SURVEY

Finding an efficient method to solve SuDoku puzzles is:

1: A waste of time
2: A decent spare time activity
3: A fundamental problem in computer science
SURVEY

Finding an efficient method to solve SuDoku puzzles is:

1: A waste of time
2: A decent spare time activity
3: A fundamental problem in computer science
Does every problem have efficient algorithms?

Halting Problem: Given program code, output whether program halts or not.

Theorem [Godel]: Halting cannot be solved by any algorithm.
Theorem: Integer Equations cannot be solved by any algorithm.

What about problems that have algorithms? Must they have efficient algorithms?

Theorem: There are problems that can be solved in exponential time, but not in polynomial time.

OK, but what about Set Cover, Vertex Cover, Shortest Spanning Path - all have brute force algorithms, but do they have efficient algorithms?
Decision Problems

Decision problem: Problems with “yes” or “no” answers.

- Does a given set system have a set cover of size at most k?
- Does a given graph have a vertex cover of size at most k?
- Does a number have a non-trivial factorization?
- Does a given graph have an MST of cost at most k?
- Does a given flow network have a min-cut of capacity at most k?
- Does a given sudoku problem have a solution?

Polynomial time. Algorithm A runs in poly-time if for every string x, $A(x)$ terminates in at most $p(|x|)$ "steps", where p is some polynomial.

↑

length of x

P: The class of decision problems that can be solved in polynomial time.

PRIMES: $X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \ldots\}$. Is input a prime?

Theorem [Agrawal-Kayal-Saxena, 2002] PRIMES is in P.

Certification algorithm intuition.

Certifier doesn't determine whether answer is “yes” on its own; rather, it checks a proposed proof t that answer is “yes”.

Def. Algorithm $C(x, t)$ is a certifier for problem X if for every string x, the answer is “yes” iff there exists a string t such that $C(x, t) = \text{yes}$.

NP. Decision problems for which there exists a poly-time certifier.

- $C(x, t)$ is a poly-time algorithm and $|t| \leq p(|x|)$ for some polynomial p.

Remark. NP stands for nondeterministic polynomial-time.
Certifiers and Certificates: Composite

COMPOSITES. Given an integer \(x \), is \(x \) composite?

Certificate. A nontrivial factor \(t \) of \(x \). Note that such a certificate exists iff \(x \) is composite. Moreover \(|t| \leq |s| \).

Certifier.

```java
boolean C(x, t) {
    if (t = 1 or t = x)
        return false
    else if (x is a multiple of t)
        return true
    else
        return false
}
```

Instance. \(x = 437,669 \).
Certificate. \(t = 541 \) or 809. \(437,669 = 541 \times 809 \)

Conclusion. COMPOSITES is in NP.
Certifiers and Certificates: 3-Satisfiability

3SAT. Given a 3-CNF formula, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause has at least one true literal.

Ex.

\[
(\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_3 \lor \overline{x}_4)
\]

instance s

\[
x_1 = 1, \ x_2 = 1, \ x_3 = 0, \ x_4 = 1
\]

certificate t

Conclusion. 3SAT is in NP.
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.
Certifiers and Certificates: Min-Cut

MIN-CUT. Given a flow network, and a number k, does there exist a min-cut of capacity at most k?

Certificate. A min-cut T.

Certifier. Check that the capacity of the min-cut is at most T.

Conclusion. MIN-CUT is in NP.
Certifiers and Certificates: Min-Cut

MIN-CUT. Given a flow network, and a number k, does there exist a min-cut of capacity at most k?

Certificate. The empty string.

Certifier. Compute the min-cut of the graph and check whether its capacity is at most k.

Conclusion. MIN-CUT is in NP.
Examples of NP Problems

Eg: Does a given set system have a set cover of size at most \(k \)?
 Certificate: A set cover of size at most \(k \)

Does a given graph have a vertex cover of size at most \(k \)?
 Certificate: A vertex cover of size at most \(k \)

Does a number have a non-trivial factorization?
 Certificate: A non-trivial factorization

Does a given graph have an MST of cost at most \(k \)?
 Certificate: An MST of cost at most \(k \)

Does a given flow network have a min-cut of capacity at most \(k \)?
 Certificate: A min-cut of capacity at most \(k \)

Does a given sudoku problem have a solution?
 Certificate: A valid solution.
P. Decision problems for which there is a *poly-time algorithm*.

EXP. Decision problems for which there is an *exponential-time algorithm*.

NP. Decision problems for which there is a *poly-time certifier*.

Claim. \(P \subseteq NP \).

Pf. Consider any problem \(X \) in \(P \).

- By definition, there exists a *poly-time algorithm* \(A(x) \) that solves \(X \).
- **Certificate:** \(t = \) empty string, **certifier** \(C(x, t) = A(x) \).

Claim. \(NP \subseteq EXP \).

Pf. Consider any problem \(X \) in \(NP \).

- By definition, there exists a *poly-time certifier* \(C(x, t) \) for \(X \).
- To solve input \(x \), run \(C(x, t) \) on all strings \(t \) with \(|t| \leq p(|x|) \) (running time of \(C \)).
- **Return** \(yes \), if \(C(x, t) \) returns \(yes \) for any of these.
The Main Question: P Versus NP

Does $P = NP$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
- Is the decision problem as easy as the certification problem?
- Clay 1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...
NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, you will solve factoring in polynomial time!
NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, you will solve set cover in polynomial time!
NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, you will solve SAT in polynomial time!
NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, you will solve all machine learning problems in polynomial time!
NP-Completeness

Punchline: If you find a way to solve sudoku in polynomial time, you will solve every problem in NP in polynomial time!
NP-Completeness

Def. Problem X polynomial reduces to problem Y \((X \leq_p Y)\) if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to subroutine that solves problem Y.

NP-complete Problem. A problem Y in NP with the property that for every problem X in NP, \(X \leq_p Y\).

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff \(P = NP\).

Pf. \(\Leftarrow\) If \(P = NP\) then Y can be solved in poly-time since Y is in NP.

Pf. \(\Rightarrow\) Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since \(X \leq_p Y\), we can solve X in poly-time. This implies \(NP \subseteq P\).
- We already know \(P \subseteq NP\). Thus \(P = NP\). ▪

Fundamental question. Do there exist "natural" NP-complete problems?
Program Satisfiability

PROGRAM-SAT. Given a line program on inputs $x=x_1,x_2,...,x_n$ is there a way to set the inputs so that the output is 1?

\[
\begin{align*}
 l_1 &= x_1 \text{ AND } x_2; \\
 l_2 &= x_3 \text{ OR } x_5; \\
 l_3 &= \text{NOT } x_6 \text{ AND } x_8; \\
 l_4 &= l_1 \text{ XOR } l_3; \\
 l_5 &= l_2 \text{ AND } x_4; \\
 l_6 &= \text{NOT } l_4 \text{ OR } l_2; \\
 &\vdots \\
 l_{m-2} &= l_{17} \text{ AND } l_{25}; \\
 l_{m-1} &= x_1 \text{ XOR } x_2; \\
 l_m &= x_1 \text{ XOR } l_{m-2}; \\
 \text{OUTPUT } l_m
\end{align*}
\]
The "First" NP-Complete Problem

Theorem. PROGRAM-SAT is NP-complete. [Cook 1971, Levin 1973]

Pf. (sketch)
- Any polynomial time algorithm can be compiled into a poly-size program.
- If problem X has poly-time certifier $C(x, t)$, to solve X, need to know if there exists a certificate t such that $C(x, t) = \text{yes}$.
- Let $K(t)$ be poly-size program computing $C(x, t)$
- Program $K(t)$ is satisfiable iff $X(x) = \text{yes}$.
Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_P Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_P Y$ then Y is NP-complete.

Pf. Let W be any problem in NP. Then $W \leq_P X \leq_P Y$.

- By transitivity, $W \leq_P Y$.
- Hence Y is NP-complete. ▪

by assumption
by definition of NP-complete
Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that PROGRAM-SAT \leq_P 3-SAT since 3-SAT is in NP.

- Let K be any line program.
- Create a 3-SAT variable l_i for each line i.
- Make variables compute correct values at each node:
 - $l_i = l_4 \text{ AND } x_5$ add 4 clauses: $(l_i \text{ OR not } l_4 \text{ OR not } x_5) \text{ AND (} l_i \text{ OR not } l_4 \text{ OR } x_5)$ AND $(l_i \text{ OR } l_4 \text{ OR not } x_5) \text{ AND (} not l_i \text{ OR } l_4 \text{ OR } x_5)$
- 3SAT formula is satisfiable if and only if K is satisfiable.
Observation. All problems below are NP-complete and polynomial reduce to one another!
More NP-Complete Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.
Chemical engineering: heat exchanger network synthesis.
Civil engineering: equilibrium of urban traffic flow.
Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.
Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardio gram.
Operations research: optimal resource allocation.
Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency.
Statistics: optimal experimental design.