Chapter 7
Network Flow
Soviet Rail Network, 1955

Maximum Flow and Minimum Cut

Max flow and min cut.
- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . . .
Flow network.

- Abstraction for material flowing through the edges.
- $G = (V, E) =$ directed graph, no parallel edges.
- Two distinguished nodes: $s =$ source, $t =$ sink.
- $c(e) =$ capacity of edge e, a non-negative integer.

Minimum Cut Problem
Def. An **s-t cut** is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The **capacity** of a cut (A, B) is:

$$\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)$$

![Graph with labels and capacities](image)
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is: \[\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)\]

Capacity = 9 + 15 + 8 + 30 = 62
Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

Capacity = 10 + 8 + 10 = 28
Def. An s-t flow is a function that satisfies:

1. For each $e \in E$: \[0 \leq f(e) \leq c(e)\] (capacity)
2. For each $v \in V - \{s, t\}$: \[
\sum_{e \text{ in } v} f(e) = \sum_{e \text{ out of } v} f(e)\] (conservation)

Def. The value of a flow f is: \[
v(f) = \sum_{e \text{ out of } s} f(e)\]
Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $\nu(f) = \sum_{e \text{ out of } s} f(e)$.

Value = 3
Def. An s-t flow is a function that satisfies:

- For each \(e \in E \):
 \[0 \leq f(e) \leq c(e) \] (capacity)

- For each \(v \in V - \{s, t\} \):
 \[\sum_{e \text{ in } v} f(e) = \sum_{e \text{ out of } v} f(e) \] (conservation)

Def. The value of a flow \(f \) is:
\[v(f) = \sum_{e \text{ out of } s} f(e). \]
Max flow problem. Find s-t flow of maximum value.

Value $= 28$
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

![Graph](image)
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

![Diagram](image_url)
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Diagram:

```
\begin{verbatim}
\text{Value} = 10 - 4 + 8 - 0 + 10 = 24
\end{verbatim}
```
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms except $v = s$ are 0

$$\rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

all contributions due to internal edges cancel

$$\rightarrow = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$
Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

\[
\text{Cut capacity} = 30 \quad \Rightarrow \quad \text{Flow value} \leq 30
\]
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \text{cap}(A, B)$.

\[v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \leq \sum_{e \text{ out of } A} f(e) \leq \sum_{e \text{ out of } A} c(e) = \text{cap}(A, B). \]
Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \Rightarrow Flow value \leq 28
Towards a Max Flow Algorithm

Greedy algorithm.

- Start with \(f(e) = 0 \) for all edge \(e \in E \).
- Find an \(s-t \) path \(P \) where each edge has \(f(e) < c(e) \).
- Augment flow along path \(P \).
- Repeat until you get stuck.

![Flow Network Diagram](image)

Flow value = 0
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20
Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

$greedy = 20$

$opt = 30$

locally optimality \(\neq\) global optimality
Residual Graph

Original edge: \(e = (u, v) \in E. \)
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:

\[
c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
\end{cases}
\]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e : f(e) > 0 \} \).
Ford-Fulkerson Algorithm

G:

capacity
Ford-Fulkerson Algorithm

G:

G_f:
Ford-Fulkerson Algorithm

G:

s
10

2
10

3
9

4
10

5
10

t

Gf:

s
10

2
10

3
9

4
6

5
10

t

FIND PATH
Ford-Fulkerson Algorithm

\(G:\)

\(G_f:\)

UPDATE FLOW

capacity
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

\[\text{UPDATE RESIDUAL GRAPH} \]
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

FIND PATH
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

UPDATE FLOW

capacity
Ford-Fulkerson Algorithm

G:

G_f: UPDATE RESIDUAL GRAPH

Edge capacities:
- s to 3: 10
- 3 to 2: 2
- 2 to 4: 4
- 4 to 5: 6
- 5 to t: 10
- s to t: 10
- 3 to t: 2
- 2 to s: 6
- 4 to 2: 8
- 5 to 3: 7
- t to 5: 8
- t to s: 2

Example residual graph:

1. s to 3: 0
2. 3 to 2: 2
3. 2 to 4: 4
4. 4 to 5: 6
5. 5 to t: 10
6. s to t: 10
7. 3 to t: 2
8. 2 to s: 6
9. 4 to 2: 8
10. 5 to 3: 7
11. t to 5: 8
12. t to s: 2
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

FIND PATH
Ford-Fulkerson Algorithm

G: capacity

G_f: UPDATE FLOW
Ford-Fulkerson Algorithm

G:

G_f:

UPDATE RESIDUAL GRAPH
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

UPDATE FLOW

capacity
Ford-Fulkerson Algorithm

G:

s → 2: 10
2 → 3: 2
2 → 4: 4
3 → 5: 9
4 → 5: 2
5 → t: 6

G_f:

s → 2: 10
2 → 3: 2
3 → s: 8
2 → 4: 2
4 → 2: 4
4 → 5: 4
5 → s: 7
5 → t: 4
t → 5: 6

UPDATE RESIDUAL GRAPH
Ford-Fulkerson Algorithm

G:

G_f:

FIND PATH
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

UPDATE RESIDUAL GRAPH
Ford-Fulkerson Algorithm

\[G: \]

G: capacity

\[G_f: \]

Gf: FIND PATH
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

UPDATE FLOW
Ford-Fulkerson Algorithm

G: [Graph with nodes and edges labeled with capacities.]

G_f: [Graph showing the residual graph with updated capacities.]
Ford-Fulkerson Algorithm

G:

G_f:
Augmenting Path Algorithm

Augment\((f, c, P)\) {
 \(b \leftarrow \text{bottleneck}(P)\)
 \textbf{foreach} \(e \in P\) {
 \textbf{if} \((e \in E)\) \(f(e) \leftarrow f(e) + b\)
 \textbf{else} \(f(e^R) \leftarrow f(e) - b\)
 }
 \textbf{return} \(f\)
}

Ford-Fulkerson\((G, s, t, c)\) {
 \textbf{foreach} \(e \in E\) \(f(e) \leftarrow 0\)
 \(G_f \leftarrow \text{residual graph}\)
 \textbf{while} (there exists augmenting path \(P\)) {
 \(f \leftarrow \text{Augment}(f, c, P)\)
 \text{update} \(G_f\)
 }
 \textbf{return} \(f\)
}
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that $v(f) = \text{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive.
- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \in A$.

\[
\nu(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]

\[
= \sum_{e \text{ out of } A} c(e)
\]

\[
= \text{cap}(A, B)
\]
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations, if f^* is optimal flow.
Pf. Each augmentation increase value by at least 1. \(\blacksquare \)

Corollary. If $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. \(\blacksquare \)
7.3 Choosing Good Augmenting Paths
Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 - Some choices lead to exponential algorithms.
 - Clever choices lead to polynomial algorithms.

Goal: choose augmenting paths so that:
 - Can find augmenting paths efficiently.
 - Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter δ.
- Let $G_f(\delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least δ.

\[G_f \]

\[G_f(100) \]
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 δ ← smallest power of 2 greater than or equal to C
 G_f ← residual graph

 while (δ ≥ 1) {
 G_f(δ) ← δ-residual graph
 while (there exists augmenting path P in G_f(δ)) {
 f ← augment(f, c, P)
 update G_f(δ)
 }
 δ ← δ / 2
 }
 return f
}
Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then \(f \) is a max flow.

Pf.
- By integrality invariant, when \(\delta = 1 \), \(G_f(\delta) = G_f \).
- Upon termination of \(\delta = 1 \) phase, there are no augmenting paths. \(\square \)
Lemma 1. The outer while loop repeats $1 + \log_2 Cn$ times.

Pf. Initially $\delta < 2Cn$. δ decreases by a factor of 2 each iteration. •

Lemma 2. Let f be the flow at the end of a δ-scaling phase. Then the value of the maximum flow is at most $v(f) + m \delta$. ← proof on next slide

Lemma 3. There are at most $2m$ augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- L2 implies $v(f^*) \leq v(f) + m (2\delta)$.
- Each augmentation in a δ-phase increases $v(f)$ by at least δ. •

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time, when $m > n$. •
Lemma 2. Let f be the flow at the end of a δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \delta$.

Proof. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\delta)$.
- By definition of A, $s \in A$.
- By definition of f, t not in A.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]
\[
\geq \sum_{e \text{ out of } A} (c(e) - \delta) - \sum_{e \text{ in to } A} \delta
\]
\[
= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ in to } A} \delta - \sum_{e \text{ in to } A} \delta
\]
\[
\geq \text{cap}(A, B) - m\delta
\]