Polynomial-time reductions

Suppose Y in P. What else is in P?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
Polynomial-time reductions

Suppose \(Y \) in P. What else is in P?

Reduction. Problem \(X \) polynomial-time (Cook) reduces to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y \).

Notation. \(X \leq_p Y \).

Note. We pay for time to write down instances sent to oracle \(\Rightarrow \) instances of \(Y \) must be of polynomial size.

Caveat. Don't mistake \(X \leq_p Y \) with \(Y \leq_p X \).
Polynomial-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
Independent set

INDEPENDENT-SET. Given graph $G = (V, E)$ and integer k, is there subset $S \subseteq V$, with $|S| \geq k$, s.t. no edge contained in S?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?

[Diagram of a graph with independent set highlighted]
Vertex cover

VERTEX-COVER. Given graph $G = (V, E)$ and integer k, is there $S \subseteq V$ with $|S| \leq k$, s.t. each edge touches S?

Ex. Is there a vertex cover of size ≤ 4?
Ex. Is there a vertex cover of size ≤ 3?
Vertex cover and independent set reduce to one another

Theorem. $\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET}.$

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k.$
Theorem. \textsc{Vertex-Cover} $\equiv_{p} \textsc{Independent-Set}$.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Rightarrow

- Let S be independent set.
- Consider edge $\{u, v\}$.
- S independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)
 \Rightarrow either $u \in V - S$ or $v \in V - S$ (or both).
- Thus, $V - S$ covers $\{u, v\}$.
Vertex cover and independent set reduce to one another

Theorem. \textsc{Vertex-Cover} \equiv_P \textsc{Independent-Set}.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Leftarrow

- Let $V - S$ be vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- $\{u, v\} \notin E$ since $V - S$ is a vertex cover $\Rightarrow S$ independent set. \blacksquare
Set cover

Set-Cover. Given a collection S_1, S_2, \ldots, S_m of subsets of $\{1,2,\ldots,n\}$, and an integer k, does there exist $\leq k$ of these sets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_1 &= \{ 3, 7 \} \quad S_4 = \{ 2, 4 \} \\
S_2 &= \{ 3, 4, 5, 6 \} \quad S_5 = \{ 5 \} \\
S_3 &= \{ 1 \} \quad S_6 = \{ 1, 2, 6, 7 \} \\
k &= 2
\end{align*}
\]

a set cover instance
Vertex cover reduces to set cover

Theorem. VERTEX-COVER \leq_p SET-COVER.

Pf. Given VERTEX-COVER instance $G = (V, E)$, we construct a SET-COVER instance that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $= E$.
- Include one set for each node $v \in V$: $S_v = \{ e \in E : e \text{ incident to } v \}$.

Example:

- Let $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
- Let $S_a = \{ 3, 7 \}$, $S_b = \{ 2, 4 \}$, $S_c = \{ 3, 4, 5, 6 \}$, $S_d = \{ 5 \}$, $S_e = \{ 1 \}$, $S_f = \{ 1, 2, 6, 7 \}$

Vertex cover instance (k = 2)

Set cover instance (k = 2)
Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S) \) contains a set cover of size \(k \).

\[\text{Pf. } \Rightarrow \text{ Let } X \subseteq V \text{ be a vertex cover of size } k \text{ in } G. \]

- Then \(Y = \{ S_v : v \in X \} \) is a set cover of size \(k \).

Vertex cover reduces to set cover

<table>
<thead>
<tr>
<th>vertex cover instance</th>
<th>set cover instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 2)</td>
<td>(k = 2)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} & S_b &= \{ 2, 4 \} \\
\text{**} S_c &= \{ 3, 4, 5, 6 \} & S_d &= \{ 5 \} \\
S_e &= \{ 1 \} & S_f &= \{ 1, 2, 6, 7 \}
\end{align*}
\]
Vertex cover reduces to set cover

Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. ⇐ Let $Y \subseteq S$ be a set cover of size k in (U, S).
 - Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. ■
Satisfiability

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional formula \(\Phi \) that is the conjunction of clauses.

\textbf{SAT}. Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

\textbf{3-SAT}. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\begin{center}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{sat.png}
\end{figure}
\end{center}

\textit{yes instance:} \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.
- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$k = 3$
3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.
- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. □
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?
3-satisfiability reduces to 3-colorability

Theorem. $3\text{-SAT} \leq_p 3\text{-COLOR}$.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

true

false

T

F

base

B

x_1 x_1 x_2 x_2 x_3 x_3 x_n x_n
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

![Diagram of 6-node gadget](image-url)
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.
3-satisfiability reduces to directed hamilton cycle

DIR-HAM-CYCLE: Given a digraph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?

Theorem. 3-SAT \leq_p DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

![Diagram of graph](image-url)
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause, add a node and 6 edges.

\[C_1 = x_1 \lor \overline{x_2} \lor x_3 \]
\[C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \]
3-satisfiability reduces to directed hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

• Suppose 3-SAT instance has satisfying assignment \(x^* \).
• Then, define Hamilton cycle in \(G \) as follows:
 - if \(x^*_i = \text{true} \), traverse row \(i \) from left to right
 - if \(x^*_i = \text{false} \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in
 "correct" direction to splice clause node \(C_j \) into cycle
 (and we splice in \(C_j \) exactly once)
3-satisfiability reduces to directed hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\iff \)

- Suppose \(G \) has a Hamilton cycle \(\Gamma \).
- If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 - nodes immediately before and after \(C_j \) are connected by an edge \(e \in E \)
 - removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamilton cycle on \(G - \{ C_j \} \)
- Continuing in this way, we are left with a Hamilton cycle \(\Gamma' \) in \(G - \{ C_1, C_2, \ldots, C_k \} \).
- Set \(x^*_{i} = true \) iff \(\Gamma' \) traverses row \(i \) left to right.
- Since \(\Gamma \) visits each clause node \(C_j \), at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \(\blacksquare \)