Chapter 7
Network Flow

0\ Algunh Desi

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Soviet Rail Network, 1955

DRGNS

The
A d
@ Dnmfnn?

Ly
5

L3
S

| :f X) N =
b B

3

3
XA

{
)

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

= Two very rich algorithmic problems.

= Cornerstone problems in combinatorial optimization.

= Beautiful mathematical duality.

Nonftrivial applications / reductions.

Data mining.
Open-pit mining.
Project selection.
Airline scheduling.
Bipartite matching.
Baseball elimination.
Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Egalitarian stable matching.
Security of statistical data.
Network intrusion detection.
Multi-camera scene reconstruction.
Many many more . . .

Minimum Cut Problem

Flow network.
. Abstraction for material flowing through the edges.
. 6 =(V, E) = directed graph, no parallel edges.
« Two distinguished nodes: s = source, T = sink.
« c(e) = capacity of edge e, a non-negative integer.

15 10

“ : 9
10 4 15
source 5 % 8 \Q%L 10 sink
T
15 4 6

15 10

e

capacity —

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths e Aand t € B.

Def. The capacity of a cut (A, B) is:

10 15

15

30

e
s~@ s
N

cap(A, B) =

15

15

> cle)

e out of 4

10

10 (1)

10

Capacity =10+5 + 15
=30

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths e Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = 3 c(e)

e out of 4

10

10 (1)

10

Capacity =9 +15+ 8 + 30
=62

Minimum Cut Problem

Min s-1 cut problem. Find an s-t cut of minimum capacity.

/K | =T\
10 15 15

4 10

10

Flows

Def. An s-t flow is a function that satisfies:

. ForeacheeE: 0 =< f(e) = cle) (capacity)
« ForeachveV-{s,tk: Sf) = 3 f(e) (conservation)
eintov eout of v

Def. The value of a flow fis: v(f) = > f(e) .

eoutof s

0

© g ®
4 0 0
10 4 4 15 15 0 10
0 4 4

O, ° ® 8 © to ®

0 0
_ 4 0 6 15 0
capacity — 15 10
flow — 0 0

Value = 4

10

Def. Ans-t flow is a function that satisfies:
« ForeacheeE: 0 = f(e) = c(e) (capacity)
« ForeachveV-{s,t}: Y f(e) = > f(e) (conservation)

eintov eout of v
Def. The value of a flow fis: v(f) = Y f(e) .
eoutof s
4

@ ? ®

10 4 4 15 15 4 10

3 3

@ ° @ : ® o
1 «— flow

15 4 capacity — 6 15 1 10

® 30 @

Value = 3

1

Flows

Def. An s-t flow is a function that satisfies:

. ForeacheeE: 0 =< f(e) = cle) (capacity)
« ForeachveV-{s,tk: Sf) = 3 f(e) (conservation)
eintov eout of v

Def. The value of a flow fis: v(f) = > f(e) .

eoutof s
6
@ 9 ®
10 0 6
10 4 4 15 15 0 10
3 8 8
O, > ® 8 © 10 ®

capacity — 15
flow — 11 1

® 30 @

Value = 24

12

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

9
© g ®

10] 9

10 40 15 15 0 10

4 8 9

® N ° ® 10 ®

4 10

capacity — 15 40 6 150 10
flow — 14 14

Value = 28

® 30 @

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)

e out of A einto A

10

10 4 15 15 0 10

8 (6) 10 ©)

()

15

11
1 Value = 24

30 @

/

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)

eout of A einto A
6
9 >®
10 0 6
10 4 4 15 15 0 10
3 8 8

8 10 @

1 10
4 0 6 15 0 10

15

11
11 Value=6+0+8-1+11
30 =24

15

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)

e out of A einto A
6
z 9 ®
10 0 6
10 44 15 15 0 10
3 8 8
5 3 8 10
A
1 10
4 0 15 0
15 6 10
11
11 Value=10-4+8 -0+ 10

30 » 7 =24

16

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then
> fle)= X fle)= v(f).

e out of 4 einto 4

Pf. wWf) = X f(e)

eoutof s

by flow conservation, all terms — = Y (> fle) = > f(e)

exceptv=sare0 v EA \eoutofv eintov

all contributions due to . E f(e) - E f(e).

internal edges cancel ,
eoutof A einto A

17

Flows and Cuts

Weak dudlity. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cuft.

Cut capacity =30 = Flow value ¢ 30

7 ®

10 15 15 10

6 15 10

15
Capacity = 30

5_>@ 8 @ 10 @

30 @

18

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) < cap(A, B).

Pf.
v(f)y = X fle- X fle)
eoutof A einto A
= 2 f@)
eoutof A
< Y c(e)

eout of A

= cap(A,B)

19

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

20

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
« Repeat until you get stuck.

1
0 0
20 10
30 O
10 20

o\é}/o

Flow value = 0

21

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
« Repeat until you get stuck.

1
20 X 0
20 10
30 ® 20
10 20

o\é}/}&zo

Flow value = 20

22

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.
» Repeat until you get stuck.

N locally optimality # global optimality

23

Residual Graph

Original edge: e =(u, v) € E. Y capacity
. Flow f(e), capacity c(e). @
T 17— @
6
N flow

Residual edge.
- "Undo" flow sent.
. e=(u,v)and eR = (v, u).

. Residual capacity: @< 11 /Q

(o) = cle)— f(e) if e€E
I fe) if RCE

r'eS|duaI capacity

™ residual capacity

Residual graph: Gf = (V, Ef).
- Residual edges with positive residual capacity.
- Er={e:f(e)<c(e)} u {e: f(e)>0}.

24

Ford-Fulkerson Algorithm

2 4 =\4 .
0 i 0 capacity
@/ 10 \% ®— 10—
0 0

25

Ford-Fulkerson Algorithm

n
»

capacity

CY 9 Q)
0 0 0
/ﬁj\ 4 b
10 8 6 10

26

Ford-Fulkerson Algorithm

2 4 :\4
0 $ 0 capacity
0 /
06

N P \ 10
@/ 10 \% ®— 10—

FIND PATH

27

Ford-Fulkerson Algorithm

UPDATE FLOW

2 4 =\4 .
4 i 4 capacity
@/ 10 \% ®— 10—
0 0

28

Ford-Fulkerson Algorithm

4
2 4 »(4
$ capacity
G 4 0 4
10 2 0 8\0/6 10
@/ 10 CL@ 9 B 10 ——
0 0 0
UPDATE RESIDUAL
4 GRAPH
4
Gt 4 4

W0n

o o

v
@—n

o'

m/

o

-

(

29

Ford-Fulkerson Algorithm

2 4 :\4
4 $. capacity
0 /
06

10 2 0 8
/L \/\
(s/ 10 ——@ 9 O, 10 —

8

6
9\5) i

4
4
4 FIND PATH
6

30

Ford-Fulkerson Algorithm

UPDATE FLOW

s
10

capacity

31

Ford-Fulkerson Algorithm

4
2 4 (4
$ capacity
6
G 0 4
@/ 10 CL@ 9 B 10 ——
0 2 2
UPDATE RESIDUAL
4 GRAPH
4

32

Ford-Fulkerson Algorithm

1 capacit
4 P Y

FIND PATH

33

Ford-Fulkerson Algorithm

UPDATE FLOW

1 capacit
4 P Y

34

Ford-Fulkerson Algorithm

2 4 (4
$ capacity
10
G A 4
@/ 10 CL@ 9 B 10 ——
0 2 6
4 UPDATE RESIDUAL

GRAPH

Gy 10

35

Ford-Fulkerson Algorithm

2 4 =\4 .
10) A capacity
10 2 2 06 10
/L \/\
(s/ 10 ——@ 9 O, 10 —
0 6

10

FIND PATH

36

Ford-Fulkerson Algorithm

UPDATE FLOW

2 4 =\4 .
10 6 . capacity
@/ 10 CL@ 9 B 10 ——
6

10

37

Ford-Fulkerson Algorithm

2 4 (4
$ capacity
10
6 °/

10

UPDATE RESIDUAL
GRAPH

38

Ford-Fulkerson Algorithm

2 4 :\4
G 10 $ ¢ y capacity

FIND PATH

39

Ford-Fulkerson Algorithm

UPDATE FLOW

$ capacity

°/

40

Ford-Fulkerson Algorithm

4
2 4 (4
$ capacity
10
6 °/

10 2 0 8\2/6 10
@/ 10 CL@ 9 B 10 ——

6 6 10

UPDATE RESIDUAL
4 GRAPH

10

41

Ford-Fulkerson Algorithm

$ capacity

FIND PATH

10

42

Ford-Fulkerson Algorithm

UPDATE FLOW

$ capacity

S/

43

Ford-Fulkerson Algorithm

* capacity

UPDATE RESIDUAL
GRAPH

10

44

Ford-Fulkerson Algorithm

capacity

FIND PATH

45

Augmenting Path Algorithm

forward edge

reverse edge

46

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

47

Proof of Max-Flow Min-Cut Theorem

(l“) = (i)
Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.
. By definition of f, t € A.

v(f) 2 fleo- 3 fle)

e out of A einto A A

- Sc@

e out of A

= cap(A,B) =

original network

48

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c¢ (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations, if
f* is optimal flow.

Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.

49

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 X1 1 ¥XO

51

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
« Some choices lead to exponential algorithms.
« Clever choices lead to polynomial algorithms.

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
« Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.

52

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

« Maintain scaling parameter 9.
. Let G¢ (8) be the subgraph of the residual graph consisting of only

arcs with capacity at least 9.

SN SN

110 102 110 102
T
122 170 122 170

6, 6, (100)

53

Capacity Scaling

54

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Correctness. If the algorithm terminates, then f is a max flow.

Pf.

« By integrality invariant, when d =1, G¢(3) = 6G+.
- Upon termination of & = 1 phase, there are no augmenting paths. -

55

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log, Cn times.
Pf. Initially 8 < 2Cn. & decreases by a factor of 2 each iteration. -

Lemma 2. Let f be the flow at the end of a 8-scaling phase. Then the
value of the maximum flow is at most v(f) + m 8. <« proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
« L2 implies v(f*) < v(f) + m (29).
. Each augmentation in a §-phase increases v(f) by at least &. -

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to runin O(m? log C) time, when m
>n. -

56

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a 8-scaling phase. Then value
of the maximum flow is at most v(f) + m d.
Pf. (almost identical to proof of max-flow min-cut theorem)

We show that at the end of a 6-phase, there exists a cut (A, B)
such that cap(A, B) < v(f) + m 8.

Choose A to be the set of nodes reachable from s in G¢(5).

By definition of A, s € A.

By definition of f, t not in A.

A B
v(f) E fle) - E fe))
ZM (c(e)-0) - 2“4 B
2, 2,02
cap(A, B) - md . .

original network

v

v

57

