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Soviet Rail Network, 1955
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Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Maximum Flow and Minimum Cut

Max flow and min cut.

= Two very rich algorithmic problems.

= Cornerstone problems in combinatorial optimization.

= Beautiful mathematical duality.

Nonftrivial applications / reductions.

Data mining.
Open-pit mining.
Project selection.
Airline scheduling.
Bipartite matching.
Baseball elimination.
Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Egalitarian stable matching.
Security of statistical data.
Network intrusion detection.
Multi-camera scene reconstruction.
Many many more . . .



Minimum Cut Problem

Flow network.
. Abstraction for material flowing through the edges.
. 6 =(V, E) = directed graph, no parallel edges.
« Two distinguished nodes: s = source, T = sink.
« c(e) = capacity of edge e, a non-negative integer.
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths e Aand t € B.

Def. The capacity of a cut (A, B) is:
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths e Aand t € B.

Def. The capacity of a cut (A, B)is:  cap(4,B) = 3 c(e)
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Minimum Cut Problem

Min s-1 cut problem. Find an s-t cut of minimum capacity.
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Flows

Def. An s-t flow is a function that satisfies:

. ForeacheeE: 0 =< f(e) = cle) (capacity)
« ForeachveV-{s,tk: Sf) = 3 f(e) (conservation)
eintov eout of v

Def. The value of a flow fis: v(f) = > f(e) .
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Def. Ans-t flow is a function that satisfies:
« ForeacheeE: 0 = f(e) = c(e) (capacity)
« ForeachveV-{s,t}: Y f(e) = > f(e) (conservation)

eintov eout of v
Def. The value of a flow fis: v(f) = Y f(e) .
eoutof s
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Flows

Def. An s-t flow is a function that satisfies:

. ForeacheeE: 0 =< f(e) = cle) (capacity)
« ForeachveV-{s,tk: Sf) = 3 f(e) (conservation)
eintov eout of v

Def. The value of a flow fis: v(f) = > f(e) .
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Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = X fle) = v(f)
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then
> fle)= X fle)= v(f).

e out of 4 einto 4

Pf. wWf) = X f(e)

eoutof s

by flow conservation, all terms — = Y ( > fle) = > f(e)

exceptv=sare0 v EA \eoutofv eintov

all contributions due to . E f(e) - E f(e).

internal edges cancel ,
eoutof A einto A
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Flows and Cuts

Weak dudlity. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cuft.

Cut capacity =30 = Flow value ¢ 30
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Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) < cap(A, B).

Pf.
v(f)y = X fle- X fle)
eoutof A einto A
= 2 f@)
eoutof A
< Y c(e)

eout of A

= cap(A,B)
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Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
« Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
« Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.
» Repeat until you get stuck.

N locally optimality # global optimality
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Residual Graph

Original edge: e =(u, v) € E. Y capacity
. Flow f(e), capacity c(e). @
T 17— @
6
N flow

Residual edge.
- "Undo" flow sent.
. e=(u,v)and eR = (v, u).

. Residual capacity: @< 11 /Q

(o) = cle)— f(e) if e€E
I fe) if RCE

r'eS|duaI capacity

™ residual capacity

Residual graph: Gf = (V, Ef).
- Residual edges with positive residual capacity.
- Er={e:f(e)<c(e)} u {e: f(e)>0}.
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

UPDATE FLOW
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

UPDATE FLOW

s
10

capacity
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

1 capacit
4 P Y

FIND PATH
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Ford-Fulkerson Algorithm

UPDATE FLOW

1 capacit
4 P Y
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

UPDATE FLOW
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

2 4 :\4
G 10 $ ¢ y capacity

FIND PATH

39



Ford-Fulkerson Algorithm

UPDATE FLOW
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

UPDATE FLOW

$ capacity
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

capacity

FIND PATH

45



Augmenting Path Algorithm

forward edge

reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(l“) = (i)
Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.
. By definition of f, t € A.

v(f) 2 fleo- 3 fle)

e out of A einto A A

- Sc@

e out of A

= cap(A,B) =

original network
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Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c¢ (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations, if
f* is optimal flow.

Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.
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7.3 Choosing Good Augmenting Paths




Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 X1 1 ¥XO
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
« Some choices lead to exponential algorithms.
« Clever choices lead to polynomial algorithms.

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
« Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.
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Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

« Maintain scaling parameter 9.
. Let G¢ (8) be the subgraph of the residual graph consisting of only

arcs with capacity at least 9.
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122 170 122 170

6, 6, (100)
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Capacity Scaling
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Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Correctness. If the algorithm terminates, then f is a max flow.

Pf.

« By integrality invariant, when d =1, G¢(3) = 6G+.
- Upon termination of & = 1 phase, there are no augmenting paths. -
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Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log, Cn times.
Pf. Initially 8 < 2Cn. & decreases by a factor of 2 each iteration. -

Lemma 2. Let f be the flow at the end of a 8-scaling phase. Then the
value of the maximum flow is at most v(f) + m 8. <« proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
« L2 implies v(f*) < v(f) + m (29).
. Each augmentation in a §-phase increases v(f) by at least &. -

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to runin O(m? log C) time, when m
>n. -
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Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a 8-scaling phase. Then value
of the maximum flow is at most v(f) + m d.
Pf. (almost identical to proof of max-flow min-cut theorem)

We show that at the end of a 6-phase, there exists a cut (A, B)
such that cap(A, B) < v(f) + m 8.

Choose A to be the set of nodes reachable from s in G¢(5).

By definition of A, s € A.

By definition of f, t not in A.

A B
v(f) E fle) - E fe) )
ZM (c(e)-0) - 2“4 B
2, 2,02
cap(A, B) - md . .

original network
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