Given directed graph with non-negative edge
lengths l,v. Compute all shortest paths from s to
every other vertex.

Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo
Set d(s) = 0, mark s discovered.
while there is edge from discovered vertex to

undiscovered vertex,
let (u,v) be such edge minimizing d(u)+ly v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

;\

2
p) d
x n

=
J

2
2o
2

6

G

ﬂc

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

% 4 : 5 K

o0

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

/ 4 : 5 k

o0

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

i

2
3],
e
> [

f

B

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

i

2
3],
e
> [

f

B

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

B: ‘% l

B .0
B

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

B: ‘% 4

B

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

O
J

/

1 3
c
B g o)
C
T
o

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

B

Dijkstra’s Algorithm

O
J

| d—ad

c
0. gaFolr)
f

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Dijkstra’s Algorithm

O
J

L a3
e
FolG)
f
C
B :
0
while there is edge

let (u,v) be such edge minimizing d(C
set d(v) = d(u) + luv, mark v discovered

26

B

discovered vertex,

u,v

Dijkstra’s Algorithm

while there is edgt discovered vertex,
let (u,v) be such edge minimizing d(u)=+lu,v
set d(v) = d(u) + luv, mark v discovered

Dijkstra’s Algorithm

set d(v) = d(u) + luv, mark v discovered

Dijkstra’s Algorithm

set d(v) = d(u) + luv, mark v discovered

Dijkstra’s Algorithm

while there is edge DY
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo

Set d(s) = 0, mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Correctness analysis:
Prove that if v is discovered d(v) is distance of v from s.

Initially this is true, since d(s)=0, and s is only discovered
vertex.

Let v be next discovered vertex, using edge (u,v). d(v) =
d(u) + luv. Then distance of v from s is at most d(v) since

d(u) is correct.

If distance v from s is < d(v),
must be v’ s.t.

d(u”) + luv < d(u) + lyv.
This contradicts algorithm, v’
would be chosen instead of v. — 5 shortest path

/4

\"

-¢

\"

Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo

Set d(s) = 0, mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Running time analysis:

O(mn).

Heaps

Supported operations:

binary tree, every vertex
has value at most that of
its children

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex
has value at most that of
its children

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex
has value at most that of
its children

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex
has value at most that of
its children

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex
has value at most that of
its children

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex reduce value of node:

has value at most that of bubble up value until order
its children
restored

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex reduce value of node:

has value at most that of bubble up value until order
its children
restored

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,

swap with min-child until order
restored.

binary tree, every vertex reduce value of node:

has value at most that of bubble up value until order
its children
restored

Heaps

Supported operations:

delete min: delete root,
replace with last leaf,
swap with min-child until order

restored.
binary tree, every vertex reduce value of node:
has value at most that of bubble up value until order
its children
restored

all operations take O(log n) time

Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo

Set d(s) = 0, mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

Running time analysis:

O(mn).

Disjkstra(s)

Set all vertices v undiscovered, d(v)= oo
Set d(s) = 0, mark s discovered. Make heap.
while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Running time analysis:

O((m+n) log n).

Dijkstra’s Algorithm

while heap is not empty, N,
delete u with minimum d(u) value from heap
for each edge (u,v)

if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,

delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

/ |
while heap is not empty,

delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,

delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

~

a,2

7 "\

b,12
T RN

C
. e o B o
|

/
while heap is not empty,

delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

(S
o> (=

/ N\

C b, 12
7 / N I
.
/

e

g,0
while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)

if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

(S
o> (=

/ N\

b, 12
e

e

C

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + luv, update d(v) = d(u) + luv.

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

(S
o> (=

/ N\

b,12
BB

/7 N

e

C

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

(S
o> (=

/. N\

b,12
BB

7
e

e

C

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

(S
o> (=

/. N\

b,12
BB

7
e

\
"

C

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

f,00

c78 b 12 5

g,00 M d,co [l j, co 5 \

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

c,/
f oo [b, 12 5

g,00 fl d, co B, 00 5 \

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

c,/
f oo [b, 12 5

g,c0 Il d,00 5,11 5 \

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

ya l

8
while there is edge from undiscovered vertex to discovered vertex,

let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

J

while there is edge from undiscovered vertex to discovered vertex,

let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

J

while there is edge from undiscovered vertex to discovered vertex,

let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

J

while there is edge from undiscovered vertex to discovered vertex,

let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

J

while there is edge from undiscovered vertex to discovered vertex,

let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

J

while there is edge from undiscovered vertex to discovered vertex,

let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + lu,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + l,,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + l,,v, mark v discovered

Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + l,,v, mark v discovered

Dijkstra’s Algorithm

while there is e undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizi UV

set d(v) = d(u) + l,,v, mark v discovered

Dijkstra’s Algorithm

while there is e undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizi UV

set d(v) = d(u) + l,,v, mark v discovered

Dijkstra’s Algorithm

set d(v) = d(u) + l,,v, mark v discovered

while there is e undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizi UV

Dijkstra’s Algorithm

set d(v) = d(u) + l,,v, mark v discovered

while there is e undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizi UV

Dijkstra’s Algorithm

set d(v) = d(u) + l,,v, mark v discovered

while there is e undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizi UV

Dijkstra’s Algorithm

while there is edge
let (u,v) be such edge minimizing d(u)+lu,v
set d(v) = d(u) + luv, mark v discovered

What about negative edge Assume no
weights? negative cycles.

Claim: If graph has no negative length cycles, then
shortest walk between (s,v) has at most n-1 edges.

Pf. Suppose not. Then by pigeonhole, the shortest walk
must contain a cycle! Removing it gives a shorter walk.
Contradiction.

@

&

Bellman-Ford
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Bellman-Ford

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford
% 12 -
4

-5

C

b
1
4

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

%12

1
2 1

a

-5

C

b
1
4

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

[%12

1
2 1

a

-5

-2

a
J

4

S

2
= G

f

-6

C

NS

b
1
4 g

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

[%12

1
2 1

a

-5

4 2

(S
2
7 G

f

-6

C

N4

b
1
4 g

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford
% = “ |
1 4 2 2

-5

1
C
4

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford
% = w |
1 4 2

-5

1
C
4

update (u,v):
d(v) = min{d(v) + luv)}

Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Pf: Initially it is true. If we update d(v) = d(u) + luv, then
d(v)

— d(U) + |u,v

> distance(s,u) + luv

> distance(s,V)

Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Claim: If (s,u1),(u1,u2),...,(Uk-1,Ux) OCCur as a subsequence
in the sequence of edge updates of algorithm, then
d(Uk) < Is,u1+|u1,u2+---+|uk-1,uk

Pf. After (s,ui1) is updated, d(ui) is at most s u1.
After (ui,u2) is updated, d(uy) is at most Is,u1 + lu1,u2.

Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Claim: If graph has no negative length cycles, then for
every v, d(v) = distance(s,v).

Claim: If (s,u1),(u1,u2),...,(Uk-1,Ux) OCCur as a subsequence
in the sequence of edge updates of algorithm, then
d(Uk) < Is,u1+|u1,u2+---+|uk-1,uk

Claim: Every sequence of n-1 edges occurs as a
subsequence of the edge sequence used in the algorithm,
so d(u) is at most distance(s,u) at the end.

Bellman-Ford Algorithm
For all vertices set d(v)= oo
Set d(s) =0
fori=1,2,....n-1
for every edge (u,v)
iIf d(v) > d(u) + luv, update d(v) = d(u) + luv.

Running time analysis:

O((m+n)n).

Detecting Negative
Cycles

® Run Bellman-Ford n times. If any value d(v)
changes in the n’th iteration, there is a
negative cycle!

