with linear
min-entropy, any circuit of size poly(nlog n) cannot invert f(X) with non-negligible probability.

We use our 2-source extractor to design a computational network extractor protocol. Namely,
we design a protocol for a set of processors, each with access to an independent source of linear
min-entropy, with the guarantee that at the end of the protocol, each honest processor is left
with bits that are computationally indistinguishable from being uniform and private. Our
protocol succeeds as long as there are at least two honest players. Our results imply that if such
one-way permutations exist, and enhanced trapdoor permutations exist, then secure multiparty
computation with imperfect randomness is possible for any number of players, as long as at
least two of them are honest.

We also construct a network extractor protocol for the case where each source has only
polynomially-small min-entropy (nδ for some constant δ > 0). For this we need at least a
constant u(δ) (which depends on δ) number of honest players, and we need that the one-way
permutation is hard to invert even on polynomially small min-entropy sources.

∗Supported in part by NSF Grant CCF-0634811 and THECB ARP Grant 003658-0113-2007.
†Partially supported by NSF grant CCF 0832797. Part of this work was done while this author was visiting

Microsoft Research New England.

1 Introduction

Randomness is a useful resource for solving many problems in computer science. In some situations,
such as in algorithm design, the use of randomness can lead to simpler and more efficient solutions
than can be done deterministically. In other situations, such as in cryptography and distributed
computing, randomness can be used to give solutions where deterministic solutions are simply
impossible. Thus, it is worthwhile to understand what can be done with and without randomness,
and to find the minimal assumptions on the randomness under which these randomized solutions
are still viable.

In computer science, it is typically assumed that we have access to perfectly uniform bits. More-
over, in cryptography and distributed computing it is usually assumed that protocol participants
have access to randomness that is not only truly uniform, but is also private. In this work, we seek
to weaken both types of assumptions.

One generic way to convert schemes that assume perfect private randomness, into schemes which
only assume weak private randomness, is to design a randomness extractor. This is an algorithm
that takes as input a single sample drawn from a weak source of randomness, and outputs bits that
are close to uniform. A necessary condition on the source is that it must have some entropy: we
think of the weak source as a bit-string of length n with some entropy1 k, and call such a source
an (n, k)-source. Unfortunately, it can be shown that for having high entropy alone is not enough
for extraction to be feasible — there is no single function that can extract a random bit from every
(n, n− 1)-source.

A natural model under which randomness extraction is feasible, is to assume that we have
access to two or more independent sources, each of which has sufficient entropy. Based on past
work [CG88, BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06], we now know how to extract
randomness from 2 sources when the entropy in each is at least .4999n [Bou05], from 3 sources if
the entropy in each is at least n0.99 [Rao06], and from O(1/γ) sources if the entropy in each is at
least nγ [Rao06, BRSW06]. Although the probabilistic method can be used to show that there is a
function that can extract randomness from 2 independent sources even when they have logarithmic
entropy, we know of no efficient 2-source extractor, even when the entropy is linear. In this work,
we make progress towards closing this gap, constructing an efficient 2-source extractor for linear
entropy, under a computational assumption.

Although it is impossible to deterministically extract randomness from a single weak source, a
sequence of works showed that it is possible to simulate every randomized algorithm with access to
a single weak source [VV85, CG88, Zuc96, SSZ98, ACRT99]. However, it is not known how to get
an analogous result for protocols in distributed computing or cryptography, where it is essential
that each of the processors in the protocol have access to private random bits. In fact, the work of
Dodis et al. [DOPS04] shows that almost all of the classic cryptographic tasks, including encryption,
bit commitment, secret sharing, and secure two-party computation (for nontrivial functions), are
actually impossible even with a single (n, .99n)-source. This leads us to ask the question: what can
be done if each of the processors in the protocol has access to an independent weak source?

It is not immediately clear that extractors for independent sources can be applied, since we need
to tolerate adversarial behavior at an unknown subset of the processors, and the extracted bits
must remain private even given the information exchanged during the extraction. This question, of

1We use a standard measure of entropy called min-entropy : a distribution has min-entropy k if all strings have

probability at most 2−k.

1

whether it is possible to do distributed computing with imperfect randomness, was first considered
by Goldwasser et al. [GSV05], who showed how to run a Byzantine agreement protocol when each of
the processors only has access to a specific kind of independent defective source of randomness (the
sources they considered were more restricted than weak sources). In subsequent work, [KLRZ08]
showed how to build efficient network extractor protocols. These are protocols that have the property
that if all the honest processors have access to independent (n, k)-sources, then at the end of the
protocol most of these honest processors are left with private random bits. Under a non-standard
cryptographic assumption, [KLRZ08] designed protocols where every honest processor ends up with
private randomness, assuming the number of honest processors is larger than polylog(n), where n is
the security parameter. Such a network extractor can be used to do secure multiparty computation,
even if each party has access only to a weak source of randomness, as long as the number of honest
parties is at least polylog(n).

The work of [KLRZ08] left open the question of whether secure multiparty computation with
imperfect randomness is possible for a constant number of processors (or even for O(log n) pro-
cessors). In this work, we give a positive answer to this question, again under a computational
assumption.

1.1 Our Results

All of our results in this work are based on the assumption that there exist one-way permutations
that are (very) hard to invert, even when the input is sampled from a weak source.

Definition 1.1 (One-Way Functions for Weak Sources). We call a family of polynomial time
computable permutations f : {0, 1}n → {0, 1}n one-way for k-sources if for every (n, k) source

X, and every circuit A of size 2O(log2 n), Pr[A(f(X)) = X] is negligible.

Ideally, we would like to achieve our goals assuming that it is hard to invert these permutations
with polynomial sized circuits, but it turns out that our results require the stronger definition
above.

Our first result shows that such one-way permutations can be used to obtain 2-source extractors:

Theorem 1.2 (2-Source Extractor). Suppose that for every δ > 0, there exists a family of one-way
permutations for (n, δn)-sources. Then there is a polynomial time computable 2-source extractor for
2 independent (n, δn)-sources that extracts poly(n) bits that are computationally indistinguishable
from uniform.

Note that the first O(log n) bits of the output of our extractor are actually guaranteed to be
statistically indistinguishable from uniform, since every statistical test on such a small number of
bits can be efficiently simulated. Thus, even though we make a computational assumption, our
conclusion is of an information theoretic nature.

Our next result shows that secure multiparty computation with imperfect randomness is possible
for any number of processor, as long as there are at least two honest processors and each processor
has access to an independent source with linear entropy. Secure multiparty computation is also
possible if each processor has access to an independent source with polynomially small entropy
(nδ for some constant δ > 0), as long as there are at least u(δ) honest parties, where here u =
u(δ) is a constant that depends only on δ. We note that this is in contrast with the strong
negative results given by Dodis et al. [DOPS04], who show that most of the classic cryptographic

2

tasks, including encryption, bit commitment, secret sharing, and secure two-party computation (for
nontrivial functions), are impossible even with a single (n, .99n)-source. Thus, in some sense, our
results are quite tight.

We obtain these results by constructing computational network extractor protocols where every
honest player ends up with a private random-looking string. We refer the reader to Section ?? for
the formal definition of computational network extractor protocols.

Theorem 1.3 (Network Extractors for Linear Min-Entropy). Fix a constant δ > 0, and suppose
that there exists a family of one-way permutations for (n, δn)-sources. Then, there is a network
extractor protocol where each player takes as input an independent (n, δn)-source, and as long as
there are at least 2 honest players, all the honest players end up with a string that is computationally
indistinguishable from being uniform and private.

Theorem 1.4 (Network Extractors for Polynomial Min-Entropy). Fix a constant δ > 0, and
suppose that there exists a family of one-way permutations for (n, nδ)-sources. Then, there exists a
constant u = u(δ) such that there is a network extractor protocol where each player takes as input an
independent (n, nδ)-source, and as long as there are at least u honest players, all the honest players
end up with a string that is computationally indistinguishable from being uniform and private.

Our network extractor constructions establish that as long as such one-way permutations exist,
weak sources are the same as true randomness for the purpose of running cryptographic protocols,
as formalized below.

Corollary 1.5. Fix a constant δ > 0. Assume that there exists a family of one-way permutations
for (n, δn)-sources, and assume that there exists a family of enhanced trapdoor permutations. Then
any functionality can be computed securely even if each party has only access to an (independent)
(n, δn)-source, as long as there are at least two honest parties.

Corollary 1.6. Fix a constant δ > 0. Assume that there exists a family of one-way permutations
for (n, nδ)-sources, and assume that there exists a family of enhanced trapdoor permutations. Then
there exists a constant u = u(δ) such that any functionality can be computed securely even if each
party has only access to an (independent) (n, nδ)-source, as long as there are at least u honest
parties.

1.2 Overview of our Ideas

In this section we shall be slightly inaccurate, in order to easily convey what we consider to be
the key ideas in our work. All of our constructions share the same basic structure. They all
consist of a sequence of rounds, where in each round i, a string Ri is generated. We will be able
to show that there must exist a “good” round j for which Rj is uniform. However, we do not
know which of the rounds is the good round. We shall then output is the xor of all the Ri’s, and
claim that this output is computationally indistinguishable from uniform. We would like to simply
say that the ri’s are independent, which would immediately imply that that their xor is indeed
uniform. However, we shall not be able to establish this independence. Instead we prove that
under the above computational assumption, these ri’s are computationally indistinguishable from
being independent, which is enough to get the result we want.

3

1.2.1 2-Source Extractor

We first note that it is well known how to extract randomness from two independent sources,
assuming one of them is a block source. A block source X is a source that can be partitioned
into two parts X = (X1,X2) in such a way that X1 has entropy δn, and X2 has entropy δn
even conditioned on any fixing of X1 = x1. The entropy in such a source is spread out, and it
is well known how to take advantage of such structure. For example, it is known how to extract
randomness from a block source X = (X1,X2) using an independent weak source Y , as long as the
blocks X1,X2 and the weak source Y each have entropy δn [BRSW06, RZ08, BKS+05].

Block sources are fairly general, in the sense that every weak source can be shown to be a
convex combination of block sources — for every source X with linear entropy δn, if X is broken
into a sufficiently large (t = 100/δ) number of blocks X = (X1,X2, . . . ,Xt), then X is a convex
combination of sources, where each element in the convex combination has the structure that there
is some index j ∈ [t] for which (Xj ,X) is a block source where each block has linear entropy.
Intuitively, each block in the source has at most δn/100 bits, and so cannot contain all δn bits of
entropy.

This fact alone is not enough to apply extractors for block sources, since the index j above is
not known ahead of time. Still, we might be tempted to try the following approach:

Naive 2-Source Extractor for (X,Y)

1. Let BExt be an extractor for a block source and an independent weak source

2. Partition x = (x1, . . . , xt).

3. For every i, compute ri = BExt(xi, x, y).

4. Output the bitwise xor r1 ⊕ · · · ⊕ rt.

Since it is no loss of generality to assume that there is some index j for which (Xj ,X) is a block
source, Rj = BExt(Xj ,X, Y) must be uniform. Unfortunately, the reason this algorithm does not
work is that the rest of the candidate random strings Ri are not independent of Rj , and so the
output could be a fixed constant even though Rj is uniform.

Our actual construction is a variation of the above construction, where we use computational
assumptions to enforce that Rj is independent (in some sense) from the other Ri’s. More specifically,
we use a one-way permutation for δn-sources to generate independence. This idea was implicit in
the work of Goldreich-Levin [?] on finding hardcore predicates. There they showed that for any one-
way function f , the triplet (〈X,R〉, R, f(X)) is computationally indistinguishable from (U,R, f(X)),
where U is a random bit, and X,R are both uniformly distributed in {0, 1}n. In other words, they
showed that 〈X,R〉 looks random and independent of (R, f(X)), even though it may be uniquely
determined by (R, f(X)). Their construction was an early example of a reconstructive extractor, a
concept that was subsequently formalized and refined in a sequence of works [NW94, Tre01, TZ04,
TUZ01, SU05, Uma05]. We now know of several different constructions of reconstructive extractors.
We do not define this concept here, but what is important to know in our application is that every
reconstructive extractor RExt must satisfy the property that if f is one-way with respect to a weak
source X, then

(RExt(X,R), R, f(X)) ≈ (Uniform, R, f(X)),

4

where ≈ denotes computational indistinguishability.

Given such an object, here is how we can use it to build a 2-Source extractor.

Our 2-Source Extractor

1. Let BExt be an extractor for a block source and an independent weak source and RExt be a
reconstructive (seeded) extractor. Let f be a one-way permutation for weak sources.

2. Partition x = (x1, . . . , xt).

3. For every i, compute zi = BExt(xi, x, f i(y)).

4. Set ri = RExt(f i(y), zi).

5. Output the bitwise xor r1 ⊕ · · · ⊕ rt.

Here f i(y) = f(f(· · · f(y) · · ·)), where f is applied i times. The goal here is to break the
dependence (at least in a computational sense) between the Ri’s.

The Analysis. To analyze this construction, we need to exploit a strong property of BExt(X1,X2, Y).
It turns out that one can show that there is a random variable T on a few bits, such that for every
fixing of (T,X1),

• (BExt(X1,X2),X) is independent of Y .

• (BExt(X1,X2)) is uniform.

In particular, since the output of BExt is only a few bits, this means that after fixing (X1, T),
we can fix the output of BExt(X1,X2) and still be left with two independent sources X,Y with
high entropy (here we assume the slightly inaccurate fact that fixing a binary string of length l can
only reduce the entropy of another variable by l).

Recall that there is some index j for which (Xj ,X) is a block source. In the first step of the
analysis, we use the properties of BExt described above to fix Z1, . . . , Zj−1 and R1, . . . , Rj−1. We
claim that even after this fixing, (Xj ,X) is a block source that is independent of the source Y
with linear entropy. We do this by fixing each of the Z1, . . . , Zj−1’s one by one. Each such fixing
maintains the independence we want, yet does not reduce the entropy of the sources by much, since
the Zi’s are short. Once all the Zi’s are fixed, the corresponding Ri’s are deterministic functions
of Y that output only a few bits, so we can fix them without reducing the entropy in Y by much.
Care must be taken that all of these fixings do not ruin the entropy in Xj (in particular, fixing
X1, . . . ,Xj−1 should not ruin the entropy in Xj), but it turns out that this can be done.

We get that after all these fixings, Zj must be uniform and independent of Y . Thus, by
the properties of reconstructive extractors, the following two distributions are computationally
indistinguishable:

(Rj , Zj , f
j+1(Y)) ≈ (Uniform, Zj , f

j+1(Y)).

In fact, we can actually prove the stronger statement that

(Rj ,X, f j+1(Y)) ≈ (Uniform,X, f j+1(Y)).

5

Observe that information theoretically this is very far from true. In fact, Rj is a determin-
istic function of (X, f j+1(Y)). Finally, since (Rj+1, . . . , Rt) are all efficiently computable from
(X, f j+1(Y)), we obtain

(X, f j+1(Y), Rj) ≈ (X, f j+1(Y),Uniform),

which implies that the output of our extractor is computationally indistinguishable from uniform.
In fact, our proof shows that the extractor is strong — the output looks uniform even if one of

the inputs is known.

1.2.2 Network Extractor Protocols

We construct two network extractor protocols. One for the case where each player has an inde-
pendent source with linear entropy δn, and one for the case where each player has an independent
source with polynomially-small entropy nδ. We start with the former.

We first present a protocol where all the honest players except one end up with private random-
ness. Note that if we knew of one player j that is honest, then the protocol would be very simple:
Player j will simply reveal his source, and all other players would apply the 2-source extractor
TExt (presented above) to this source and to their own source. The fact TExt is a strong extractor
immediately implies that all the honest players, except for player j, would end up with private
randomness. However, since we don’t know of any player that is honest, it is tempting to try the
following approach.

Naive Network Extractor Protocol for Linear Min-Entropy

1. The protocol proceeds in p rounds, where p is the number of players. In round i:

(a) Player i sends xi to all other players.

(b) Each player ℓ computes ri
ℓ = TExt(xi, xℓ).

2. Each player i outputs the bitwise xor r1
i ⊕ · · · ⊕ rp

i .

Let j denote the first honest player. Then, for every player i different than j, rj
i is uniform. Despite

this, the output of player i may not be random, and may even be a fixed constant. As before, the
problem is that the random variables r1

i , . . . , r
p
i are not independent, and a malicious adversary can

actually cause the output to be a fixed constant.
As in our 2-source extractor construction, the idea is to get around this problem by using

computational assumptions. To this end, each player iℓ, instead of using the same source Xℓ in
each round, will use the source f i(Xℓ) in round ℓ. However, for this approach to work we need the
guarantee that

(TExt(Xi,Xℓ),Xℓ, f(Xi)) ≈ (Uniform,Xℓ, f(Xi)).

Our extractor TExt does not satisfy this, but luckily our extractor does satisfty the following
(similar) guarantee:

(TExt(Xi,Xj),Xj , f
t+1(Xi)) ≈ (Uniform,Xj , f

t+1(Xi)),

where t is a constant that depends on δ.

So, instead we consider the following network extractor protocol, which has the guarantee that
all the honest players, except for the first one, end up with private random-looking strings.

6

Lossy Network Extractor Protocol for Linear Min-Entropy

1. Let g = f t+1. The protocol proceeds in p rounds, where p is the number of players. In
round i:

(a) Player i sends gi(xi) to all other players.

(b) Each player ℓ computes ri
ℓ = TExt(gi(xi), g

i(xℓ)).

2. Each player i outputs the bitwise xor r1
i ⊕ · · · ⊕ rp

i .

Now we can prove that all the honest players, except player j (who is the first honest player), end
up with private random-looking strings. The analysis proceeds in three steps.

1. We first fix all sources sent before round j, and we fix {ri
ℓ}ℓ∈[p],i<j, which were all computed

before round j. We claim that even conditioned on all these fixings, the sources are still
independent, and with high probability they all have “enough” entropy left.

2. Next, we claim that the strings {rj
ℓ} of all the honest players ℓ 6= j, are independent and

uniformly distributed.

3. Finally, we claim that the rest of the ri
ℓ for i > j are (computationally) independent of {rj

ℓ},
which implies that the output of all the honest players, except player j, are computationally
indistinguishable from random. For this we use the fact that for any two independent variables
Yi and Yj with “sufficient” entropy

(TExt(Yi, Yj), Yj , g(Yi)) ≈ (Uniform, Yj, g(Yi)). (1)

Note that in the protocol above, player j, who is the first honest player, does not necessarily
end with private randomness. To fix this, we add another phase to the protocol. So, the protocol
consists of two phases. In the first phase, the players run the (lossy) protocol presented above.
In the second phase, the idea is that all the honest players use their (supposedly) random string,
generated in the first phase, to run a coin flipping protocol and generate a public random-looking
seed V . Recall that we assumed that there are at least two honest players, therefore there is at
least one honest player besides player j. Thus, V is indeed random-looking. Finally, each player i
will extract randomness from his own source Xi using the seed V .

This approach would indeed work if there were at least three honest players, since in that case
we could argue that V is random-looking and is independent of each of the sources Xi. Thus, we
could use it to extract (private) randomness from each source.

However, if there are only two honest players then this approach does not seem to work, since
in this case we cannot argue that V is independent of all the sources. Indeed if there is a single
honest player ℓ besides player j (who is the first honest player) then it may be the case that V
depends on the source of player ℓ. This is the case since player ℓ maybe the only player who used
“good” randomness for the coin-flipping protocol. As before, we get around this dependence by
using reconstructive properties of extractors.

7

Our Final Network Extractor Protocol for Linear Min-Entropy.

1. Phase 1. This phase proceeds in p rounds, where p is the number of players. In round i:

(a) Player i sends g2i(xi) to all other players.

(b) Each player ℓ computes ri
ℓ = TExt(g2i(xi), g

2i(xℓ)).

At the end of this phase, each player i outputs ri = r1
i ⊕ · · · ⊕ rp

i .

2. Phase 2. Each player i uses its (supposedly) random string ri, generated in Phase 1, to run
a secure coin flipping protocol. Finally, each player i outputs Zi = RExt(g(2i−1)(Xi), V).

We claim that even if there are only two honest players ℓ and j, player ℓ (and player j) still end
up with private randomness. The reason why player j ends up with private randomness is quite
straightforward: It follows from the fact that V is random and is independent of Xj. The reason
why player ℓ ends up with private randomness is more involved. On a very high-level, the proof
follows the following two steps.

1. First, we use the reconstructive property of our 2-source extractor TExt (Equation 1), to
argue that Rℓ looks random, even conditioned on all the sources of all the other players and
conditioned on g2j+1(Xℓ). We stress that the above statement is a computational statement,
and cannot hold information theoretically, since Rℓ is uniquely determined by g2j+1(Xℓ) and
all the other sources.

2. Then, we use the reconstructive property of RExt, together with the conclusion of step 1
above, to argue that indeed player ℓ ends up with private randomness.

We refer the reader to Section ?? for details of the proof.

Our Network Extractor Protocol for Polynomially-Small Min-Entropy. Finally, we con-
struct a network extractor for the case where each player has an independent (n, nδ)-source (for
some constant δ > 0). This protocol is very similar (in spirit) to the protocol above, though is
significantly more complicated. The reason for the complication is that in this setting we cannot
use a 2-source extractor, since we do not know of such an extractor for the case where the entropy is
polynomially small. Thus, instead, we use a multi-source extractor IExt that extracts randomness
from u = u(δ) independent (n, nδ)-sources [?, ?].

As before, the protocol proceeds in two phases. In the first phase, all the honest players except
u of them, end up with private randomness. In the second phase, all the players run a secure coin-
tossing protocol using the (supposedly) random string they obtained in the first phase, to get a
public random seed V . Then, each player i will use a reconstructive extractor to extract randomness
from his source (more precisely, from a function of his source), using the random seed V . To argue
that all honest players end up with private randomness we need to assume that there are at least
u + 1 honest players. We refer the reader to Section D for details.

Roadmap. Due to lack of space we only give a formal description of our 2-source extractor in the
body of the paper. The preliminaries section is deferred to Appendix A. The formal descriptions
and proofs of the network extractor protocols for the linear entropy setting and the polynomial
entropy setting are deferred to Appendix C and Appendix ??, respectively.

8

2 Two-Source Extractor

In this section we present our construction of a two-source extractor under computational assump-
tions. We assume one of the sources has linear min-entropy, while the other one can have smaller
min-entropy.

2.1 Ingredients

Our construction uses for ingredients: Zuc, BasicExt, Raz, RExt, all of which are some form of
extractors. In order to state the properties of these extractors, we need the following definition.

Definition 2.1. A source X = (X1, · · · ,Xt) is t× r somewhere-random (SR-source, for short)
if each Xi takes values in {0, 1}r and there is an i such that Xi is uniformly distributed. It is (t×r)
k-somewhere-random (k-SR-source for short) if each Xi takes values in {0, 1}r and there is an
i such that Xi has min-entropy k.

We next state state the four theorems that we rely on.

Theorem 2.2 ([?]). For every constant 0 < α < 1 there exists a function

Zuc : {0, 1}n → {0, 1}c×ℓ

where c = poly(1/α) is a constant and ℓ = n
poly(1/α) , such that for every (n, αn)-source X, Zuc(X)

is 2−Ω(n)-close to a (c× ℓ)0.9ℓ-somewhere random source.

Theorem 2.3 ([BRSW06]). There exist constants α, β < 1 such that for every n, k(n) with k >
log10 n, and constant 0 < γ < 1/2, there is a polynomial time computable function BasicExt :
{0, 1}n ×{0, 1}kγ+1 → {0, 1}m s.t. if X is an (n, k) source and Y is a (kγ × k) (k− kβ)-SR-source,

|(Y,BasicExt(X,Y))− (Y,Um)| < ǫ

and
|(X,BasicExt(X,Y))− (X,Um)| < ǫ

where Um is independent of X,Y , m = k − kΩ(1) and ǫ = 2−kα
.

Theorem 2.4 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δ min[n1/8, k2/40] − 1

There is a polynomial time computable strong 2-source extractor

Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m

for min-entropy k1, k2 with error 2−1.5m.

Theorem 2.5. For every n, k, ǫ with k = nΩ(1), there is a polynomial time computable function
RExt : {0, 1}n × {0, 1}t → {0, 1}m such that t = O(log(n/ǫ)), m = kΩ(1) and if f is a one way
function for k/3 sources and X is an (n, k) source,

(f(X),RExt(X,U), U) ≈ (f(X),Uniform)

9

2.2 Construction

Let X and Y be two independent weak sources, where X is an (n, αn)-source for some constant
α > 0 (i.e., X has linear min-entropy); and Y is an (n, k) source, where k ≥ polylog(n).

We first define an extractor for a block source and an independent general source, as in
[BRSW06]:

BExt : {0, 1}n1 × {0, 1}n × {0, 1}n → {0, 1}m

• Ingredients:

– Zuc : {0, 1}αn/2 → {0, 1}c×ℓ a function as in Theorem A.16, where c = poly(1/α) and
ℓ = n

poly(1/α) .

– Raz : {0, 1}ℓ × {0, 1}n → {0, 1}s a strong 2-source extractor as in Theorem A.23, where
one source is a (ℓ, 0.9ℓ)-source and the other is an (n, 0.9k)-source (where k is the min-
entropy of Y).

– BasicExt : {0, 1}n × {0, 1}sγ×s → {0, 1}d the extractor as in Theorem A.22, where s =
polylog(n).

• BExt(x1, x, y):

1. Compute v = Zuc(x1).

2. Apply the strong 2-source extractor Raz to each row of v and y. Denote the resulting
matrix by sr. Note each row of sr is of length s = polylog(n).

3. Output BasicExt(x, sr)

Next we use this block source extractor to extract

TExt : {0, 1}n × {0, 1}n → {0, 1}m

• Ingredients:

– RExt : {0, 1}n × {0, 1}d → {0, 1}m a (0.9k, ǫ)-extractor as in Theorem A.19, where ǫ =
1

poly(nlog n)
and d = O(log(n/ǫ)) = polylog(n).

– f , a (s, 0.9k, ǫ) one-way permutation

• TExt(x, y):

Partition x, into t = 4
α equally sized parts2 x = (x1, . . . , xt).

For every i = 1, . . . , t,

1. Compute ri = BExt(xi, x, f (i)(y)), and assume without loss of generality that ri is a d
length string where d = polylog(n) is the seed length for the extractor RExt.

2. Compute zi = RExt(f (i)(y), ri), and assume without loss of generality that zi is of length
m ≤ polylog(n).

2For the sake of simplicity, we assume t is an integer.

10

Output the bitwise parity z = ⊕t
i=1zi.

Theorem 2.6. Fix a constant α > 0 and parameters t = 4
α and k ≥ nΩ(1). Assume that there

exists a permutation f : {0, 1}n → {0, 1}n such that for any (n, 0.9k)-source Y , any non-uniform
adversary that runs in time poly(nlog n, 2m) can invert f(Y) with only negligible probability. Then
TExt : {0, 1}n × {0, 1}n → {0, 1}m described above is a computational 2-source extractor such that
for any (n, αn)-source X, and any (n, k)-source Y that is independent of X,

(TExt(X,Y),X) ≈ (Um,X)

The proof of this Theorem is deferred to Appendix ??.

3 Acknowledgements

We thank Chris Umans and David Zuckerman for useful discussions.

References

[ACRT99] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and Luca Trevisan.
Weak random sources, hitting sets, and BPP simulations. SIAM Journal on Computing,
28(6):2103–2116, 1999.

[BIW04] Boaz Barak, R. Impagliazzo, and Avi Wigderson. Extracting randomness using few in-
dependent sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 384–393, 2004.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. In Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, pages 1–10, 2005.

[BRSW06] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2 source dispersers for no(1)

entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, 2006.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applica-
tions. International Journal of Number Theory, 1:1–32, 2005.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the
(im)possibility of cryptography with imperfect randomness. In FOCS, pages 196–205.
IEEE Computer Society, 2004.

11

[GSV05] Shafi Goldwasser, Madhu Sudan, and Vinod Vaikuntanathan. Distributed computing
with imperfect randomness. In Distributed Computing, 19th International Conference,
DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings, volume 3724 of Lec-
ture Notes in Computer Science, pages 288–302. Springer, 2005.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor
protocols. In Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, 2008.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In Burton S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO ’97, volume 1294
of Lecture Notes in Computer Science, pages 307–321. Springer-Verlag, August 1997.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149–167, October 1994.

[Rao06] Anup Rao. Extractors for a constant number of polynomially small min-entropy in-
dependent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, 2006.

[RZ08] Anup Rao and David Zuckerman. Extractors for 3 uneven length sources. In RANDOM
2008, 12th International Workshop on Randomization and Approximation Techniques
in Computer Science, 2008.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

[SSZ98] Michael Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit OR-dispersers with polylog
degree. Journal of the ACM, 45:123–154, 1998.

[SU05] Ronen Shaltiel and Chris Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM, 52:172–216, 2005.

[TUZ01] Amnon Ta-Shma, Chris Umans, and David Zuckerman. Loss-less condensers, unbal-
anced expanders, and extractors. In Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pages 143–152, 2001.

[TZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on In-
formation Theory, 50, 2004.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[Uma05] Christopher Umans. Reconstructive dispersers and hitting set generators. In Chan-
dra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, APPROX-
RANDOM, volume 3624 of Lecture Notes in Computer Science, pages 460–471.
Springer, 2005.

[VV85] Umesh V. Vazirani and Vijay V. Vazirani. Random polynomial time is equal to slightly-
random polynomial time. In Proceedings of the 26th Annual IEEE Symposium on
Foundations of Computer Science, pages 417–428, 1985.

12

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16:367–391, 1996.

A Preliminaries

A.1 Basic Definitions

Definition A.1. The min-entropy of a random variable X is defined as

H∞(X) = minx∈supp(X){− log2 Pr[X = x]}.

We say X is an (n, k)-source if X is a random variable on {0, 1}n and H∞(X) ≥ k.

Definition A.2. A function µ(·) is negligible if for every polynomial q(·) there exists a value N
such that for all n > N it holds that µ(n) < 1/q(n).

Definition A.3. Let D = {Dn}n∈N and F = {Fn}N∈N be two distribution ensembles. We say that
D and F are computationally indistinguishable, denoted by D ≈ F , if for every non-uniform
algorithm A running in time poly(n) there exists a negligible function ǫ such that for every n ∈ N,

|Pr[A(Dn) = 1]− Pr[A(Fn) = 1]| ≤ ǫ(n).

Remark. Often we abuse notation, and let Dn ≈ Fn denote the fact that the two ensembles are
computationally indistinguishable.

Definition A.4. Let D and F be two distributions on a set S. Their statistical distance is

|D − F | def
= max

T⊆S
(|D(T)− F (T)|) =

1

2

∑

s∈S

|D(s)− F (s)|

If |D − F | ≤ ǫ we say that D is ǫ-close to F .

Definition A.5. If D = {Dn}n∈N and F = {Fn}N∈N are two distribution ensembles, and there
exists a negligible function ǫ(n) such that for every n ∈ N,

|Dn − Fn| ≤ ǫ(n),

then we say that D and F are statistically close, and denote it by

D ≡ F .

Remark. Often we abuse notation, and let Dn ≡ Fn denote the fact that the two ensembles are
statistically close.

This measure of distance is nice because it is robust in the sense that if two distributions are
close in this distance, then applying any functions to them cannot make them go further apart.

Proposition A.6. Let D and F be any two distributions over a set S s.t. |D − F | ≤ ǫ. Let g be
any function on S. Then |g(D)− g(F)| ≤ ǫ.

13

Lemma A.7. Let {Xn} and {Yn} be two distribution ensembles. Let E = {En} be a sequence of
events for which there exists a negligible function ǫ such that Pr[En] = 1− ǫ(n). Then {Xn|En} ≈
{Yn|En} implies that {Xn} ≈ {Yn}.

We will also use the the following generalization of Lemma A.7.

Lemma A.8. Let {Xn} and {Yn} be two distribution ensembles. Let J be a set such that for every
j ∈ J , Ej = {Ej

n} is a sequence of events for which {Xn|Ej
n} ≈ {Yn|Ej

n}. Then, if there exists a
negligible function ǫ such that Pr[∪j∈JEj

n] = 1− ǫ(n), then {Xn} ≈ {Yn}.

A.2 Block Sources and Conditional entropy.

A block source is a source broken up into a sequence of blocks, with the property that each block
has min-entropy even conditioned on previous blocks.

Definition A.9 (Conditional Min-Entropy). Given random variables A,B in the same probability
space, we define the conditional min-entropy

H∞(A|B) = min
b

H∞(A|B = b)

Definition A.10 (Block sources). A distribution X = X1,X2, · · · ,XC is called a (k1, k2, . . . , kC)-
block source if for all i = 1, . . . ,C, we have that H∞(Xi|Xi−1, . . . ,X1) ≥ ki. If ki = k for every i,
we say that X is a k-block source.

Let X = X1, · · · ,Xt be a random variable over {0, 1}n divided into t blocks in some way, and
x1, . . . , xi are some strings with 0 ≤ i < t. We use the notation X|x1, . . . , xi to denote the random
variable X conditioned on X1 = x1,. . .,Xi = xi. For 1 ≤ i < j ≤ t, we denote by Xi,...,j the
projection of X onto the blocks Xi, . . . ,Xj .

Next we show that any weak source with linear min-entropy can be divided into a constant
number of blocks, such that the source is close to a convex combination of block sources.

Lemma A.11. Let X be an (n, αn) source for some constant 0 < α < 1. Let t = 4
α . Divide X

evenly into t blocks X = X1 ◦X2 ◦ · · · ◦Xt. Then X is 2−Ω(n)-close to being a convex combination
of sources {Xj}j∈J such that for every j there exists g ∈ [t] for which

• Xj
1 , . . . ,Xj

g−1 is fixed.

• H∞(Xj
g) ≥ α2

6 .

• H∞(X|Xj
g) ≥ α2

6 .

The proof of this theorem is deferred to Appendix E.

We use the following standard lemma about conditional min-entropy. (For a proof, we refer the
reader to the proof of Lemma 5 in [MW97]).

Lemma A.12. Let X and Y be random variables and let Y denote the range of Y . Then for all
ǫ > 0

Pr
Y

[

H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(

1

ǫ

)]

≥ 1− ǫ

14

Sometimes a random variable may only be close to having a certain amount of min-entropy,
and we have the following lemma, which can be viewed as a generalization of Lemma A.12.

Lemma A.13. Let X be an (n, k)-source and X ′ be a random variable such that |X−X ′| < ǫ. Let
Z be another random variable and Z denote the range of Z. Then for all ǫ1 > 0

Pr
Z

[

(X ′|Z = z) is
ǫ|Z|
ǫ1

close to having min-entropy k − log |Z| − log

(

1

ǫ1

)]

≥ 1− ǫ1

Proof. For a particular Z = z, Pr[X ′ = x′|Z = z] = Pr[X′=x′,Z=z]
Pr[Z=z] . Since X is an (n, k)-source X

must have size of support at least 2k. Choose a subset S in the support of size ǫ12
k/|Z| and let X̄

be the source that is uniformly distributed on S. Then H∞(X̄) = k− log |Z|− log(1/ǫ1). Let R be
the set {r ∈ S : Pr[X ′ = r|Z = z] > |Z|/(ǫ12

k)}, then

|(X ′|Z = z)− X̄| =
∑

r∈R

(Pr[X ′ = r|Z = z]− |Z|/(ǫ12
k)).

If Pr[Z = z] > ǫ1
|Z| , then

|X ′|(Z = z)−X̄ | <
∑

r∈R

Pr[X ′ = r, Z = z]− 2−k

ǫ1/|Z|
≤

∑

r∈R Pr[X ′ = r]− Pr[X = r]

ǫ1/|Z|
≤ ǫ

ǫ1/|Z|
=

ǫ|Z|
ǫ1

.

The probability this does not happen is at most ǫ1
|Z| |Z| = ǫ1.

A.3 Somewhere Random Sources

Definition A.14. A source X = (X1, · · · ,Xt) is t×r somewhere-random (SR-source, for short)
if each Xi takes values in {0, 1}r and there is an i such that Xi is uniformly distributed.

Note that every t × r somewhere random source must have min-entropy at least r, since the
random row itself has min-entropy r.

Definition A.15. A source X = (X1, · · · ,Xt) is (t× r) k-somewhere-random (k-SR-source for
short) if each Xi takes values in {0, 1}r and there is an i such that Xi has min-entropy k.

Theorem A.16 ([?]). For every constant 0 < α < 1 there exists a function

Zuc : {0, 1}n → {0, 1}c×ℓ

where c = poly(1/α) is a constant and ℓ = n
poly(1/α) , such that for every (n, αn)-source X, Zuc(X)

is 2−Ω(n)-close to a (c× ℓ)0.9ℓ-somewhere random source.

A.4 Seeded Extractors and Independent Source Extractors

Definition A.17. A function IExt : ({0, 1}n)u → {0, 1}m is a (k, ǫ) extractor for C independent
sources if for any independent (n, k) sources X1, . . . ,XC we have

|IExt(X1, . . . ,XC)− Um| < ǫ

A seeded extractor is just a special case of the above definition:

Definition A.18 (Seeded Extractor). A function Ext : {0, 1}n1×n2 → {0, 1}m is called a (k, ǫ)-
seeded extractor if it is a 2-source extractor with k, n2 min-entropy requirement and error ǫ.

15

A.5 Reconstructive Extractors and One Way Functions

The following theorem follows easily from known extractor constructions. We defer the arguments
to Appendix F.

Theorem A.19. For every n, k, ǫ, ǫ1 with k = nΩ(1) and ǫ1 ≥ ǫ ≥ 2−
√

k, there is a polynomial time
computable function RExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log(n/ǫ)), m = kΩ(1) such that
the following holds: For any (n, k)-source X and any deterministic function f on {0, 1}n, if there
exists a non-uniform adversary A that distinguishes (RExt(X,Ud), Ud, f(X)) and (Um, Ud, f(X))
with probability 2ǫ1, then there exists another non-uniform adversary B of size poly(n, 1/ǫ)·Size(A)
and an (n, k/3)-source X̄ such that B inverts f(X̄) with probability at least ǫ1/4.

Lemma A.20. Let X,Y be two independent random variables on {0, 1}n and Z be a random
variable on {0, 1}m that is independent of (X,Y). Let f : {0, 1}n → {0, 1}d and g : {0, 1}n ×
{0, 1}d → {0, 1}m be two deterministic functions. Let R = f(X). If there exists a non-uniform
adversary A that distinguishes between (g(Y,R), R,X, Y) and (Z,R,X, Y) with probability ǫ, then
there exists another non-uniform adversary B of size 2d · n · Size(A) that distinguishes between
(g(Y,R), R, Y) and (Z,R, Y) with probability at least ǫ.

Proof. Assume without loss of generality that

Pr[A(g(Y,R), R,X, Y) = 1]− Pr[A(Z,R,X, Y) = 1] ≥ ǫ.

Note that R is a deterministic function of X, thus for any fixing of R = r, (g(Y,R), Z, Y)|(R = r)
is independent of X|(R = r). Therefore, for every fixing of R = r, there exists a fixing of X|(R = r)
and a non-uniform adversary Ar, that has this fixing hardwired into it and emulates A w.r.t. this
fixing, s.t.

Pr[Ar(g(Y,R), Y) = 1|R = r]− Pr[Ar(Z, Y) = 1|R = r] ≥
Pr[A(g(Y,R), R,X, Y) = 1|R = r]− Pr[A(Z,R,X, Y) = 1|R = r].

Let B be an adversary that on input (g(Y, r), r, Y) emulates Ar(g(Y, r), Y). Then we have

Pr[B(g(Y,R), R, Y) = 1]− Pr[B(Z,R, Y) = 1] =
∑

r

Pr[R = r] (Pr[Ar(g(Y,R), Y) = 1|R = r]− Pr[Ar(Z, Y) = 1|R = r]) ≥
∑

r

Pr[R = r] (Pr[A(g(Y,R), R,X, Y) = 1|R = r]− Pr[A(Z,R,X, Y) = 1|R = r]) =

Pr[A(g(Y,R), R,X, Y) = 1]− Pr[A(Z,R,X, Y) = 1] ≥ ǫ.

Moreover, B is of size 2d · n · Size(A).

A.6 Previous Work that We Use

Theorem A.21 ([Rao06, BRSW06]). There exist constants c > 0 and c′ such that for every n, k
with k = k(n) = Ω(log4 n) there exists a polynomial time computable function IExt : ({0, 1}n)u →
{0, 1}k with u ≤ c′ log n

log k s.t. if X1,X2, . . . ,Xu are independent (n, k) sources then

|IExt(X1, . . . ,Xu)− Uk| < 2−kc

.

Moreover, IExt is a strong extractor.

16

Theorem A.22 ([BRSW06]). There exist constants α, β < 1 such that for every n, k(n) with
k > log10 n, and constant 0 < γ < 1/2, there is a polynomial time computable function BasicExt :
{0, 1}n ×{0, 1}kγ+1 → {0, 1}m s.t. if X is an (n, k) source and Y is a (kγ × k) (k− kβ)-SR-source,

|(Y,BasicExt(X,Y))− (Y,Um)| < ǫ

and
|(X,BasicExt(X,Y))− (X,Um)| < ǫ

where Um is independent of X,Y , m = k − kΩ(1) and ǫ = 2−kα
.

Theorem A.23 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δ min[n1/8, k2/40] − 1

There is a polynomial time computable strong 2-source extractor

Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m

for min-entropy k1, k2 with error 2−1.5m.

B Computational Two-Source Extractor

In this section we present our construction of a computational two-source extractor. We assume
one of the sources has linear min-entropy, while the other one can have smaller min-entropy.

B.1 Construction

Let X and Y be two independent weak sources, where X is an (n, αn)-source for some constant
α > 0 (i.e., X has linear min-entropy); and Y is an (n, k) source, where k ≥ polylog(n).

We first define an extractor for a block source and an independent general source, as in [RZ08,
BRSW06]:

BExt : {0, 1}n1 × {0, 1}n × {0, 1}n → {0, 1}m

• Ingredients:

– Zuc : {0, 1}αn/2 → {0, 1}c×ℓ a function as in Theorem A.16, where c = poly(1/α) and
ℓ = n

poly(1/α) .

– Raz : {0, 1}ℓ × {0, 1}n → {0, 1}s a strong 2-source extractor as in Theorem A.23, where
one source is a (ℓ, 0.9ℓ)-source and the other is an (n, 0.9k)-source (where k is the min-
entropy of Y).

17

– BasicExt : {0, 1}n × {0, 1}sγ×s → {0, 1}d the extractor as in Theorem A.22, where s =
polylog(n).

• BExt(x1, x, y):

1. Compute v = Zuc(x1).

2. Apply the strong 2-source extractor Raz to each row of v and y. Denote the resulting
matrix by sr. Note each row of sr is of length s = polylog(n).

3. Output BasicExt(x, sr)

Next we use this block source extractor to extract

TExt : {0, 1}n × {0, 1}n → {0, 1}m

• Ingredients:

– RExt : {0, 1}n × {0, 1}d → {0, 1}m an extractor for entropy 0.9k as in Theorem A.19,
where ǫ = 1

poly(nlog n)
and d = O(log(n/ǫ)) = polylog(n).

– f , a one way permutation for 0.3k-sources

• TExt(x, y):

Partition x, into t = 4
α equally sized parts3 x = (x1, . . . , xt).

For every i = 1, . . . , t,

1. Compute ri = BExt(xi, x, f (i)(y)), and assume without loss of generality that ri is a d
length string where d = polylog(n) is the seed length for the extractor RExt.

2. Compute zi = RExt(f (i)(y), ri), and assume without loss of generality that zi is of length
m ≤ polylog(n).

Output the bitwise parity z = ⊕t
i=1zi.

B.2 Analysis of the Extractor

We have the following theorem:

Theorem B.1. Fix a constant α > 0 and parameters t = 4
α and k ≥ nΩ(1). Assume that there

exists a permutation f : {0, 1}n → {0, 1}n such that for any (n, 0.3k)-source Y , any non-uniform
adversary that runs in time poly(nlog n) can invert f(Y) with only negligible probability. Then
TExt : {0, 1}n × {0, 1}n → {0, 1}m described above is a computational 2-source extractor such that
for any (n, αn)-source X, and any (n, k)-source Y that is independent of X,

(TExt(X,Y),X) ≈ (Um,X)

3For the sake of simplicity, we assume t is an integer.

18

Remark.

• Rather than proving Theorem B.1, we prove the following (stronger) statement:

(TExt(X,Y),X, h(X), f (t+1)(Y)) ≈ (Um,X, h(X), f (t+1)(Y)), (2)

where h is any deterministic function (not necessarily computable in polynomial time) on
{0, 1}n. The reason is that we need this stronger variant for our network extractor protocol
in Section ??.

• If we let m = O(log n), then the theorem implies that in particular,

|TExt(X,Y)− Um| = negl(n)

.

To prove Equation (2) we first prove the following lemma(in the analysis we use capital letters to
denote the corresponding strings viewed as random variables).

Lemma B.2. Divide X into X = (X1, . . . ,Xt) as in the construction of TExt, and let Z =
TExt(X,Y). Suppose there exists g ∈ [t] such that

• X1, . . . ,Xg−1 are fixed.

• H∞(Xg) ≥ α2

6 .

• H∞(X|Xg) ≥ α2

6 .

Then
(Z,X, h(X), f (t+1)(Y)) ≈ (Um,X, h(X), f (t+1)(Y))

Proof of Lemma B.2. Let sri denote the string sr computed in BExt(xi, x, f (i)(Y)). Fix

(sr1, . . . , srg−1)← (SR1, . . . , SRg−1)

(r1, . . . , rg−1)← (R1, . . . , Rg−1)

and
(z1, . . . , zg−1)← (Z1, . . . , Zg−1).

For any random variable Z, we denote by Z ′ the random variable Z conditioned on these fixings.
Let TYPICAL denote the event that conditioned on these fixings, the following conditions are

satisfied:

• X ′ and Y ′ are independent

• H∞(Y ′) ≥ k − polylog(n)

• H∞(X ′g) ≥ α2

8 n

• With probability 1− negl(n) over (x′g ← X ′g), H∞(X ′|X ′g = x′g) ≥ α2

8 n

Claim B.3.
Pr[TYPICAL] = 1− negl(n).

19

Proof of Claim B.3. Since X1, . . . ,Xg−1 are fixed, (SR1, . . . , SRg−1) is a deterministic function
of Y . Thus, conditioning on (sr1, . . . , srg−1)← (SR1, . . . , SRg−1), X and Y are still independent.
Moreover, since each sri has size cs, the total size of (sr1, . . . , srg−1) is bounded by tcs = polylog(n).
Thus, by Lemma A.12, with probability 1 − negl(n) over these fixings, Y has min-entropy k −
polylog(n) (let ǫ = 2− log2 n in the lemma).

Next, we further condition on (r1, . . . , rg−1) ← (R1, . . . , Rg−1). Note that now (R1, . . . , Rg−1)
is a deterministic function of X. Thus, conditioned on this fixing, X and Y are still independent.
Moreover, since each ri is of size polylog(n), the total size of (r1, . . . , rg−1) is bounded by t|ri| =
polylog(n). Thus, by Lemma A.12, with probability 1 − negl(n) over these fixings, Xg has min-

entropy H∞(Xg)− polylog(n) > α2

8 n (let ǫ = 2− log2 n in the lemma). Next, note that conditioned

on any fixing of xg ∈ Supp(Xg), we have H∞(X) ≥ α2

6 n, and with probability 1− negl(n) over the

further fixings of (R1, . . . , Rg−1), H∞(X) > α2

8 n. Thus we have

Pr
Xg,R1,...,Rg−1

[H∞(X ′|X ′g = x′g) >
α2

8
n] ≥ 1− ǫ1,

where ǫ1 = negl(n).
Now a standard averaging argument shows that, with probability at least 1 − √ǫ1 over the

fixings of (R1, . . . , Rg−1),

Pr
x′

g←X′
g

[H∞(X ′|X ′g = x′g) >
α2

8
n] ≥ 1−√ǫ1.

Note ǫ1 = negl(n), thus
√

ǫ1 = negl(n).
Finally, we further condition on (z1, . . . , zg−1)← (Z1, . . . , Zg−1). Note that now (Z1, . . . , Zg−1)

is a deterministic function of Y . Thus, conditioned on this fixing, X and Y are still independent.
Moreover, since each zi is of size polylog(n), the total size of (z1, . . . , zg−1) is bounded by t|zi| =
polylog(n). Thus, by Lemma A.12, with probability 1 − negl(n) over these fixings, Y has min-

entropy k − polylog(n)− polylog(n) = k − polylog(n) (let ǫ = 2− log2 n in the lemma).
The probability that all of the above happen is at least 1 − negl(n) − negl(n) − negl(n) =

1− negl(n).

Now fix
(x′g, sr

′
g)← (X ′g, SR′g).

For every random variable Z ′, denote by

Z ′′ = Z ′|(X ′g = x′g, SR′g = sr′g).

Let TYPICAL2 denote the event that conditioned on all the above fixings, the following holds:

• X ′′ and Y ′′ are independent, R′′g is a deterministic function of X ′′

• H∞(Y ′′) ≥ 0.9k

• (R′′g , Y ′′) ≡ (Ud, Y
′′)

Claim B.4. If TYPICAL holds, then

Pr[TYPICAL2] = 1− negl(n)

20

Proof of Claim B.4. First note that when TYPICAL holds, X ′ and Y ′ are independent, and
H∞(X ′g) ≥ α2

8 n. This means X ′g has min-entropy rate ≥ α
2 . Therefore by Theorem A.16 M ′

g is

2−Ω(n)-close to a (c × ℓ)0.9ℓ-somewhere random source. Theorem A.23 implies that there exists a
somewhere-random source SR with c rows, each row of length s, s.t.

|(M ′
g, SR′g)− (M ′

g, SR)| = negl(n).

A standard averaging argument shows that with probability 1− negl(n) over the fixing of M ′
g

(and thus X ′g), we still have

|SR′g − SR| = negl(n).

Moreover, X ′g (and thus M ′
g) is a deterministic function of X ′, thus conditioned on the fixing

of X ′g (and thus M ′
g), X ′ and Y ′ are still independent. Note once conditioned on M ′

g, SR′g is a
deterministic function of Y ′, and is thus independent of X ′. Also, with probability 1−negl(n) over

the fixing of X ′g, H∞(X ′) ≥ α2

8 n. The probability that both these two events happen is 1−negl(n),
and when this happens, Theorem A.22 implies that

|(SR′g, Rg)− (SR′g, Ud)| < 2−nΩ(1)
+ negl(n) = negl(n).

Since this happens with probability 1− negl(n), we actually have that

|(SR′g, Rg)− (SR′g, Ud)| = negl(n).

Again, by a standard averaging argument, with probability 1− negl(n) over the fixing of SR′g,
we still have

|Rg − Ud| = negl(n).

Note since SR′g is a deterministic function of Y ′, conditioning on it still leaves X ′ and Y ′

independent. Moreover, since the size of srg is small, the same argument in the proof of Claim B.3
implies that with probability 1 − negl(n) over the fixings of SR′g, H∞(Y ′) ≥ k − polylog(n) −
polylog(n) > 0.9k. Finally, conditioned on the fixing of SR′g, Rg is a deterministic function of X ′,
and is thus independent of Y ′. Note |Rg − Ud| = negl(n), therefore

(Rg, Y
′′) ≡ (Ud, Y

′′)

The probability that all of the above are satisfied is 1− negl(n).

Next we prove the following claim.

Claim B.5. If both TYPICAL and TYPICAL2 hold, then

(⊕t
i=gZ

′′
i ,X ′′, h(X ′′), f t+1(Y ′′)) ≈ (Um,X ′′, h(X ′′), f t+1(Y ′′))

21

Proof of Claim B.5. Assume for the sake of contradiction that there exists a non-uniform PPT
adversary A1 and a polynomial q such that for infinitely many n’s

∣

∣Pr[A1(⊕t
i=gZ

′′
i ,X ′′, h(X ′′), f t+1(Y ′′)) = 1]− Pr[A1(Um,X ′′, h(X ′′), f t+1(Y ′′)) = 1

∣

∣ ≥ 1

q(n)
.

Since Z ′′g+1, · · · , Z ′′t and f t+1(Y ′′) can be computed from (X ′′, f g+1(Y ′′)) in polynomial time, there
exists another non-uniform PPT adversary A2 such that

∣

∣Pr[A2(Z
′′
g , R′′g ,X

′′, h(X ′′), f g+1(Y ′′)) = 1]− Pr[A2(Um, R′′g ,X ′′, h(X ′′), f g+1(Y ′′)) = 1
∣

∣ ≥ 1

q(n)
.

Recall that
Z ′′g = RExt(f (g)(Y ′′), R′′g)

and f (g)(Y ′′) is a deterministic function of f (g+1)(Y ′′)(though not computable in polynomial
time). Thus Z ′′g is a deterministic function of f (g+1)(Y ′′) and R′′g . Next note that R′′g is a determinis-
tic function of X ′′, and X ′′, Y ′′, Um are independent. Thus Lemma A.20 implies that there exists an-
other non-uniform adversary A3 that runs in time 2d ·n·poly(n) = poly(n, 1

ǫ)·poly(n) = poly(nlog n)
such that

∣

∣Pr[A3(Z
′′
g , R′′g , f

g+1(Y ′′)) = 1]− Pr[A3(Um, R′′g , f g+1(Y ′′)) = 1
∣

∣ ≥ 1

q(n)
.

Note that the fact that TYPICAL2 holds implies that (R′′g , Y
′′) ≡ (Ud, Y

′′). This, together with
Proposition A.6 implies that

∣

∣Pr[A3(Z
′′
g , R, f g+1(Y ′′)) = 1]− Pr[A3(Um, R, f g+1(Y ′′)) = 1

∣

∣ ≥ 1

q(n)
− negl(n) >

1

2q(n)
,

where R is the uniform distribution on {0, 1}d and is independent of Y ′′.
Now note 1

2q(n) > 2ǫ since ǫ = 1
poly(nlog n)

, and f (g)(Y ′′) has min-entropy 0.9k since f is a

permutation. Thus Theorem A.19 implies that there exists another non-uniform adversary A4 that
runs in time poly(n, 1

ǫ) · poly(nlog n) = poly(nlog n) and an (n, 0.3k)-source Ȳ such that A4 inverts
f(Ȳ) with probability at least 1

16q(n) . This contradicts our assumption on f .

Now, since the event that both TYPICAL and TYPICAL2 hold happens with probability
1− negl(n), by Lemma A.7 we have

(⊕t
i=gZi, {Zi}i∈[g−1],X, h(X), f t+1(Y)) ≈ (Um, {Zi}i∈[g−1],X, h(X), f t+1(Y)).

Note that Z = ⊕t
i=1Zi, thus

(Z,X, h(X), f t+1(Y)) ≈ (Um,X, h(X), f t+1(Y)).

This proves the lemma.

proof of Theorem B.1. Since we divide X into t = 4
α blocks, Lemma A.11 says that X is 2−nΩ(1)

-
close to being a convex combination of {Xj}j∈J such that for every j ∈ J , Xj satisfies the conditions
in Lemma B.2. For every j ∈ J , let Zj = TExt(Xj , Y), then

(Zj ,Xj , h(Xj), f (t+1)(Y)) ≈ (Um,Xj , h(Xj), f (t+1)(Y)).

Thus, by Lemma A.8, the theorem holds.

22

The computational two source extractor described above outputs random bits that are compu-
tationally indistinguishable from being uniform, while assuming the existence of a one-way permu-
tation f s.t. for any (n, 0.3k) source X, any non-uniform adversary that runs in time poly(nlog n)
can only invert f(X) with negligible probability. Note that the running time of the adversary is
slightly super-polynomial. However, even if we only assume that any polynomial time adversary
can only invert f(X) with negligible error, we can still get a two-source extractor, but the error
will only be polynomially small.

Theorem B.6. Let ǫ = 1
poly(n) and m = O(log n) in the construction of TExt. Keep all the other

parameters the same. Assume that there exists a permutation f : {0, 1}n → {0, 1}n such that for
any (n, 0.3k)-source Y , any non-uniform adversary that runs in time poly(n) can invert f(Y) with
only negligible probability. Then TExt is a 2-source extractor such that for any (n, αn)-source X,
and any (n, k)-source Y that is independent of X,

|TExt(X,Y)− Um| < 3ǫ.

Proof Sketch. The proof basically follows the same steps in the proof of Theorem B.1. We first
prove that for a source X that satisfies the conditions of Lemma B.2, and Z = TExt(X,Y), we
have

|Z − Um| < 2.9ǫ. (3)

To this end, we prove that when both TYPICAL and TYPICAL2 hold, we have

|Z ′′ − Um| < 2.5ǫ. (4)

Assume for the sake of contradiction that |Z ′′ −Um| ≥ 2.5ǫ. Since m = O(log n), there exists a
non-uniform PPT adversary A(simply check all the 2m strings) s.t.

∣

∣Pr[A(Z ′′) = 1]− Pr[A(Um) = 1]
∣

∣ ≥ 2.5ǫ

Note Z ′′ = ⊕t
i=1Z

′′
i . Since Z1, . . . , Zg−1 are fixed, and Z ′′g+1, · · · , Z ′′t can be computed from

(X ′′, f g+1(Y ′′)) in polynomial time, there exists another non-uniform PPT adversary A1 such that

∣

∣Pr[A1(Z
′′
g , R′′g ,X ′′, f g+1(Y ′′)) = 1]− Pr[A1(Um, R′′g ,X ′′, f g+1(Y ′′)) = 1]

∣

∣ ≥ 2.5ǫ

Recall that Z ′′g = RExt(f (g)(Y ′′), R′′g), thus Lemma A.20 implies that there exists another non-

uniform adversary A2 that runs in time 2d · n · poly(n) = poly(n, 1
ǫ) · poly(n) = poly(n) such

that
∣

∣Pr[A2(Z
′′
g , R′′g , f

g+1(Y ′′)) = 1]− Pr[A2(Um, R′′g , f g+1(Y ′′)) = 1
∣

∣ ≥ 2.5ǫ.

Note that the fact that TYPICAL2 holds implies that (R′′g , Y
′′) ≡ (Ud, Y

′′). This, together with
Proposition A.6 implies that

∣

∣Pr[A2(Z
′′
g , R, f g+1(Y ′′)) = 1]− Pr[A2(Um, R, f g+1(Y ′′)) = 1

∣

∣ ≥ 2.5ǫ − negl(n) > 2ǫ,

where R is the uniform distribution on {0, 1}d and is independent of Y ′′. Note f (g)(Y ′′) has
min-entropy 0.9k since f is a permutation. Thus Theorem A.19 implies that there exists another

23

non-uniform adversary A3 that runs in time poly(n, 1
ǫ) ·poly(nlog n) = poly(nlog n) and an (n, 0.3k)-

source Ȳ such that A3 inverts f(Ȳ) with probability at least ǫ/4. This contradicts our assumption
on f .

Thus Equation 4 does hold. Since the event that both TYPICAL and TYPICAL2 hold happens
with probability 1− negl(n), Equation 3 holds. Now by Lemma A.11, X is 2−nΩ(1)

-close to being a
convex combination of {Xj}j∈J such that for every j ∈ J , Xj satisfies the conditions in Lemma B.2.
Thus the theorem holds.

C Computational Network Extractors for Linear Min-Entropy

We next use our 2-source extractor to construct a computational network extractor protocol. In
order to formally define the notion of network extractors, we need some notation. We denote the
input of player i by xi ∈ {0, 1}n; each xi is assumed to be sampled from an independent (n, k)-
source. We denote the output of player i by zi ∈ {0, 1}m, which is supposedly a random looking
string. We denote by b the concatenation of all the messages that were sent during the protocol.
Capital letters such as Zi and B denote these strings viewed as random variables.

Definition C.1. A protocol for p processors is a (t, g) computational network extractor for
min-entropy k if for any independent (n, k)-sources and any choice of t faulty processors, after
running the protocol there are g honest processors G = {i1, . . . , ig} such that

{B, (Xi)i6∈G , (Zi)i∈G}n∈N ≈ {B, (Xi)i6∈G , Ugm}n∈N

where Ugm is the uniform distribution on gm bits, independent of B and (Xi)i6∈G , and where ≈
denotes computational indistinguishability.

Remark. Note that it must be the case that g ≤ p− t, since there are p− t honest players (and
we cannot hope that the output of a faulty player will be indistinguishable from random). Ideally,
we would like to design network extractors where g = p − t, which means that the joint output
of all the honest players is computationally indistinguishable from random, even given the entire
transcript and all the sources of the dishonest players.

We next show how to use our computational 2-source extractor (Theorem B.1), to construct
such a computational network extractor protocol for any number of players p as long as at least 2
of them are honest, and each honest processor starts with an independent (n, αn) source. In order
to use our 2-source extractor, we need to make the following assumption.

We first note that Theorem A.19 implies the following corollary:

Corollary C.2. If f is a one way permutation for 0.3αn-sources, then there is an efficiently com-
putable function RExt as in Theorem A.19, with parameters ǫ = 1

poly(nlog n)
and d = O(log(n/ǫ)) =

polylog(n), such that for any (n, 0.9αn) source X,

(RExt(X,Ud), f(X), Ud) ≈ (Um, f(X), Ud).

24

Proof of Corollary C.2. Assume for the sake of contradiction that there exists a non-uniform
PPT adversary A and a polynomial q such that for infinitely many n’s,

|Pr[A(RExt(X,Ud), f(X), Ud) = 1]− Pr[A(Um, f(X), Ud) = 1]| ≥ 1

q(n)
.

Note 1
q(n) > 2ǫ. Thus, by Theorem A.19, there exists another non-uniform adversary B that runs

in time poly(n, 1/ǫ) · T ime(A) = poly(nlog n) and an (n, 0.3αn) source X̄ such that B inverts f(X̄)
with probability at least 1

8q(n) . This contradicts the fact that f is one-way.

C.0.1 The Protocol

• Parameters.

– Constant α > 0, where αn is the min-entropy of each of the input sources Xi.

– Parameters d, ǫ as in Corollary C.2 and m = polylog(n). Note d = polylog(n) and
ǫ = negl(n).

– t = ⌈ 4
0.9α⌉.

• Ingredients.

– The 2-source extractor TExt : {0, 1}n × {0, 1}n → {0, 1}m from Theorem B.1.

– RExt : {0, 1}n × {0, 1}d → {0, 1}m a (0.9αn, ǫ)-extractor as in Theorem A.19.

– f : {0, 1}n → {0, 1}n a one way permutation for 0.3αn-sources. Let g = f (t+1).

• The protocol. The protocol proceeds in two phases.

– Phase 1. The first phase of the protocol proceeds in p rounds (where p is the number
of players). In round j ∈ [p] the players do the following.

1. The j’th player sends g(2j)(Xj) to all other players, where g = f (t+1) is described
above.

2. Each player i computes Rj
i = TExt(g(2j)(Xj), g

(2j)(Xi)). Note |Rj
i | = m = polylog(n).

At the end of the p’th round each player i computes Ri = ⊕p
j=1R

j
i .

We show that at the end of this phase all the honest players, except for the first one, end
up with private randomness. In order to ensure that all the honest players, including
the first one, end up with private randomness, we proceed to the second phase.

– Phase 2. Each player i partitions Ri into two equal parts Ri = (Vi,Wi). All players
engage in a secure multiparty computation to compute V = ⊕p

i=1Vi
4, where each player

i uses Wi as its internal randomness.

Finally, each player i outputs Zi = RExt(g(2i−1)(Xi), V).

Theorem C.3. For any p ≥ 2, any t ≤ p − 2, and any n ≥ p1+γ (for some constant γ > 0), the
protocol described above is a (t, p− t)-computational network extractor protocol.

4Here, if the adversary aborts the protocol, we simply discard the aborting party and restart the secure computation

with fresh Vi’s

25

Proof. Fix any p and any t such that p−t ≥ 2. Let G ⊆ [p] denote the set of all honest players. Let
j denote the GOOD round, where the first honest player sends its source; i.e., G ⊆ {j, . . . , p}. We
assume without loss of generality that the PPT adversary (who controls all the malicious players)
is deterministic. Thus, it suffices to prove that

{B, (Zi)i∈G} ≈ {B,Ugm}.

The proof proceeds in two parts. In the first part we prove that all the Ri’s of all the honest
players, except player j, appear to be independent and uniformly distributed, even conditioned on
the entire transcript of phase 1. Actually ,we prove the following stronger statement:

{Xj , (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj , (g

(2j+1)(Xi))i∈G\{j}, U(g−1)m} (5)

Note that this statement is indeed stronger since for every i ∈ G \ {j} it holds that i > j, which
implies that 2i > 2j + 1, and therefore it is easy to compute g(2i)(Xi) from g(2j+1)(Xi).

In the second part we use Equation (5) to prove that indeed

{(B, (Zi)i∈G} ≈ {(B,Ugm}.

Part 1. Assume for the sake of contradiction that there exists a non-uniform PPT adversary A
and a polynomial q such that for infinitely many n’s

∣

∣ Pr[A(Xj , (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}) = 1]−

Pr[A(Xj , (g
(2j+1)(Xi))i∈G\{j}, U(g−1)m) = 1]

∣

∣ ≥ 1

q(n)
.

Let Bj−1 denote the transcript until round j − 1. Fix any tuple

{bj−1, (r
1
i , . . . , r

j−1
i)i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i)i∈G}.

Denote any random variable Y , conditioned on the above tuple, by Y ′. We say that the tuple above
is BAD if the following properties are satisfied.

1. There are infinitely many n’s for which

∣

∣ Pr[A(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, (R

′
i)i∈G\{j}) = 1]−

Pr[A(X ′j , (g
(2j+1)(X ′i))i∈G\{j}, U(g−1)m) = 1]

∣

∣ ≥ 1

2q(n)
.

2. For every i ∈ G, the random variable X ′i has min-entropy 0.9αn and {X ′i}i ∈ G are independent
random variables.

Claim C.4.

Pr[{bj−1, (r
1
i , . . . , r

j−1
i)i∈G} is BAD] ≥ 1

3q(n)
.

26

Proof of Claim C.4. A standard probabilistic argument shows that the probability that a ran-
dom tuple

{bj−1, (r
1
i , . . . , r

j−1
i)i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i)i∈G}

satisfies the first property with probability at least 1
2q(n) .

The fact that the random variables {X ′i}i∈G remain independent can be seen by induction on the

number of rounds. Moreover, since all the Rj
i ’s are of size only polylog(n) and n ≥ p1+γ , by

Lemma A.12 with probability 1−negl(n) over the fixings, every X ′i has min-entropy at least 0.9αn

(take ǫ = 2− log2 n in that lemma).
Thus the probability that a random tuple is BAD is at least 1

2q(n) − negl(n) ≥ 1
3q(n)

Fix any BAD tuple

{bj−1, (r
1
i , . . . , r

j−1
i)i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i)i∈G}.

Note that Ri = ⊕p
j=1R

j
i . Since (R1

i , . . . , R
j−1
i)i∈G are fixed, and (Rj+1

i , . . . , Rp
i)i∈G can be

computed in polynomial time from (g(2j+1)(X ′i))i∈G\{j}, there exists another non-uniform PPT
adversary A1 such that

∣

∣Pr[A1(X
′
j , (g

(2j+1)(X ′i))i∈G\{j}, (R
′j
i)i∈G\{j}) = 1]−

Pr[A1(X
′
j , (g

(2j+1)(X ′i))i∈G\{j}, U(g−1)m) = 1]
∣

∣ ≥ 1

2q(n)
.

A standard hybrid argument shows that there exists ℓ ∈ G\{j} (note there are at least 2 honest
players) s.t.

∣

∣Pr[A1(X
′
j , (g

(2j+1)(X ′i))i∈G\{j}, (R
′j
i)i∈G\{j,ℓ}, R

′j
ℓ) = 1]−

Pr[A1(X
′
j , (g

(2j+1)(X ′i))i∈G\{j}, (R
′j
i)i∈G\{j,ℓ}, Um) = 1]

∣

∣ ≥ 1

2p · q(n)
.

Since the random variables {X ′i}i∈G remain independent, there is a fixing of (X ′i)i∈G\{j,ℓ} that

preserves the distinguishing probability. Note after this fixing, (R′ji)i∈G\{j,ℓ} is a deterministic
function of X ′j . Thus, there exists another non-uniform PPT adversary B, that has all the fixings
hardwired into it, s.t.

∣

∣ Pr[B(X ′j , g
(2j+1)(X ′ℓ), R

′j
ℓ) = 1]− Pr[B(X ′j , g

(2j+1)(X ′ℓ), Um) = 1]
∣

∣ ≥ 1

2p · q(n)
. (6)

Note X ′j and X ′ℓ are independent, both have min-entropy at least 0.9αn and X ′j is a deterministic

function of g(2j)(X ′j). Moreover, recall that

R′jℓ = TExt(g(2j)(X ′j), g
(2j)(X ′ℓ)).

Thus, according to Theorem B.1 (or more precisely, Equation (2), where h = g(−2j)),

(R′jℓ ,X ′j , f
(t+1)(g(2j)(X ′ℓ))) ≈ (Um,X ′j , f

(t+1)(g(2j)(X ′ℓ))).

27

Note f (t+1)(g(2j)(X ′ℓ)) = g(2j+1)(X ′ℓ)), thus

(R′jℓ ,X ′j , g
(2j+1)(X ′ℓ)) ≈ (Um,X ′j , g

(2j+1)(X ′ℓ)),

which contradicts Equation (6). Therefore, we conclude that indeed Equation (5) holds. Namely,

{Xj , (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj , (g

(2j+1)(Xi))i∈G\{j}, U(g−1)m}

Part 2. We now use Equation (5) to prove our final statement

{B, (Zi)i∈G} ≈ {B,Ugm}.
We parse B = (B1, B2) where B1 denotes the transcript of Phase 1, and B2 denotes the transcript
of Phase 2. Thus, we need to prove that

{B1, B2, (Zi)i∈G} ≈ {B1, B2, Ugm}.
Recall that Phase 2 consists only of a secure multiparty computation of V = ⊕Vi. By the definition
of secure multiparty computation, all the transcript of the second phase can be simulated given V ,
given all the sources of the malicious players (Xi)i6∈G , and given Rj. The reason we need to give
also Rj is that during this secure computation player Pj (who is the first honest player), may not
have private randomness, and therefore we think of this player as being malicious. Thus, it suffices
to prove that

{B1, Rj , V, (Zi)i∈G} ≈ {B1, Rj , V, Ugm}. (7)

We first notice that for every i ∈ G − {j},
2i− 1 ≥ 2j + 1.

This follows from our assumption that j is the first honest player, and thus for every i ∈ G \ {j} it
holds that i ≥ j + 1.

This, together with Equation (5), implies that

{Xj , (g
(2i−1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj , (g

(2i−1)(Xi))i∈G\{j}, U(g−1)m},
which in turn implies that

{Rj , (g
(2i−1)(Xi))i∈G , V } ≈ {Rj , (g

(2i−1)(Xi))i∈G , U}. (8)

Remark C.5. Here we would like to think of U as being uniform, but the complete proof for
this equation is somewhat involved: the adversary can choose to abort the protocol in the secure
computation. What is true is that the indistinguishability holds with U being chosen adversarially
from a set of t uniformly sampled strings. Since the number of aborts is at most the number of
dishonest players (which is bounded by poly(n)), any adversary that can distinguish the two sides
with a truly uniform U can also succeed in the case that U is distributed as we described.

Next, notice that it is easy to simulate the transcript B1 given
(

(Xi)i/∈G , (g
(2i)(Xi))i∈G

)

.

Therefore, to prove Equation (7) it suffices to prove that

{Rj , (g
(2i)(Xi))i∈G , V, (RExt(g(2i−1)(Xi), V))i∈G} ≈ {Rj , (g

(2i)(Xi))i∈G , V, Ugm}.
This is immediately implied from Equation (8), from Corollary C.2, and from the fact that all the
sources {Xi}i∈G are independent.

28

D Computational Network Extractor for polynomially-small Min-

Entropy

In this section we give a computational network extractor protocol where each player has an inde-
pendent (n, k) source with k = nα for some constant 0 < α < 1. Our protocol works as long as there
are a constant number of honest players (the constant depends on α). To describe the protocol, we
assume the existence of one way permutations for 0.3nα-sources. We have the following corollary:

Corollary D.1. If f is a one way permutation for 0.3nα-sources, then there is an efficiently com-
putable function RExt as in Theorem A.19, with parameters ǫ = 1

poly(nlog n)
and d = O(log(n/ǫ)) =

polylog(n), such that for any (n, 0.9nα) source X,

(RExt(X,Ud), f(X), Ud) ≈ (Um, f(X), Ud).

Proof. The corollary follows from exactly the same proof of Corollary C.2.

The computational network extractor protocol is now described as follows:

29

Protocol D.2. For Computational Network Extractornetwork

Player Inputs: Each player Pi has a string xi sampled from an independent (n, nα) source Xi.
Player Outputs: Each player Pi outputs a (private random) string wi.

Sub-Routines and Parameters:

1. IExt as in Theorem A.21, and BasicExt as in Theorem A.22.

2. f : {0, 1}n → {0, 1}n a one way permutation for 0.3nα-sources.

3. The seeded extractor RExt as in Corollary D.1.

The protocol proceeds in two phases.

• Phase 1. The first phase of the protocol proceeds in p rounds (where p is the number of
players). In round j ∈ [p] the players do the following.

1. Player Pj sends f (j+1)(xj) to all other players. Denote all the j strings broadcasteda

so far by y1, . . . , yj. The following steps apply to the remaining players (players Pi

with i > j).

2. Let u be the number of independent sources IExt takes. For each i1, . . . , iu ∈ [j],
each player Pi computes mi1,...,iu , IExt(yi1 , . . . , yiu). Let Mj be the matrix whose
(i1, . . . , iu)-row is mi1,...,iu . Note that Mj is a (ju, k)-matrix.

3. Each player Pi computes ej
i = BasicExt(f (j)(xi),Mj) and truncates the output so that

|ej
i | = log3 n. Parse ej

i = (sj
i , r

j
i).

4. All players Pi, i > j engage in a secure multi-party computation to compute rj = ⊕rj
i ,

where each player Pi uses sj
i as its internal randomness.

5. Each player Pi computes zj
i = RExt(f (j)(xi), r

j) and truncates the output so that

|zj
i | = O(log2 n).

At the end of the p’th round, each player Pi, i ∈ [p] computes zi = ⊕p
j=1z

j
i .

• Phase 2.

1. Each player Pi parses zi = (si, ri). All the players {Pi}i∈[p] engage in a secure multi-
party computation to compute r = ⊕ri, where each player Pi uses si as its internal
randomness.

2. Each player Pi computes wi = RExt(f (i)(xi), r), and outputs wi as its final output.

aFor the sake of simplicity, think of the network as having broadcast channels, although our protocol also works

in the case of point to point channels.

Theorem D.3. Let k = nα for some constant 0 < α < 1. Let u = O(1
α) be the number of

independent (n, k) sources IExt needs. There exists a constant 0 < γ < 1 such that for any p s.t.
u+2 ≤ p ≤ kγ/u and any t ≤ p−u−2, Protocol D.2 is a (t, p− t) computational network extractor.

30

To prove the theorem, we first prove the following lemma (in the lemma and the analysis we
use capital letters to denote the corresponding strings viewed as random variables):

Lemma D.4. Let ℓ ∈ [p] be the smallest element such that the set {P1, . . . , Pℓ} contains at least u
honest players: Ph1 , · · · , Phu

. Denote the remaining honest players by Pg1, · · · , Pgv . Let e denote

the concatenation of all ej
i ’s, and b denote the concatenation of the broadcasted sources of all faulty

players. Then

({Zgi
}i∈[v], {Xhi

}i∈[u], {f (ℓ+1)(Xgi
)}i∈[v], E,B) ≈ ({Ugi

}i∈[v], {Xhi
}i∈[u], {f (ℓ+1)(Xgi

)}i∈[v], E,B).

In other words, at the end of phase 1, the outputs of all the honest players, except the fist u
honest players, are indistinguishable from being independent and uniform, even given Xh1 , · · · ,Xhu

,
f (ℓ+1)(Xg1), · · · , f (ℓ+1)(Xgv), all the Ej

i ’s, and all the sources broadcasted by the faulty players.

Remark D.5. This statement is stronger than the statement that Zg1 , · · · , Zgv are indistinguish-
able from being independent and uniform given all the transcript of Phase 1, because the transcript
can be computed in polynomial time from (Xh1 , · · · ,Xhu

, f (ℓ+1)(Xg1), · · · , f (ℓ+1)(Xgv), E,B) (Note
that the players Pg1 , · · · , Pgv broadcast their sources after round ℓ, thus gi > ℓ. So the broadcasted
sources {f (gi+1)(Xgi

)} can be computed efficiently from {f (ℓ+1)(Xgi
)}).

Outline of the Proof. We first give an informal outline of the proof, since the proof involves a
lot of notations.

We are going to fix the “good” round ℓ = hu, where u honest players have broadcasted their
sources. We then argue that in this round, the output Eℓ

i of all honest players that haven’t
broadcasted their sources are statistically close to uniform, independent of the transcript so far
and independent of each other. To do this, note the sources broadcasted by honest players are
independent, and each has min-entropy nα. Thus when we apply IExt to the sources from u honest
players, the output will be close to uniform, and therefore, the matrix Mℓ in round ℓ is close to
a somewhere random source. The hope is that when we apply BasicExt to Mℓ and a remaining
honest player’s source, the output will be close to uniform and independent of the transcript so far
by Theorem A.22.

However, the transcript contains information(specifically, ej
i ’s) about the remaining honest play-

ers’ sources. Thus we’ll have to first fix the transcript, and argue that conditioned on a TYPICAL
fixing, a remaining honest player’s source and Mℓ still satisfy the conditions in Theorem A.22. To
do this, we first fix (Xh1 , . . . ,Xhu−1). Note that conditioned on this fixing, IExt(Xh1 , . . . ,Xhu

) is
a deterministic function of Xhu

. We then show by induction on round j < ℓ that conditioned on
any fixing of the transcript, Xhu

and the remaining honest players’ sources are still independent.
Moreover, since the size of ej

i ’s are small, by Lemma A.12 and Lemma A.13 conditioned a typical
fixing of the transcript so far, IExt(Xh1 , . . . ,Xhu

) is close to a (k, k−kβ) source, and any remaining
honest player’s source is close to an (n, k − kβ) source, where β is the constant in Theorem A.22.
Thus Mℓ is close to a (ℓu × k)(k − kβ)-source and is independent of any remaining honest player’s
source. Now note ℓ < p, thus as long as p is small, by Theorem A.22 the output Eℓ

i of all honest
players that haven’t broadcasted their sources are statistically close to uniform, independent of the
transcript so far and independent of each other.

31

Next, we argue that Zℓ
gi

is indistinguishable from being uniform and independent of the tran-
script so far, and the subsequent computations do not reveal any information about it to a com-
putationally bounded adversary. Thus the final output of any Pgi

is indistinguishable from being
uniform and private.

To do this, consider a particular honest player Pg1 . The fact that there are at least u + 2
honest players implies there are at least 2 honest players in {gi}. Pick another honest player Pg2 .
Assume for the sake of contradiction that there exists an adversary that distinguishes Zℓ

g1
from

uniform, given the transcript and the subsequent computations. Then there is a fixing of all the
transcript so far(including Eℓ

g1
) and all the sources {Xgi

}i6={1,2} such that conditioned on the fixing,

the adversary still distinguishes Zℓ
g1

from uniform. Note that now all subsequent transcript can be

computed in polynomial time from Xg2 and f (ℓ+1)(Xg1). Thus there exists another adversary that
distinguishes Zℓ

g1
from uniform given Xg2 and f (ℓ+1)(Xg1). Recall Zℓ

g1
= RExt(f (ℓ)(Xg1), R

ℓ) and

now Rℓ is a deterministic function of Xg2 . Thus Lemma A.20 implies there is another adversary
that distinguishes Zℓ

g1
from uniform given Rℓ and f (ℓ+1)(Xg1). Since Eℓ

g1
is statistically close to

uniform, the property of the secure multiparty computation guarantees that Rℓ is indistinguishable
from being uniform and independent of Xg1 . Thus Theorem A.19 implies that there exists an
adversary and a weak source X̄ with sufficiently large min-entropy such that the adversary inverts
f(X̄) with non-negligible probability, and this contradicts our assumption on f .

Proof of Lemma D.4. We assume without loss of generality that the PPT adversary (who
controls all the malicious players) is deterministic. Thus, it suffice to prove

({Zgi
}i∈[v], {Xhi

}i∈[u], {f (ℓ+1)(Xgi
)}i∈[v], E) ≈ ({Ugi

}i∈[v], {Xhi
}i∈[u], {f (ℓ+1)(Xgi

)}i∈[v], E) (9)

Note that after round ℓ, there are u honest players who have already broadcasted their sources.
The fact that f is deterministic and injective implies that Yh1, · · · , Yhu

are all independent and each

has min-entropy k = nα. Thus by Theorem A.21, Mh1,··· ,hu
= IExt(Yh1 , · · · , Yhu

) is 2−kΩ(1)
-close to

being uniform. We now introduce some notations:

• Ej = {Eq
i }i∈[p],q≤j, Zj = {Zq

i }i∈[p],q≤j, where Eq
i is computed by player Pi in step 3 of round

q in phase 1, and Zq
i is computed by player Pi in step 5 of round q in phase 1. Thus, Ej

consists of all Eq
i ’s computed by all players in all rounds ≤ j, Zj consists of all Zq

i ’s of all
players in all rounds ≤ j.

Now fix

(xh1 , . . . , xhu−1)← (Xh1 , . . . ,Xhu−1)

(eℓ−1, zℓ−1)← (Eℓ−1, Zℓ−1)

For any random variable Z, we denote by Z ′ the random variable Z conditioned on these
fixings. Let TYPICAL denote the event that conditioned on these fixings, the following properties
are satisfied:

• X ′hu
,X ′g1

, · · · ,X ′gv
are independent random variables.

• M ′
h1,··· ,hu

is 2−kΩ(1)
-close to having min-entropy k − kβ.

32

• ∀i ∈ [v], X ′gi
has min-entropy k − kβ.

Here β is the parameter in Theorem A.22. We have

Claim D.6.
Pr[TYPICAL] = 1− negl(n).

The proof of this claim is by induction on j < ℓ and is very similar to the proofs of Claim B.3
and Claim B.4, therefore we omit the details here. The only difference is that initially Mh1,··· ,hu

is

only 2−kΩ(1)
-close to being uniform(having min-entropy k). Thus when dealing with it we need to

use Lemma A.13 instead of Lemma A.12.
Now, further fix

(x′hu
← X ′hu

)

For any random variable Z ′, we let Z ′′ = Z ′|(X ′hu
= x′hu

). Let TYPICAL2 denote the event
that conditioned on all the above fixings, the following properties are satisfied:

• ∀i ∈ [v], (Eℓ
gi

)′′ is 2−kΩ(1)
-close to being uniform, and is a deterministic function of X ′′gi

.

• X ′′g1
, · · · ,X ′′gv

are independent random variables.

Claim D.7. If TYPICAL holds, then

Pr[TYPICAL2] = 1− negl(n).

As before, the proof of this claim is very similar to the proofs of Claims B.3 and B.4, and
therefore we omit the details here. One thing that needs to be noted is that Mℓ is a ℓu × k
matrix. Thus as long as p < kγ/u, where γ is the constant in Theorem A.22, the claim follows from
Theorem A.22.

Now, assume for the sake of contradiction that Equation (9) does not hold. Namely, assume
that there exists a polynomial time non-uniform adversary A1 and there exists a polynomial q such
that for infinitely many n’s,

|Pr[A1({Zgj
}j∈[v], {Xhj

}j∈[u], {f (ℓ+1)(Xgj
)}j∈[v], E) = 1]−

Pr[A1({Ugj
}j∈[v], {Xhj

}j∈[u], {f (ℓ+1)(Xgj
)}j∈[v], E) = 1]| > 1

q(n)

A standard hybrid argument implies that there exists i ∈ [v] such that for infinitely many n’s,

|Pr[A1(Zgi
, {Zgj

}j 6=i,j∈[v], {Xhj
}j∈[u], {f (ℓ+1)(Xgj

)}j∈[v], E) = 1]−

Pr[A1(U, {Zgj
}j 6=i,j∈[v], {Xhj

}j∈[u], {f (ℓ+1)(Xgj
)}j∈[v], E) = 1]| > 1

p · q(n)

We assume without loss of generality that i = 1. Recall that there are at least u + 2 honest
players. Thus, there are at least 2 honest players in {gj}j∈[v]. Pick another honest player Pg2 . We
say that a tuple

(eℓ−1, zℓ−1, eℓ
g1

, {xhj
}j∈[u], {xgj

}j∈[v],j 6={1,2})← (Eℓ−1, Zℓ−1, Eℓ
g1

, {Xhj
}j∈[u], {Xgj

}j∈[v],j 6={1,2})

is BAD if conditioned on the fixing of this tuple, the following properties are satisfied:

33

1. There exists a non-uniform polynomial time adversary A2 such that for infinitely many n’s,

∣

∣

∣
Pr[A2(Z

ℓ
g1

, Rℓ,Xg2 , f
(ℓ+1)(Xg1)) = 1]− Pr[A2(U,Rℓ,Xg2 , f

(ℓ+1)(Xg1)) = 1]
∣

∣

∣
≥ 1

2p · q(n)
,

2. Xg1 and Xg2 are independent. Eℓ
g2

is a deterministic function of Xg2 and is 2−kΩ(1)
-close to

being uniform. Xg1 has min-entropy k − o(k).

Claim D.8. There exists a BAD tuple.

Again, the proof of this claim is rather standard and is very similar to the proof of Claim C.4,
we thus omit the details here.

Now fix a BAD tuple (eℓ−1, zℓ−1, eℓ
g1

, {xhj
}j∈[u], {xgj

}j∈[v],j 6={1,2}). Then all Rℓ
j ’s from honest

players except Pg2 are fixed. The Rℓ
j’s from faulty players are a deterministic function of the

transcript so far, thus are also fixed. Note Rℓ =
⊕

Rℓ
j and Rℓ

g2
is a deterministic function of Xg2 .

Thus Rℓ is now a deterministic function of Xg2 . Note Xg1 and Xg2 are independent conditioned

on the fixing, thus Rl is independent of Xg1 . Moreover, since Eℓ
g2

is 2−kΩ(1)
-close to being uniform,

the property of the secure multiparty computation protocol guarantees that the Rℓ
j ’s from faulty

players are indistinguishable from being independent of Rℓ
g2

. Thus Rℓ =
⊕

Rℓ
i is indistinguishable

from being uniform. Note Zℓ
g1

= RExt(f (ℓ)(Xg1), R
ℓ), thus

(Zℓ
g1

, Rℓ, f (ℓ+1)(Xg1)) ≈ (RExt(f (ℓ)(Xg1), R), R, f (ℓ+1)(Xg1)), (10)

where R is the uniform distribution on the range of Rℓ and is independent of Xg1 .
On the other hand, note that when we fix the BAD tuple, Xg1 and Xg2 are independent, and Rℓ is

a deterministic function of Xg2. Thus by the first property of the BAD tuple and Lemma A.20, there

exists another non-uniform adversary A3 that runs in time 2|R
ℓ|nT ime(A2) = poly(n, 1

ǫ)T ime(A2)
such that

∣

∣

∣
Pr[A3(Z

ℓ
g1

, Rℓ, f (ℓ+1)(Xg1)) = 1]− Pr[A3(U,Rℓ, f (ℓ+1)(Xg1)) = 1]
∣

∣

∣
≥ 1

2p · q(n)
.

Note Rl ≈ R, combined with Equation 10 we get

∣

∣

∣
Pr[A3(RExt(f (ℓ)(Xg1), R), R, f (ℓ+1)(Xg1)) = 1]− Pr[A3(U,R, f (ℓ+1)(Xg1)) = 1]

∣

∣

∣
≥ 1

2p · q(n)
−negl(n) >

1

3p · q(n)
.

Note 1
3p·q(n) > 2ǫ and f (ℓ)(Xg1) has min-entropy k− o(k) > 0.9k = 0.9nα conditioned on all the

fixings. Therefore, by Theorem A.19 there exists a non-uniform adversary A4 that runs in time
poly(n, 1/ǫ) · T ime(A3) = poly(n, 1/ǫ)T ime(A2) = poly(nlog n) and an (n, 0.3nα)-source X̄ such
that A4 inverts f(X̄) with probability at least 1

24p·q(n) . This contradicts our assumption on f .

Once we have the lemma, it’s fairly easy to prove the main theorem. We first prove that if
{Zgi
}’s are really {Ugi

}’s, then all Wi’s of honest players are indistinguishable from being uniform
and private. Then since {Zgi

}’s are indistinguishable from {Ugi
}’s, the theorem follows.

34

To prove the statement above, consider any particular honest player Pj . Assume there exists
a PPT adversary that distinguishes Wj and uniform given the transcript in Phase 1 and Phase 2.
We first fix all honest players’ sources except Pj . There is a fixing of the sources such that the
adversary still distinguishes Wj and uniform given the transcript. Note after this fixing all transcript
in Phase 1 and Phase 2 except {Ugi

}’s are a deterministic function of Xj . Now we further fix all the
transcript and {Ugi

}’s except f (j+1)(Xj) and Ug1 . Again there is a fixing such that the adversary
still distinguishes Wj and uniform. Now the adversary is only given f (j+1)(Xj) and Ug1. Recall
Wj = RExt(f (j)(Xj), R) and note now R is a deterministic function of Ug1 . Thus Lemma A.20
implies there exists another adversary that distinguishes Wj and uniform given R and f (j+1)(Xj).
The property of the secure multiparty computation guarantees that R is indistinguishable from
being uniform and independent of Xj . Note all Ej

i ’s and Zj
i ’s are small thus conditioned on all the

fixings mentioned above f (j)(Xj) still has min-entropy > 0.9k. Thus Theorem A.19 implies that
there exists another adversary and a weak source X̄ with sufficiently large min-entropy such that
the adversary inverts f(X̄) with non-negligible probability. This contradicts our assumption on f .

Proof of Theorem D.3. Again, we assume without loss of generality that the PPT adversary
(who controls all the malicious players) is deterministic. At the end of Phase 1, we have

({Zgi
}i∈[v], {Xhi

}i∈[u], {f (ℓ+1)(Xgi
)}i∈[v], E) ≈ ({Ugi

}i∈[v], {Xhi
}i∈[u], {f (ℓ+1)(Xgi

)}i∈[v], E)

Let the set of all honest players be G, i.e., G = {hi}∪{gi}. Note that ({Zhi
}i∈[u], {f (hi)(Xhi

)}i∈[u],

{f (gi)(Xgi
)}i∈[v]) can be computed in polynomial time from ({Xhi

}i∈[u], {f (ℓ+1)(Xgi
)}i∈[v], E) (keep

in mind that gi ≥ l + 1). Thus we have

({Zgi
}i∈[v], {Zhi

}i∈[u], {f (i)(Xi)}i∈G , E) ≈ ({Ugi
}i∈[v], {Zhi

}i∈[u], {f (i)(Xi)}i∈G , E) (11)

Note that the transcript in Phase 1 can be computed in polynomial time from (E, {f (i+1)(Xi)}i∈G),
and the transcript in Phase 2 can be computed in polynomial time from ({Zi}i∈[p]). Moreover,
({Zi}i/∈G) can be computed in polynomial time from the transcript in Phase 1. Thus to prove the
theorem it suffices to prove

({Wi}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E).

Now if we run Phase 2 with the two distributions on both sides of Equation 11, and let w̄i

denote the output of player Pi when we run the protocol with the right hand side distribution, we
get

({Wi}i∈G , {Zhi
}i∈[u], {Zgi

}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({W̄i}i∈G , {Zhi

}i∈[u], {Ugi
}i∈[v], {f (i+1)(Xi)}i∈G , E). (12)

We’ll first prove

35

({W̄i}i∈G , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi

}i∈[u], {Ugi
}i∈[v], {f (i+1)(Xi)}i∈G , E).

Assume for the sake of contradiction that there exists a non-uniform polynomial time adversary
A1 and a polynomial q such that for infinitely many n’s,

|Pr[A1({W̄i}i∈G , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]−

Pr[A1(Ui}i∈G , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]| > 1

q(n)

A standard hybrid argument implies that there exists j ∈ G such that

|Pr[A1(W̄j, {W̄i}i∈G,i6=j , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]−

Pr[A1(U, {W̄i}i∈G,i6=j, {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]| > 1

p · q(n)

for infinitely many n’s.
We say that a tuple

(e, {zhi
}i∈[u], {xi}i6=j,i∈G)← (E, {Zhi

}i∈[u], {Xi}i6=j,i∈G)

is BAD if conditioned on the fixing of this tuple, the following properties are satisfied:

1. There exits a non-uniform polynomial time adversary A2 such that for infinitely many n’s

∣

∣

∣
Pr[A2(W̄j, {Ugi

}i∈[v], f
(j+1)(Xj)) = 1]− Pr[A2(U, {Ugi

}i∈[v], f
(j+1)(Xj)) = 1]

∣

∣

∣
≥ 1

2p · q(n)
,

2. Xj has min-entropy k − o(k).

Claim D.9. There exists a BAD tuple.

Proof of Claim D.9. A standard probabilistic argument shows that a random tuple

(e, {zhi
}i∈[u], {xi}i6=j,i∈G)← (E, {Zhi

}i∈[u], {Xi}i6=j,i∈G)

satisfies

|Pr[A1(W̄j , {W̄i}i∈G,i6=j, {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]−

Pr[A1(U, {W̄i}i∈G,i6=j, {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) = 1]| ≥ 1

2p · q(n)

36

with probability at least 1
2p·q(n) .

Note that once (E, {Zhi
}i∈[u], {Xi}i6=j,i∈G) are fixed, ({W̄i}i∈G,i6=j, {f (i+1)(Xi)}i∈G,i6=j) can be

computed in polynomial time from {Ugi
}i∈[v]. Thus there exists a non-uniform adversary PPT A2

that has the fixings hardwired into it such that

∣

∣

∣
Pr[A2(W̄j, {Ugi

}i∈[v], f
(j+1)(Xj)) = 1]− Pr[A2(U, {Ugi

}i∈[v], f
(j+1)(Xj)) = 1]

∣

∣

∣
≥ 1

2p · q(n)

Furthermore, since {Xi}i∈G are independent, it’s easy to show by induction on round j′ ∈ [p]

that the only fixings that can cause Xj to lose entropy are Ej′

j ’s and Zj , and these are a deterministic

function of Xj(conditioned on the fixings). The total length of these strings is at most O(p log3 n) =
o(k) since k = nα and p ≤ kγ/u. Thus by Lemma A.12 with probability 1−negl(n) over the fixings
of (E, {Zhi

}i∈[u], {Xi}i6=j,i∈G), Xj has min-entropy k − o(k). The claim thus follows.

Now we further fix {Ugi
}i∈[v] except Ug1. There is a fixing of {Ugi

}i∈[v],i6=1 that preserves this
probability. Thus there exists a non-uniform PPT adversary A3 that has the fixings hardwired into
it such that conditioned on the fixings,

∣

∣

∣
Pr[A3(W̄j, Ug1 , f

(j+1)(Xj)) = 1]− Pr[A3(U,Ug1 , f
(j+1)(Xj)) = 1]

∣

∣

∣
≥ 1

2p · q(n)

for infinitely many n’s.
Moreover, after all these fixings R is a deterministic function of Ug1. Note that W̄j = RExt(f (j)(Xj), R)

and Ug1 is independent of Xj . Thus by Lemma A.20 there exists a non-uniform adversary A4 that
runs in time 2|R|nT ime(A3) = poly(n, 1

ǫ)T ime(A3) = poly(nlog n) such that

∣

∣

∣
Pr[A4(W̄j, R, f (j+1)(Xj)) = 1]− Pr[A4(U,R, f (j+1)(Xj)) = 1]

∣

∣

∣
≥ 1

2p · q(n)
.

Note 1
2p·q(n) > 2ǫ. Since Ug1 is uniform and independent of all the other random variables,

the property of the secure multiparty computation protocol guarantees that R =
⊕

Ri is indistin-
guishable from being uniform and independent of Xj . Further note conditioned on all the fixings
above, f (j)(Xj) has min-entropy k−o(k) > 0.9k. Thus by Theorem A.19 there exists a non-uniform
adversary A5 that runs in time poly(n, 1

ǫ)T ime(A4) = poly(nlog n) and an (n, 0.3nα)-source X̄ such
that A5 inverts f(X̄) with probability at least 1

16p·q(n) . This contradicts our assumption on f .
Therefore, we must have

({W̄i}i∈G , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi

}i∈[u], {Ugi
}i∈[v], {f (i+1)(Xi)}i∈G , E).

From Equation 11 we get

({Ui}i∈G , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi

}i∈[u], {Zgi
}i∈[v], {f (i+1)(Xi)}i∈G , E).

37

Therefore

({W̄i}i∈G , {Zhi
}i∈[u], {Ugi

}i∈[v], {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zhi

}i∈[u], {Zgi
}i∈[v], {f (i+1)(Xi)}i∈G , E).

Together with Equation 12 this implies

({Wi}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E) ≈
({Ui}i∈G , {Zi}i∈G , {f (i+1)(Xi)}i∈G , E).

as desired.

E Proof of Lemma A.11

In this section, we prove Lemma A.11, which says that any weak source with linear min-entropy can
be divided into a constant number of blocks, such that the source is close to a convex combination
of somewhere block sources. First we need the definition of a subsource.

Definition E.1 (Subsource). Given random variables X and X ′ on {0, 1}n we say that X ′ is a
deficiency-d subsource of X and write X ′ ⊆ X if there exits a set A ⊆ {0, 1}n such that (X|A) = X ′

and Pr[x ∈ A] ≥ 2−d.

Proposition E.2. Let X be a random variable with H∞(X) = k. Let X ′ ⊂ X be a subsource of
deficiency d corresponding to some set A ⊂ {0, 1}n. Then H∞(X ′) = k − d.

More generally, we have the statement that conditioning on typical values of any function cannot
reduce the min-entropy of our source by much more than we expect.

Lemma E.3 (Fixing a function). Let X be a distribution over {0, 1}n, F : {0, 1}n → {0, 1}m be
a function, and ℓ ≥ 0 some number. For every s ∈ supp(F (X)), define Xs to be the subsource
X|F (X) = s. Then there exists s ∈ {0, 1}m for which Xs has deficiency at most m. Furthermore,
we have that

Pr
s←RF (X)

[deficiency of Xs ≤ m + ℓ] ≥ 1− 2−ℓ

Proof. Let S be the set of s ∈ {0, 1}m such that Pr[F (x) = s] < 2−m−ℓ. Since |S| ≤ 2m, we have
that Pr[F (X) ∈ S] < 2−ℓ. If we choose s ←R F (X) and s /∈ S, we get that X|F (X) = s has
deficiency ≤ m + ℓ. Choosing ℓ = 0 we get the first part of the proposition.

We next give a lemma that is used to prove Lemma A.11.

Lemma E.4 (Fixing Entropies). Let X = X1 ◦ X2 ◦ · · · ◦ Xt be a t-block random variable over
{0, 1}n. Fix any s > 0 and let 0 = τ1 < τ2 < · · · < τc+1 = n be some numbers. There exists a
universe U such that for every X there exists a set of random variables {Xj}j∈U and a random
variable J over U , such that X = XJ (i.e., X is a convex combination of {Xj}j∈U). {Xj} has the
following properties:

38

• For every j ∈ U s.t. Pr[J = j] > 0, there exists a sequence ēj = ej
1, · · · , e

j
t ∈ [c]t such that for

every 0 < i ≤ t and every sequence x1, · · · , xi−1 ∈ Supp(Xj
1,··· ,i−1);

τ
ej
i

< H∞(Xj
i |x1, · · · , xi−1) ≤ τ

ej
i+1

• with probability 1− t2−s over J , Xj is a subsource of X with deficiency < t2 log c + ts.

Proof. We prove this by induction on t. The base case where t = 1 is trivially true. Now suppose
this is true for up to t − 1 blocks and we’ll prove it for t blocks. For every x1 ∈ Supp(X1) define
the source Y (x1) to be X2,··· ,t|x1. By the induction hypothesis, there exists a universe U ′ and a
random variable J ′ over U ′ such that Y (x1) = Y J ′

. For every j′ ∈ U ′ s.t. Pr[J ′ = j′] > 0 there
exists a sequence ēj′(x1) ∈ [c]t−1 such that Y j′ satisfies the first property with respect to ēj′(x1).
Define the function Fj′ : X1 → [c]t−1 that maps x1 to ēj′(x1).

Now let the new universe be U = Range(F (X1))×U ′. Note that U is the same for all X. Define
the new random variable J over U such that the event J = (ē, j′) stands for (J ′ = j′, Fj′(X1) = ē).
Then the convex combination X = XJ satisfies property 1. Moverover, by Lemma E.3, with
probability 1 − 2−s, X1|Fj′(X1) = ē is a deficiency (t − 1) log c + s subsource of X1, and by the
induction hypothesis with probability 1−(t−1)2−s over J ′, Y j′ is a deficiency (t−1)2 log c+(t−1)s
subsource of Y (x1). Thus with probability at least 1− (t− 1)2−s − 2−s = 1− t2−s, the deficiency
of Xj is at most (t− 1)2 log c + (t− 1)s + (t− 1) log c + s < t2 log c + ts.

Corollary E.5. If in the lemma above X has min-entropy k, and Xj is a deficiency t2 log c + ts
subsource of X as in property 2 with ēj the sequence corresponding to Xj as in property 1, then
∑t

i=1 τ
ej
i+1
≥ k − t2 log c− ts.

Proof. If this was not the case, we could find some string in the support of X that is too heavy.
Specifically, we take the heaviest string allowed in each successive block to get x = x1 ◦ x2 ◦
· · · ◦ xt. Then it must be Pr[Xi = xi|x1, · · · , xi−1] ≥ 2

−τ
e
j
i
+1 for any 0 < i ≤ t. Together with

the fact that Xj has deficiency < t2 log c + ts we get Pr[X = x] > 2−(t2 log c+ts)Πt
i=12

−τ
e
j
i
+1 =

2−(t2 log c+ts)2
−

Pt
i=1 τ

e
j
i
+1 > 2−k. This contradicts the fact that X has min-entropy k.

Proof of Lemma A.11. We’ll use Lemma E.4. Let the parameters in that lemma be s =√
k, c = 6

α2 and τi = i−1
c n for 0 < i ≤ c + 1. Then Lemma E.4 shows that X is a convex

combination of {Xj}j∈U and with probability 1 − t2−s = 1 − 2−nΩ(1)
, Xj is a subsource with

deficiency < t2 log c + ts < 0.01k. Now Corollary E.5 says that for such a Xj , we must have
∑t

i=1 τ
ej
i+1
≥ k−t2 log c−ts > 0.99k. We now show that there must exist at least two ej

i ’s s.t. ej
i ≥ 2.

Otherwise suppose there is at most one ej
i s.t. ej

i ≥ 2. For ej
i = 1 we have τ

ej
i+1

= τ2 = n
c . For ej

i ≥ 2

we have the min-entropy of the block Xj
i conditioned on any fixing of previous blocks is at most

n
t . Assume for the sake of simplicity that n

ct = 1.5
α is an integer, thus n

t appears in set {τi} and we

must have τ
ej
i+1
≤ n

t . Therefore
∑t

i=1 τ
ej
i+1
≤ n

c (t−1)+ n
t < tn

c + n
t = 2α

3 n+ α
4 n < 0.99αn = 0.99k,

which is a contradiction.
Thus, there must exist at least two ej

i ’s s.t. ej
i ≥ 2, so τ

ej
i
≥ n

c = α2

6 n. Let 0 < i1 < i2 ≤ t be

the two corresponding i’s. Let g = i1 and further condition on any fixing of Xj
1 , . . . ,Xj

g−1. Now

39

by Lemma E.4, we see X is 2−Ω(n)-close to being a convex combination of sources {Xj}j∈J that
satisfy the properties in Lemma A.11.

F Proof of Theorem A.19

Following [Uma05], we define reconstructive extractors:

Definition F.1. A (n, t,m, d, a, ǫ, δ)-reconstructive extractor is a triple of functions:

• A polynomial time computable extractor function Ext : {0, 1}n × {0, 1}t → {0, 1}m

• An advice function A : {0, 1}n × {0, 1}d → {0, 1}a

• A poly(n, 1/ǫ) time randomized oracle reconstruction procedure R : {0, 1}a → {0, 1}n

That satisfy the property that for every x ∈ {0, 1}n and D : {0, 1}m → {0, 1} for which

|Pr[D(Ext(x,Ut), Ut) = 1]− Pr[D(Um, Ut) = 1]| ≥ ǫ,

we must have that
Pr
w

[RD(A(x,w)) = x] ≥ δ.

Note that Ext as above must be a seeded extractor for n bit sources with entropy larger than a,
since any function that distinguishes the output from uniform can be used to get a procedure that
guesses x with probability roughly 2−a.

We have the following theorem, which follows from the discussion in section 6 of [Uma05]:

Theorem F.2 ([Uma05]). There is a constant β > 0 such that for every n, a, ǫ with a = nΩ(1),
there exists (n, t = O(log(n/ǫ))),m = nβ, d = O(log(n/ǫ)), a, ǫ, 1/2) reconstructive extractor.

An almost immediate consequence of this theorem is Theorem A.19, which we prove here:

Proof of Theorem A.19. We set Ext to be the reconstructive extractor promised by Theorem F.2,
set up so that a = k/2. Suppose that there was a distinguishing circuit D that could distinguish
(f(X),Ext(X,Ut), Ut) from (f(X), Um, Ut) with probability 2ǫ1. Then by a standard averaging
argument we have

Pr
x←X

[|Pr[D(f(x),Ext(x,Ut), Ut) = 1]− Pr[D(f(x), Um, Ut) = 1]| ≥ ǫ1] ≥ ǫ1

Note ǫ1 ≥ ǫ. Thus by the definition, there is a circuit RD of size poly(n, 1/ǫ)size(D) such
that for every x s.t. |Pr[D(f(x),Ext(x,Ut), Ut) = 1] − Pr[D(f(x), Um, Ut) = 1]| ≥ ǫ1 ≥ ǫ,
Pr[RD(f(x), A(x,W)) = x] = 1/2. Thus we have

Pr[RD(f(X), A(X,W)) = X] ≥ ǫ1

2
,

where the probability is over X and W . By Lemma A.12,

Pr
a←RA(X,W)

[H∞(X|A(X,W) = a) ≥ k/3] ≥ 1− 2a+k/3−k = 1− 2−Ω(k).

40

Also, by averaging, we have that

Pr
a←RA(X,W)

[Pr[RD(f(X), A(X,W)) = X|A(X,W) = a] ≥ ǫ1

4
] ≥ ǫ1

4
.

Note ǫ1 ≥ ǫ ≥ 2−
√

k. Thus, by a union bound, there is some fixing of A(X,W) = a for
which H∞(X|A(X,W) = a) ≥ k/3 and Pr[RD(f(X), A(X,W)) = X|A(X,W) = a] ≥ ǫ1/4. Let
X̄ = X|(A(X,W) = a) and B be RD with A(X,W) = a hardwired into it. The theorem now
follows.

41

	Introduction
	Our Results
	Overview of our Ideas
	2-Source Extractor
	Network Extractor Protocols

	Two-Source Extractor
	Ingredients
	Construction

	Acknowledgements
	Preliminaries
	Basic Definitions
	Block Sources and Conditional entropy.
	Somewhere Random Sources
	Seeded Extractors and Independent Source Extractors
	Reconstructive Extractors and One Way Functions
	Previous Work that We Use

	Computational Two-Source Extractor
	Construction
	Analysis of the Extractor

	Computational Network Extractors for Linear Min-Entropy
	The Protocol

	Computational Network Extractor for polynomially-small Min-Entropy
	Proof of [cor:linearentropy]Lemma A.11
	Proof of [thm:recon]Theorem A.19

