Graphs
Objects & Relationships

Facebook friends:
 Obj: People
 Rel: Two are related if they are friends

Cities and Roads:
 Obj: Cities
 Rel: Two are related if they have a road between them

Data flow in programs:
 Obj: Lines of the program
 Rel: Two are related if one line depends on the other
Graphs

Objects: "vertices," aka "nodes"
Relationships between pairs: "edges"
Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges. Each edge is a set or tuple of two vertices.
Undirected Graph \(G = (V,E) \)
Undirected Graph $G = (V,E)$
Undirected Graph $G = (V, E)$
Undirected Graph \(G = (V, E) \)
Undirected Graph $G = (V, E)$
Graphs don't live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.
Directed Graph $G = (V,E)$
Directed Graph $G = (V, E)$
Graphs

Degree of a vertex, \(\text{deg}(v) \): \# edges that touch that vertex

\[
\text{deg}(6) = 3.
\]

Path: sequence of distinct vertices s.t. each vertex is connected to the next vertex with an edge

Eg: 3, 6, 5, 4
Connected: Graph is connected if there is a path between every two vertices.

Connected component: Maximal set of connected vertices.

Cycle: Path of length > 1 that has the same start and end. Eg: 6,5,7

Tree: A connected graph with no cycles.
Let G be an undirected graph with n vertices and m edges. How are n and m related?
Vertices vs # Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

Since

- every edge connects two different vertices (no loops),
- and no two edges connect the same two vertices (no multi-edges),

it must be true that:

\[0 \leq m \leq \frac{n(n-1)}{2} = \Theta(n^2) \]
More Cool Graph Lingo

A graph is called \textit{sparse} if $m \ll n^2$, otherwise it is \textit{dense}

Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega(n^2)$ edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse ($m \leq 3n - 6$, for $n \geq 3$)

Q: which is a better run time, $O(n+m)$ or $O(n^2)$?

A: $n+m = O(n^2)$, but $n+m$ usually way way better!
Specifying undirected graphs as input

What are the vertices?
Explicitly list them:
{"A", "7", "3", "4"}

What are the edges?
Either, set of edges
{"A,3", {7,4}, {4,3}, {4,A}}
Or, (symmetric) adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Specifying directed graphs as input

What are the vertices?
Explicitly list them:
{"A", "7", "3", "4"}

What are the edges?
Either, set of directed edges:
{(A,4), (4,7), (4,3), (4,A), (A,3)}
Or, (nonsymmetric) adjacency matrix:

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Representing Graph $G = (V,E)$

Vertex set $V = \{v_1, \ldots, v_n\}$

Adjacency Matrix A

$A[i,j] = 1$ iff $(v_i, v_j) \in E$

Space is n^2 bits

Advantages:

$O(1)$ test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in storage and access

$$
\begin{array}{c|cccc}
&A&7&3&4 \\
\hline
A&0&0&1&1 \\
7&0&0&0&1 \\
3&1&0&0&1 \\
4&1&1&1&0 \\
\end{array}
$$

\[m \ll n^2 \]
Representing Graph \(G=(V,E) \)

\(n \) vertices, \(m \) edges

Adjacency List:

\(O(n+m) \) words

Advantages:

- Compact for sparse graphs
- Easily see all edges

Disadvantages

- More complex data structure
- No \(O(1) \) edge test
Representing Graph $G = (V,E)$

n vertices, m edges

Adjacency List:
$O(n+m)$ words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)
Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways:
- **Breadth-First** Search: order the nodes in successive layers based on distance from s
- **Depth-First** Search: more natural approach for exploring a maze; many efficient algs build on it. ²⁹
Breadth-First Search

Completely explore the vertices in order of their distance from \(s \)

Naturally implemented using a queue
Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex \(s \) to all vertices reachable from \(s \)

Three states of vertices
- undiscovered
- discovered
- fully-explored
BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)
 mark s "discovered"
 queue = { s }
 while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u fully explored
BFS(v)
BFS(v)

Queue: 2 3
BFS(v)

Queue: 3 4
BFS(v)

Queue: 4 5 6 7
BFS(v)

Queue: 5 6 7 8 9
BFS(v)

Queue: 8 9 10 11
BFS(v)

Queue: 10 11 12 13
BFS(v)

Queue:
BFS: Analysis, I

O(n) Global initialization: mark all vertices "undiscovered"

BFS(s)

O(1) mark s "discovered"

queue = { s }

while queue not empty

O(n) u = remove_first(queue)

for each edge {u,x}

O(n) if (x is undiscovered)

O(n) mark x discovered

mark u fully explored

O(n²) append x on queue

Simple analysis:

2 nested loops.
Get worst-case number of iterations of each; multiply.

= O(n²)
BFS: Analysis, II

Above analysis correct, but pessimistic (can't have $\Omega(n)$ edges incident to each of $\Omega(n)$ distinct "u" vertices if G is sparse). Alt, more global analysis:

Each edge is explored once from each end-point, so total runtime of inner loop is $O(m)$.

Total $O(n+m)$, $n = \#$ nodes, $m = \#$ edges

Exercise: extend algorithm and analysis to non-connected graphs
Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x.

Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G.

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.

All non-tree edges join vertices on the same or adjacent levels.

{not true of every spanning tree!}
Proof of correctness

Lemma 1: Every vertex at level i is explored after every vertex at level $i-1$.

Proof is by induction on i.

Base case: $i = 1$. True.

Induction step: Let a be at level i, and b be at level $i-1$. Since we use a queue, it is enough to prove that a is added to the queue after b. But a was added when a vertex at level $i-1$ was explored, and b is added when a vertex of level $i-2$ was explored. So a is added after b by induction.
Proof of correctness

Lemma 2: Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root is of length i.

Proof is by induction on i.
Base case: $i = 0$. True.
Induction step: Every vertex u at level i certainly has distance at most i, because we discover a path of length i from u to v. If the distance from the root is less than i, and u was discovered when exploring a (at level $i-1$), then u is a neighbor of a vertex b at distance (and level) $< i-1$. But then, by Lemma 1, b would have been explored before a, and u would have been added in level $i-1$.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start. All edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start
all edges connect same/adjacent levels
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start
all edges connect same/adjacent levels
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

Lemma: all edges connect same/adjacent levels
Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (below) finds a different tree, but it also has interesting structure…
Graph Search Application: Connected Components

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Set up one-time data structure to answer such questions efficiently.
Graph Search Application: Connected Components

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that

\[A[u] = \text{smallest numbered vertex that is connected to } u. \]
Graph Search Application: Connected Components

initial state: all \(v \) undiscovered

for \(v = 1 \) to \(n \) do
 if state(\(v \)) \(!=\) fully-explored then
 BFS(\(v \)): setting \(A[u] = v \) for each \(u \) found
 (and marking \(u \) discovered/fully-explored)
 endif
endfor

Total cost: \(O(n+m) \)

each edge is touched a constant number of times (twice)
works also with DFS
3.4 Testing Bipartiteness
Def. An undirected graph $G = (V, E)$ is **bipartite (2-colorable)** if the nodes can be colored red or blue such that no edge has both ends the same color.

Applications.

- Stable marriage: men = red, women = blue
- Scheduling: machines = red, jobs = blue

"bi-partite" means "two parts." An equivalent definition: G is bipartite if you can partition the node set into 2 parts (say, blue/red or left/right) so that all edges join nodes in different parts/no edge has both ends in the same part.
Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

![a bipartite graph G](image1)

![another drawing of G](image2)
An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Impossible to 2-color the odd cycle, let alone G.
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer. By previous lemma, all edges join nodes on adjacent levels.

Bipartition:
- red = nodes on odd levels,
- blue = nodes on even levels.

Case (i)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

Suppose (x, y) is an edge & x, y in same level L_j. Let $z = \text{lca}(x, y)$.

Let L_i be level containing z.

Consider cycle that takes edge from x to y, then tree from y to z, then tree from z to x.

Its length is $1 + (j-i) + (j-i)$, which is odd.
Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length cycle.

NB: the proof is algorithmic—it finds a coloring or odd cycle.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
3.6 DAGs and Topological Ordering
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications

Course prerequisites: course \(v_i\) must be taken before \(v_j\)

Compilation: must compile module \(v_i\) before \(v_j\)

Computing workflow: output of job \(v_i\) is input to job \(v_j\)

Manufacturing or assembly: sand it before you paint it…

Spreadsheet evaluation order: if \(A7\) is "\(=A6+A5+A4\)" evaluate them first
Directed Acyclic Graphs

Def. A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A topological order of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, \ldots, v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).

E.g., \(\forall\) edge \((v_i, v_j)\), finish \(v_i\) before starting \(v_j\)
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C.
Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
By our choice of i, we have $i < j$.
On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction.
Directed Acyclic Graphs

Lemma.
If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u. Then, since u has at least one incoming edge (x, u), we can walk backward to x.
Repeat until we visit a node, say w, twice. Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
Base case: true if n = 1.
Given DAG on n > 1 nodes, find a node v with no incoming edges.
G - { v } is a DAG, since deleting v cannot create cycles.
By inductive hypothesis, G - { v } has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v } in topological order. This is valid since v has no incoming edges. ▪

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of G−{v}
and append this order after v
Topological Ordering Algorithm: Example

Topological order:
Topological Ordering Algorithm: Example

Topological order: \(v_1 \)
Topological Ordering Algorithm: Example

Topological order: v_1, v_2
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4, v_5
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4, v_5, v_6 \)
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4, v_5, v_6, v_7\).
Topological Sorting Algorithm

Maintain the following:

- count[w] = (remaining) number of incoming edges to node w
- S = set of (remaining) nodes with no incoming edges

Initialization:

- count[w] = 0 for all w
- count[w] ++ for all edges (v, w)
- S = S ∪ {w} for all w with count[w] == 0

Main loop:

- while S not empty
 - remove some v from S
 - make v next in topo order
 - for all edges from v to some w
 - decrement count[w]
 - add w to S if count[w] hits 0

Correctness: clear, I hope

Time: O(m + n) (assuming edge-list representation of graph)
Depth-First Search

Follow the first path you find as far as you can go
Back up to last unexplored edge when you reach a
dead end, then go as far you can

Naturally implemented using recursive calls or a
stack
DFS(v) – Recursive version

Global Initialization:

for all nodes v, v.dfs# = -1 // mark v "undiscovered"
dfscouter = 0

DFS(v)

v.dfs# = dfscouter++ // v "discovered", number it
for each edge (v,x)
 if (x.dfs# = -1) // tree edge (x previously undiscovered)
 DFS(x)
else … // code for back-, fwd-, parent,
 // edges, if needed
 // mark v "completed," if needed
Why fuss about trees (again)?

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)

Color code:
- undiscovered
- discovered
- fully-explored

A,1
B,2
C
D
E
F
G
H
I
J
K
L
M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,E,F)

Diagram:
- A,1
- B,2
- C,3
- D,4
- E
- F
- G
- H
- I
- J
- K
- L
- M
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:

- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)
 - E (D, F)
 - F (D, E, G)
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)
- F (D,E,G)
- G (C,F)

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

Color code:
undiscovered
fully-explored

A,1
B,2
C,3
G,7
D,4
F,6
E,5
H
I
J
K
L
M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)

Diagram:
- A (1)
- B (2)
- C (3)
- D (4)
- E (5)
- F (6)
- G (7)
- H
- I
- J
- K
- L
- M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack: (Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- D (G, E, F)

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

- **Node A** has an edge list to **B**, **J**.
- **Node B** has edge lists to **A**, **C**, **J**.
- **Node C** has an edge list to **B**, **D**, **G**, **H**.

Color Code:
- **Undiscovered**
- **Discovered**
- **Fully-Explored**

Call Stack:
- (Edge list) A (B, J)
- B (A, C, J)
- C (B, D, G, H)

The diagram shows a graph with nodes labeled A, B, C, D, E, F, G, H, I, J, K, L, M, and edges connecting them in the specified order. The nodes are color-coded to indicate their status as undiscovered, discovered, or fully-explored.
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - I (H)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - I (H)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B, J)
B (A, C, J)
C (G, D, G, H)
H (C, J, J)
Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- J (A, B, H, K, L)
- K (J, L)
- L (J, K, M)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - J (A,B,H,K,L)
 - K (J,L)
 - L (J,K,M)
 - M (L)
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
(Edge list)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Edge List</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B,J</td>
</tr>
<tr>
<td>B</td>
<td>A,C,J</td>
</tr>
<tr>
<td>C</td>
<td>B,D,G,H</td>
</tr>
<tr>
<td>H</td>
<td>C,I,J</td>
</tr>
<tr>
<td>J</td>
<td>A,B,H,K,L</td>
</tr>
<tr>
<td>K</td>
<td>J,L</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)

![Graph diagram]

Nodes:
- A,1
- B,2
- C,3
- D,4
- E,5
- F,6
- G,7
- H,8
- I,9
- J,10
- K,11
- L,12
- M,13
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

A (F,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- K (G, H, I, J, M)
- L (K, M)
- M (K, L, I, J)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)

```markdown
<table>
<thead>
<tr>
<th>Node</th>
<th>Color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>B</td>
<td>Green</td>
<td>undiscovered</td>
</tr>
<tr>
<td>C</td>
<td>Green</td>
<td>undiscovered</td>
</tr>
<tr>
<td>D</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>F</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>G</td>
<td>Green</td>
<td>undiscovered</td>
</tr>
<tr>
<td>H</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>I</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>J</td>
<td>Green</td>
<td>undiscovered</td>
</tr>
<tr>
<td>K</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
<tr>
<td>L</td>
<td>Green</td>
<td>undiscovered</td>
</tr>
<tr>
<td>M</td>
<td>Red</td>
<td>undiscovered</td>
</tr>
</tbody>
</table>
```
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list) A (F,J) B (A,C,J)

1. A,1
2. B,2
3. C,3
4. D,4
5. E,5
6. G,7
7. H,8
8. I,9
9. J,10
10. K,11
11. L,12
12. M,13
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack: (Edge list)
- A (F,J)
- B (A,C,J)

Diagram:
- A,1
- B,2
- C,3
- D,4
- E,5
- F,6
- G,7
- H,8
- I,9
- J,10
- K,11
- L,12
- M,13
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
(Edge list)
A (B, J)
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Edge code:
- Tree edge
- Back edge

Diagram of a tree with nodes labeled A,1, B,2, C,3, D,4, E,5, F,6, G,7, H,8, I,9, J,10, K,11, L,12, M,13.
DFS(A)

Edge code:
Tree edge
Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)
DFS(A)

Edge code:
- Tree edge
- Back edge
- No Cross Edges!
Properties of (Undirected) DFS(v)

Like BFS(v):

- DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
- Edges into then-undiscovered vertices define a **tree** – the "depth first spanning tree" of G

Unlike the BFS tree:

- the DF spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels

BUT…
Non-tree edges

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

No cross edges!
Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"--only descendant/ancestor
A simple problem on trees

Given: tree T, a value $L(v)$ defined for every vertex v in T

Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at v (including v itself).

How?
DFS(v) – Recursive version

Global Initialization:

- for all nodes v, v.dfs# = -1 // mark v "undiscovered"
- dfscounter = 0

DFS(v)

- v.dfs# = dfscounter++ // v "discovered", number it
- for each edge (v,x)
 - if (x.dfs# = -1) // tree edge (x previously undiscovered)
 - DFS(x)
 - else … // code for back-, fwd-, parent, edges, if needed
- // mark v "completed," if needed