Given directed graph with non-negative edge
lengths l,v. Compute all shortest paths from s to
every other vertex.



Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo
Set d(s) = 0, mark s discovered.
while there is edge from discovered vertex to

undiscovered vertex,
let (u,v) be such edge minimizing d(u)+ly v
set d(v) = d(u) + lu,v, mark v discovered
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while there is edge DY
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered




Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo

Set d(s) = 0, mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Correctness analysis:
Prove that if v is discovered d(v) is distance of v from s.

Initially this is true, since d(s)=0, and s is only discovered
vertex.

Let v be next discovered vertex, using edge (u,v). d(v) =
d(u) + luv. Then distance of v from s is at most d(v) since

d(u) is correct.

If distance v from s is < d(v),
must be v’ s.t.

d(u”) + luv < d(u) + lyv.
This contradicts algorithm, v’
would be chosen instead of v. — 5 shortest path
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Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo

Set d(s) = 0, mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Running time analysis:

O(mn).
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delete min: delete root,
replace with last leaf,
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restored.

binary tree, every vertex reduce value of node:
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Heaps

Supported operations:

delete min: delete root,
replace with last leaf,
swap with min-child until order

restored.
binary tree, every vertex reduce value of node:
has value at most that of bubble up value until order
its children
restored

all operations take O(log n) time



Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo

Set d(s) = 0, mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Running time analysis:

O(mn).

Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo
Set d(s) = 0, mark s discovered. Make heap.
while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Running time analysis:

O((m+n) log n).
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delete u with minimum d(u) value from heap
for each edge (u,v)
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while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)

if d(v) > d(u) + luv, update d(v) = d(u) + luv.
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delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.
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let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered
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set d(v) = d(u) + l,,v, mark v discovered

while there is e undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizi UV




Dijkstra’s Algorithm

while there is edge
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered




What about negative edge Assume no
weights? negative cycles.



Claim: If graph has no negative length cycles, then
shortest walk between (s,v) has at most n-1 edges.

Pf. Suppose not. Then by pigeonhole, the shortest walk
must contain a cycle! Removing it gives a shorter walk.
Contradiction.
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Bellman-Ford
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.
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Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).
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For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Pf: Initially it is true. If we update d(v) = d(u) + luv, then
d(v)

— d(U) + |u,v

> distance(s,u) + luv

> distance(s,V)



Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Claim: If (s,u1),(u1,u2),...,(Uk-1,Ux) OCCur as a subsequence
in the sequence of edge updates of algorithm, then
d(Uk) < Is,u1+|u1,u2+---+|uk-1,uk

Pf. After (s,ui1) is updated, d(ui) is at most s u1.
After (ui,u2) is updated, d(uy) is at most Is,u1 + lu1,u2.



Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Claim: If (s,u1),(u1,u2),...,(Uk-1,Ux) OCCur as a subsequence
in the sequence of edge updates of algorithm, then
d(Uk) < Is,u1+|u1,u2+---+|uk-1,uk

Claim: Every sequence of n-1 edges occurs as a
subsequence of the edge sequence used in the algorithm,
so d(u) is at most distance(s,u) at the end.



Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Running time analysis:

O((m+n)n).



Detecting Negative
Cycles

® Run Bellman-Ford n times. If any value d(v)
changes in the n’th iteration, there is a
negative cycle!



