A Divide & Conquer Example: Closest Pair of Points
Given \(n \) points on the real line, find the closest pair

Closest pair is *adjacent* in ordered list

Time \(O(n \log n) \) to sort, if needed

Plus \(O(n) \) to scan adjacent pairs
Closest pair. Given \(n \) points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points \(p \) and \(q \) with \(\Theta(n^2) \) time.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same \(x \) coordinate.

\[\uparrow \]

Just to simplify presentation
Algorithm.
Divide: draw vertical line L with $\approx n/2$ points on each side.
Algorithm.

Divide: draw vertical line L with $\approx \frac{n}{2}$ points on each side.

Conquer: find closest pair on each side, recursively.
Algorithm.

Divide: draw vertical line \(L \) with \(\approx \frac{n}{2} \) points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return
Find closest pair with one point in each side, \textit{assuming distance} < \delta.
Find closest pair with one point in each side, assuming distance $< \delta$.

Observation: suffices to consider points within δ of line L.

$$\delta = \min(12, 21)$$
Find closest pair with one point in each side, assuming distance < δ.

Observation: suffices to consider points within δ of line L.
Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.
Find closest pair with one point in each side, *assuming* distance $< \delta$.

Observation: suffices to consider points within d of line L. Almost the one-D problem again: Sort points in 2d-strip by their y coordinate. Only check pts within 11 in sorted list!
Claim: No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
Claim: No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.

Pf: Such points would be within

$$\delta \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} = \delta \frac{\sqrt{2}}{2} \approx 0.7\delta < \delta$$
Claim: No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.

Pf: Such points would be within

$$
\delta \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} = \delta \frac{\sqrt{2}}{2} \approx 0.7\delta < \delta
$$

Def. Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i - j| > 11$, then the distance between s_i and s_j is $> \delta$.
Claim: No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.

Pf: Such points would be within

$$\delta \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} = \delta \frac{\sqrt{2}}{2} \approx 0.7\delta < \delta$$

Def. Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i - j| > 11$, then the distance between s_i and s_j is $> \delta$.

Pf: only 11 boxes within $+\delta$ of $y(s_i)$.
Closest-Pair(p₁, ..., pₙ) {
 if(n <= ??) return ??

 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points p[1]...p[m] by y-coordinate.

 for i = 1..m
 for k = 1...11
 if i+k <= m
 δ = min(δ, distance(p[i], p[i+k]));

 return δ.
}
Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n > 1$ points

$$
D(n) \leq \begin{cases}
0 & n = 1 \\
2D(n/2) + 11n & n > 1
\end{cases} \implies D(n) = O(n \log n)
$$

BUT – that’s only the number of distance calculations

What if we counted running time?
Analysis, II: Let $T(n)$ be the running time in the Closest-Pair Algorithm when run on $n > 1$ points

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + O(n \log n) & \text{if } n > 1 \end{cases} \Rightarrow T(n) = O(n \log^2 n).$$

Q. Can we achieve $O(n \log n)$?

A. Yes. Don't sort points from scratch each time.
 Sort by x at top level only.
 Each recursive call returns δ and list of all points sorted by y
 Sort by merging two pre-sorted lists.

$$T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$
Recurrences

Applications:
 multiplying numbers
 multiplying matrices
 computing medians
Idea:

“Two halves are better than a whole”

if the base algorithm has super-linear complexity.

“If a little's good, then more's better”

repeat above, recursively

Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply,…
Recurrences

Above: Where they come from, how to find them

Next: how to solve them
\[T(n) = aT(n/b) + cn^d \text{ then} \]

\[a > b^d \Rightarrow T(n) = \Theta(n^{\log_b a}) \quad \text{[many subprobs \(
Rightarrow\) leaves dominate]} \]

\[a < b^d \Rightarrow T(n) = \Theta(n^d) \quad \text{[few subprobs \(
Rightarrow\) top level dominates]} \]

\[a = b^d \Rightarrow T(n) = \Theta(n^d \log n) \quad \text{[balanced \(
Rightarrow\) all log n levels contribute]} \]

Fine print:
\[a \geq 1; \ b > 1; \ c, \ d \geq 0; \ T(1) = c; \]
\[a, \ b, \ k, \ t \text{ integers.} \]
Solve: \[T(n) = a \cdot T(n/b) + cn^d \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(l = a^0)</td>
<td>(n)</td>
<td>(cn^d)</td>
</tr>
<tr>
<td>1</td>
<td>(a^1)</td>
<td>(n/b)</td>
<td>(ac(n/b)^d)</td>
</tr>
<tr>
<td>2</td>
<td>(a^2)</td>
<td>(n/b^2)</td>
<td>(a^2c(n/b^2)^d)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(i)</td>
<td>(a^i)</td>
<td>(n/b^i)</td>
<td>(a^i \cdot c(n/b^i)^d)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(k-1)</td>
<td>(a^{k-1})</td>
<td>(n/b^{k-1})</td>
<td>(a^{k-1}c(n/b^{k-1})^d)</td>
</tr>
<tr>
<td>(k)</td>
<td>(a^k)</td>
<td>(n/b^k = 1)</td>
<td>(a^k \cdot T(1))</td>
</tr>
</tbody>
</table>

\(n = b^k \); \(k = \log_b n \)

Total Work: \[\sum_{i=0}^{\log_b n} a^i c(n/b^i)^d \] (add last col)
Theorem:

\[1 + x + x^2 + x^3 + \ldots + x^k = \frac{x^{k+1} - 1}{x - 1} \]

proof:

\[S = 1 + x + x^2 + x^3 + \ldots + x^k \]
\[xS = x + x^2 + x^3 + \ldots + x^k + x^{k+1} \]
\[xS - S = x^{k+1} - 1 \]
\[S(x - 1) = x^{k+1} - 1 \]
\[S = \frac{x^{k+1} - 1}{x - 1} \]
\[T(1) = d \]
\[T(n) = a \cdot T(n/b) + cn^d, \quad a > b^d \]

\[
T(n) = \sum_{i=0}^{\log_b n} a^i c(n/b^i)^d
\]

\[
= cn^d \sum_{i=0}^{\log_b n} (a/b^d)^i
\]

\[
= cn^d \left(\frac{a}{b^d} \right)^{\log_b n+1} - 1
\]

\[
\sum_{i=0}^{k} x^i = \frac{x^{k+1} - 1}{x - 1} \quad (x \neq 1)
\]
Solve: \[T(1) = d \]
\[T(n) = a \ T(n/b) + c \ n^d \quad , \ a > b^d \]

\[
\begin{align*}
 c n^d \left(\frac{a}{b^d} \right)^{\log_b n + 1} & - 1 < c n^d \left(\frac{a}{b^d} \right)^{\log_b n + 1} \\
 &= c \left(\frac{n^d}{b^{d \log_b n}} \right) \left(\frac{a}{b^d} \right) a^{\log_b n} \\
 &= c \left(\frac{a}{b^d} \right) a^{\log_b n} \\
 &= O(n^{\log_b a})
\end{align*}
\]
Solve:

\[T(1) = d \]
\[T(n) = a \ T(n/b) + cn^d \quad , \quad a < b^d \]

\[
T(n) = \sum_{i=0}^{\log_b n} a^i c(n/b^i)^d \\
= cn^d \sum_{i=0}^{\log_b n} a^i / b^{id} \\
= \frac{cn^d}{1 - \left(\frac{a}{b^d}\right)^{\log_b n+1}} \\
< cn^d \frac{1}{1 - \left(\frac{a}{b^d}\right)} \\
= O(n^d)
\]
Solve:

\[T(1) = d \]

\[T(n) = a \cdot T(n/b) + cn^d, \quad a = b^d \]

\[
T(n) = \sum_{i=0}^{\log_b{n}} a^i c(n / b^i)^d \\
= cn^d \sum_{i=0}^{\log_b{n}} a^i / b^{id} \\
= O(n^d \log_b{n})
\]
divide and conquer – master recurrence

\[T(n) = aT(n/b) + cn^d \text{ for } n > b \text{ then} \]

- \(a > b^d \implies T(n) = \Theta(n^{\log_b a}) \) [many subprobs \(\rightarrow \) leaves dominate]
- \(a < b^d \implies T(n) = \Theta(n^d) \) [few subprobs \(\rightarrow \) top level dominates]
- \(a = b^d \implies T(n) = \Theta(n^d \log n) \) [balanced \(\rightarrow \) all \(\log n \) levels contribute]

Fine print:
- \(a \geq 1; b > 1; c, d \geq 0; T(1) = c; \)
- \(a, b, k, t \) integers.
Integer Multiplication
Add. Given two n-bit integers a and b, compute $a + b$.

$O(n)$ bit operations.
integer arithmetic

Add. Given two n-bit integers a and b, compute a + b.

O(n) bit operations.

Multiply. Given two n-bit integers a and b, compute a \times b.
The “grade school” method:
Add. Given two n-bit integers a and b, compute $a + b$.

$O(n)$ bit operations.

Multiply. Given two n-bit integers a and b, compute $a \times b$.

The “grade school” method:

$\Theta(n^2)$ bit operations.
To multiply two 2-digit integers:

Multiply four 1-digit integers.

Add, shift some 2-digit integers to obtain result.

\[
x = 10 \cdot x_1 + x_0 \\
y = 10 \cdot y_1 + y_0 \\
xy = (10 \cdot x_1 + x_0)(10 \cdot y_1 + y_0) \\
= 100 \cdot x_1 y_1 + 10 \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0
\]

Same idea works for long integers – can split them into 4 half-sized ints
To multiply two n-bit integers:

Multiply four $\frac{1}{2}n$-bit integers.

Add two $\frac{1}{2}n$-bit integers, and shift to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right)$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1\right) + x_0 y_0$$

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$
To multiply two n-bit integers:

Multiply four \(\frac{1}{2}n \)-bit integers.

Add two \(\frac{1}{2}n \)-bit integers, and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right)
\]
\[
= 2^n \cdot x_1y_1 + 2^{n/2} \left(x_1y_0 + x_0y_1\right) + x_0y_0
\]

\[T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)\]
key trick: 2 multiplies for the price of 1:

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
xy &= \left(2^{n/2} \cdot x_1 + x_0\right)\left(2^{n/2} \cdot y_1 + y_0\right) \\
&= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0
\end{align*}
\]

Well, ok, 4 for 3 is more accurate...

\[
\begin{align*}
\alpha &= x_1 + x_0 \\
\beta &= y_1 + y_0 \\
\alpha\beta &= (x_1 + x_0) (y_1 + y_0) \\
&= x_1 y_1 + (x_1 y_0 + x_0 y_1) + x_0 y_0 \\
(x_1 y_0 + x_0 y_1) &= \alpha\beta - x_1 y_1 - x_0 y_0
\end{align*}
\]
To multiply two n-bit integers:

Add two $\frac{1}{2}n$ bit integers.

Multiply three $\frac{1}{2}n$-bit integers.

Add, subtract, and shift $\frac{1}{2}n$-bit integers to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0
\]
\[
= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

\[
T(n) \leq 3T(n/2) + O(n)
\]
\[
\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})
\]
Naïve: $\Theta(n^2)$
Karatsuba: $\Theta(n^{1.59\ldots})$

Amusing exercise: generalize Karatsuba to do 5 size $n/3$ subproblems $\rightarrow \Theta(n^{1.46\ldots})$

Best known: $\Theta(n \log n \log \log n)$

"Fast Fourier Transform"
Another Example:

Matrix Multiplication –

Strassen’s Method
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\cdot
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[=\]

\[
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \cdots & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \cdots & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \cdots & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \cdots & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]

\[n^3 \text{ multiplications, } n^3-n^2 \text{ additions}\]
for i = 1 to n
 for j = 1 to n
 C[i,j] = 0
 for k = 1 to n

\(n^3 \) multiplications, \(n^3 - n^2 \) additions
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

=

\[
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41}
\end{bmatrix}
\begin{bmatrix}
 a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

=

\[
\begin{bmatrix}
 a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]
Multiplying Matrices

$$\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22} \\
 a_{31} & a_{32} \\
 a_{41} & a_{42}
\end{bmatrix} \times
\begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22} \\
 b_{31} & b_{32} \\
 b_{41} & b_{42}
\end{bmatrix} =
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}$$
Multiplying Matrices

Counting arithmetic operations:

\[T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2 \]
Multiplying Matrices

$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
8T(n/2) + n^2 & \text{if } n > 1
\end{cases}$$

By Master Recurrence, if

$$T(n) = aT(n/b)+cn^d \& a > b^d \text{ then}$$

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 8}) = \Theta(n^3)$$
The algorithm

\[P_1 = A_{12}(B_{11} + B_{21}) \]
\[P_3 = (A_{11} - A_{12})B_{11} \]
\[P_5 = (A_{22} - A_{12})(B_{21} - B_{22}) \]
\[P_6 = (A_{11} - A_{21})(B_{12} - B_{11}) \]
\[P_7 = (A_{21} - A_{12})(B_{11} + B_{22}) \]
\[C_{11} = P_1 + P_3 \]
\[C_{21} = P_1 + P_4 + P_5 + P_7 \]
\[P_2 = A_{21}(B_{12} + B_{22}) \]
\[P_4 = (A_{22} - A_{21})B_{22} \]
\[C_{12} = P_2 + P_3 + P_6 - P_7 \]
\[C_{22} = P_2 + P_4 \]
Strassen’s algorithm

Multiply 2x2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)

\[T(n) = 7 \cdot T(n/2) + cn^2 \]

\[7 > 2^2 \] so \(T(n) \) is \(\Theta(n^{\log_2 7}) \) which is \(O(n^{2.81}) \)

Fastest algorithms use \(O(n^{2.376}) \) time