Algorithm: Sel(numbers, k)

Given: numbers x_1, \ldots, x_n, k, output k’th smallest number.
Algorithm: Sel(numbers, k)

Given: numbers $x_1, ..., x_n$, k, output k’th smallest number.

Sort the numbers! $O(n \log n)$ time.

Can we do better?
Given: x_1, \ldots, x_n, k, output k'th smallest number.

Algorithm: $\text{Sel}(\text{numbers, k})$

1. Partition numbers into sets of size 3
1. Partition numbers into sets of size 3
2. Sort each set
1. Partition numbers into sets of size 3
2. Sort each set
3. \(w = \text{Sel}(\text{numbers}, \frac{n}{6}) \)
1. Partition numbers into sets of size 3
2. Sort each set
3. \(w = \text{Sel}(\text{numbers}, n/6) \)

\[
\begin{align*}
S_L(w) &= \{x_i \mid x_i < w\} \\
S_E(w) &= \{x_i \mid x_i = w\} \\
S_G(w) &= \{x_i \mid x_i > w\}
\end{align*}
\]

Can be computed in linear time
1. Partition numbers into sets of size 3
2. Sort each set
3. $w = \text{Sel}(\text{numbers}, n/6)$

$$
S_L(w) = \{ x_i \mid x_i < w \} \\
S_E(w) = \{ x_i \mid x_i = w \} \\
S_G(w) = \{ x_i \mid x_i > w \}$$

Can be computed in linear time

4. if $k \leq |S_L(w)|$, output $\text{Sel}(S_L(w), k)$
 else if $k \leq |S_L(w)| + |S_E(w)|$, output w
 else output $\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|)$
Algorithm: Sel(numbers, k)

\[w = \text{Sel}(\text{numbers}, n/6) \]

if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
else if \(k \leq |S_L(w)| + |SE(w)| \), output \(w \)
else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_G(w)|) \)
Algorithm: Sel(numbers,k)

\[
\text{if } k \leq |S_L(w)|, \text{ output Sel}(S_L(w), k)
\]

\[
\text{else if } k \leq |S_L(w)| + |S_E(w)|, \text{ output } w
\]

\[
\text{else output Sel}(S_G(w), k - |S_L(w)| - |S_G(w)|)
\]

\[
|S_L(w)| + |S_E(w)|, \text{ at least } 2(n/6) = n/3
\]
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 3
2. Sort each set
3. \[w = \text{median of } S_L(w), S_E(w), S_G(w) \]

\[|S_L(w)| + |S_E(w)|, |S_G(w)| + |S_E(w)|, \text{ at least } 2(n/6) = n/3 \]

\[T(n) = T(n/3) + T(2n/3) + O(n) \]

Can be computed in linear time

4. if \(k \leq |S_L(w)| \), output Sel(S_L(w), k)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
 else output Sel(S_G(w), k - |S_L(w)| - |S_E(w)|)
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 3
2. Sort each set (only in our heads)
3. w = median

\[|S_L(w)| + |S_E(w)|, |S_G(w)| + |S_E(w)| \text{, at least } 2(n/6) = n/3 \]

\[T(n) = T(n/3) + T(2n/3) + O(n) \]

so

\[T(n) = O(n \log n) \]

(what's the point???)

```latex
\begin{align*}
S_L(w) &= \{x_i \mid x_i < w\} \\
S_E(w) &= \{x_i \mid x_i = w\} \\
S_G(w) &= \{x_i \mid x_i > w\}
\end{align*}
```

4. if \(k \leq |S_L(w)| \), output \(Sel(S_L(w), k) \)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
 else output \(Sel(S_G(w), k - |S_L(w)| - |S_E(w)|) \)
Recurrences

\[T(n) = T(\gamma n) + T(\beta n) + n \]
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 5
2. Sort each set
3. $w = \text{median of}$

 \[
 \begin{align*}
 S_L(w) &= \{x_i \mid x_i < w\} \\
 S_E(w) &= \{x_i \mid x_i = w\} \\
 S_G(w) &= \{x_i \mid x_i > w\}
 \end{align*}
 \]

 Can be computed in linear time

4. if $k \leq |S_L(w)|$, output $\text{Sel}(S_L(w), k)$
 else if $k \leq |S_L(w)| + |S_E(w)|$, output w
 else output $\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|)$
1. Partition numbers into sets of size 5
2. Sort each set
3. \(w = \text{median of} \)
\[
\begin{align*}
S_L(w) &= \{x_i \mid x_i < w\} \\
S_E(w) &= \{x_i \mid x_i = w\} \\
S_G(w) &= \{x_i \mid x_i > w\}
\end{align*}
\] Can be computed in linear time
4. if \(k \leq |S_L(w)| \), output \(\text{Sel}(S_L(w), k) \)
else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
else output \(\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|) \)
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 5
2. Sort each set
3. $w = \text{median of}$

 $S_L(w) = \{x_i \mid x_i < w\}$
 $S_E(w) = \{x_i \mid x_i = w\}$
 $S_G(w) = \{x_i \mid x_i > w\}$

 Can be computed in linear time

4. if $k \leq |S_L(w)|$, output $\text{Sel}(S_L(w), k)$

 else if $k \leq |S_L(w)| + |S_E(w)|$, output w

 else output $\text{Sel}(S_G(w), k - |S_L(w)| - |S_E(w)|)$
Algorithm: Sel(numbers, k)

1. Partition numbers into sets of size 5
2. Sort each set
3. \(w = \text{median of} \)
4. if \(k \leq |S_L(w)| \), output Sel\((S_L(w), k)\)
 else if \(k \leq |S_L(w)| + |S_E(w)| \), output \(w \)
 else output Sel\((S_G(w), k - |S_L(w)| - |S_E(w)|)\)

\(|S_L(w)| + |S_E(w)|, |S_E(w)| + |S_E(w)| \), at least \(3n/10 \)

\(T(n) = T(n/5) + T(7n/10) + O(n) \)

so

\(T(n) = O(n) \)

Can be computed in linear time