

Given directed graph with non-negative edge lengths $I_{u,v}$. Compute all shortest paths from s to every other vertex.

<u>Disjkstra(s)</u>

Set all vertices v undiscovered, $d(v) = \infty$ Set d(s) = 0, mark s discovered. **while** there is edge from discovered vertex to undiscovered vertex, let (u,v) be such edge minimizing $d(u)+I_{u,v}$ set $d(v) = d(u) + I_{u,v}$, mark v discovered

let (u,v) be such edge minimizing d(u)+ $I_{u,v}$ set d(v) = d(u) + $I_{u,v}$, mark v discovered

let (u,v) be such edge minimizing $d(u)+I_{u,v}$

let (u,v) be such edge minimizing $d(u)+I_{u,v}$

Interview of the series o

let (u,v) be such edge minimizing $d(u)+I_{u,v}$

Disjkstra(s) Set all vertices v undiscovered, $d(v) = \infty$ Set d(s) = 0, mark s discovered. **while** there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing $d(u)+l_{u,v}$ set $d(v) = d(u) + l_{u,v}$, mark v discovered

Correctness analysis:

Prove that if v is discovered d(v) is distance of v from s. Initially this is true, since d(s)=0, and s is only discovered vertex.

Let v be next discovered vertex, using edge (u,v). $d(v) = d(u) + I_{u,v}$. Then distance of v from s is at most d(v) since d(u) is correct.

If distance v from s is < d(v), must be v' s.t. $d(u') + l_{u',v'} < d(u) + l_{u,v}$. This contradicts algorithm, v' would be chosen instead of v.

Disjkstra(s) Set all vertices v undiscovered, $d(v) = \infty$ Set d(s) = 0, mark s discovered. **while** there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing $d(u)+l_{u,v}$ set $d(v) = d(u) + l_{u,v}$, mark v discovered

Running time analysis:

O(mn).

Supported operations:

Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

binary tree, every vertex has value at most that of its children Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node:

bubble up value until order restored

binary tree, every vertex has value at most that of its children Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node:

bubble up value until order restored

binary tree, every vertex has value at most that of its children Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node:

bubble up value until order restored

binary tree, every vertex has value at most that of its children Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node:

bubble up value until order restored

all operations take O(log n) time

Disjkstra(s) Set all vertices v undiscovered, $d(v) = \infty$ Set d(s) = 0, mark s discovered. **while** there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing $d(u)+l_{u,v}$ set $d(v) = d(u) + l_{u,v}$, mark v discovered

Running time analysis:

O(mn).

Disjkstra(s) Set all vertices v undiscovered, d(v) = ∞Set d(s) = 0, mark s discovered. Make heap. while heap is not empty, delete u with minimum d(u) value from heap for each edge (u,v)if $d(v) > d(u) + l_{u,v}$, update $d(v) = d(u) + l_{u,v}$.

Running time analysis:

O((m+n) log n).

set $d(v) = d(u) + I_{u,v}$, mark v discovered

while there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing $d(u)+I_{u,v}$ set $d(v) = d(u) + I_{u,v}$, mark v discovered

while there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing $d(u)+I_{u,v}$ set $d(v) = d(u) + I_{u,v}$, mark v discovered

let (u,v) be such edge minimizing $d(u)+I_{u,v}$ set $d(v) = d(u) + I_{u,v}$, mark v discovered

let (u,v) be such edge minimizing $d(u)+I_{u,v}$ set $d(v) = d(u) + I_{u,v}$, mark v discovered

set $d(v) = d(u) + I_{u,v}$, mark v discovered

set $d(v) = d(u) + I_{u,v}$, mark v discovered

set $d(v) = d(u) + I_{u,v}$, mark v discovered

What about negative edge weights?

Assume no negative cycles.

Claim: If graph has no negative length cycles, then shortest walk between (s,v) has at most n-1 edges.

Pf: Suppose not. Then by pigeonhole, the shortest walk must contain a cycle! Removing it gives a shorter walk. Contradiction.


```
Bellman-Ford

For all vertices set d(v) = \infty

Set d(s) = 0

for i=1,2,...,n-1

for every edge (u,v)

if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
```


Claim: If graph has no negative length cycles, then for every v, $d(v) \ge distance(s,v)$.

Claim: If graph has no negative length cycles, then for every v, $d(v) \ge distance(s,v)$.

Pf: Initially it is true. If we update $d(v) = d(u) + I_{u,v}$, then d(v)

- $= d(u) + I_{u,v}$
- \geq distance(s,u) + I_{u,v}
- ≥ distance(s,v)

Claim: If graph has no negative length cycles, then for every v, $d(v) \ge distance(s,v)$.

Claim: If $(s,u_1),(u_1,u_2),...,(u_{k-1},u_k)$ occur as a subsequence in the sequence of edge updates of algorithm, then $d(u_k) \leq I_{s,u1}+I_{u1,u2}+...+I_{uk-1,uk}$

Pf: After (s,u₁) is updated, $d(u_1)$ is at most I_{s,u_1} . After (u₁,u₂) is updated, $d(u_2)$ is at most $I_{s,u_1} + I_{u_1,u_2}$.

Claim: If graph has no negative length cycles, then for every v, $d(v) \ge distance(s,v)$.

Claim: If $(s,u_1),(u_1,u_2),...,(u_{k-1},u_k)$ occur as a subsequence in the sequence of edge updates of algorithm, then $d(u_k) \leq I_{s,u1}+I_{u1,u2}+...+I_{uk-1,uk}$

Claim: Every sequence of n-1 edges occurs as a subsequence of the edge sequence used in the algorithm, so d(u) is at most distance(s,u) at the end.

Running time analysis: O((m+n)n).

Detecting Negative Cycles

 Run Bellman-Ford n times. If any value d(v) changes in the n'th iteration, there is a negative cycle!