
Graphs

3
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Objects & Relationships

Facebook friends:
Obj: People
Rel: Two are related if they are friends

Cities and Roads:
Obj: Cities
Rel: Two are related if they have a road between them

Data flow in programs:
Obj: Lines of the program
Rel: Two are related if one line depends on the other
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Graphs

Objects: "vertices," aka "nodes"
Relationships between pairs: "edges”
Formally, a graph G = (V, E) is a pair of sets, 
V the vertices and E the edges. Each edge is a 
set or tuple of two vertices.
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Undirected Graph   G = (V,E)
1

2
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9

8

3
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5
6

7
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13
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Undirected Graph   G = (V,E)
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Undirected Graph   G = (V,E)
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Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7
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12
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"self-
loop"

"multi-
edge"
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Undirected Graph   G = (V,E)
1

2
10

9

8

3

4

5
6

7
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12
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"self-
loop"

"multi-
edge"
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Graphs don't live in Flatland
Geometrical drawing is mentally 
convenient, but mathematically
irrelevant: 4 drawings, 1 graph.

A

7 4

3
A

74

3

A

74

3

A

7 4

3
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
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Directed Graph G = (V,E)
1

2
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9
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"self-
loop"

"multi-
edge"
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Directed Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

"self-
loop"

"multi-
edge"



Graphs

Degree of a vertex, deg(v): # edges that touch that 
vertex

deg(6) = 3.

Path: sequence of distinct vertices s.t. each vertex is 
connected to the next vertex with an edge

Eg: 3,6,5,4
19

3
4

5
6

7
2

10

1



Connected: Graph is connected if there is 
a path between every two vertices

Connected component: Maximal set of 
connected vertices

Cycle: Path of length > 1 that has the same 
start and end. Eg: 6,5,7

Tree: A connected graph with no cycles
20

3
46

7

5
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Let G be an undirected graph with n vertices and m
edges.  How are n and m related?

# Vertices vs # Edges
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Let G be an undirected graph with n vertices and m
edges.  How are n and m related?

Since 
every edge connects two different vertices (no loops), 
and no two edges connect the same two vertices (no 
multi-edges), 

it must be true that:

0 ≤ m ≤ n(n-1)/2 = O(n2)

# Vertices vs # Edges
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More Cool Graph Lingo

A graph is called sparse if m ≪ n2, otherwise it is 
dense

Boundary is somewhat fuzzy; O(n) edges is certainly 
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?

A: n+m = O(n2), but n+m usually way better!
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A

7 4

3

Specifying undirected 
graphs as input

What are the vertices?
Explicitly list them: 
{"A", "7", "3", "4"}

What are the edges?
Either, set of edges 
{{A,3}, {7,4}, {4,3}, {4,A}}
Or, (symmetric) adjacency 
matrix:

€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0
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A

7 4

3

Specifying directed 
graphs as input

What are the vertices?
Explicitly list them: 
{"A", "7", "3", "4"}

What are the edges?
Either, set of directed edges:  
{(A,4), (4,7), (4,3), (4,A), (A,3)}

Or, (nonsymmetric) 
adjacency matrix:

€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0
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Representing Graph  G = (V,E)

Vertex set V = {v1, …, vn}
Adjacency Matrix   A

A[i,j] = 1 iff (vi,vj) ∊ E

Space is n2 bits

Advantages: 
O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in 
storage and access

m ≪ n2

€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A

743

internally, indp of input format
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Representing Graph  G=(V,E)
n vertices,  m edges

Adjacency List:
O(n+m) words

Advantages:
Compact for 
sparse graphs

Easily see all edges

Disadvantages
More complex data structure 
no O(1) edge test

7

7

v3
v2
v1

vn

2 6

2 4

3

5

1
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Representing Graph  G=(V,E)
n vertices,  m edges

Adjacency List:
O(n+m) words

Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges, if 
needed,  (don't bother if not)

1

7

v3
v2
v1

v7

2 6

2 4

3

5

1
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Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex 
s to all vertices reachable from s

Being orderly helps.  Two common ways:
Breadth-First Search: order the nodes in 
successive layers based on distance from s

Depth-First Search: more natural approach for 
exploring a maze; many efficient algs build on it.
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Breadth-First Search

Completely explore the vertices in order of 
their distance from s

Naturally implemented using a queue
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Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex 
s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored
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BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"
BFS(s) 

mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully explored
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BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1  
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BFS(v)
1

2 3

10

5

4

9

12
8
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6
7

11

Queue:
2 3  
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BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4
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BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7



37

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9
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BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11
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BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
10 11 12 13
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BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
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BFS: Analysis, I
Global initialization: mark all vertices "undiscovered"
BFS(s) 

mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully explored

Simple analysis: 
2 nested loops.   
Get worst-case 
number of 
iterations of each; 
multiply. 

O(n)
+

O(1)
+

O(n)
x

O(n)

=
O(n2)
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BFS: Analysis, II

Above analysis correct, but pessimistic (can't have 
Ω(n) edges incident to each of Ω(n) distinct "u" 
vertices if G is sparse).  Alt, more global analysis:

Each edge is explored once 
from each end-point, so total
runtime of inner loop is O(m).

Total O(n+m), n = # nodes, m = # edges

Exercise:  extend 
algorithm and 
analysis to non-
connected graphs
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Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from 
v to x.
Edges into then-undiscovered vertices define a tree
– the "breadth first spanning tree" of G
Level i in this tree are exactly those vertices 
u such that the shortest path (in G, not just the 

tree) from the root v is of length i.
All non-tree edges join vertices on the 
same or adjacent levels

not true 
of every 
spanning 
tree!
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Proof of correctness

Lemma 1: Every vertex at level i is explored after every vertex at level        
i-1.

Proof is by induction on i.
Base case: i = 1. True.
Induction step: Let u be at level i, and v be at level i-1. Since we use a 
queue, it is enough to prove that u is added to the queue after v. But u 
was added when a vertex at level i-1 was explored, and v is added when 
a vertex of level i-2 was explored. So u is added after v by induction.
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Proof of correctness

Lemma 2: Level i in this tree are exactly those 
vertices u such that the shortest path (in G, not just the 

tree) from the root is of length i. 

Proof is by induction on i.
Base case: i = 0. True.
Induction step: Every vertex u at level i certainly has distance at most i, 
because we discover a path of length i from u to v. If the distance from 
the root is less than i, and u was discovered when exploring v (at level i-
1), then u is a neighbor of a vertex b at distance (and level) < i-1. But 
then, by Lemma 1,  b would have been explored before v, and u would 
have been added in level i-1.
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BFS Application: Shortest Paths
1

2 3

10

5

4

9

12
8

13

6
7

11

0

1

2

3

4
can label by distances from start

all edges connect same/adjacent levels

Tree (solid edges) 
gives shortest 
paths from 
start vertex
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Tree (solid edges) 
gives shortest 
paths from 
start vertex

BFS Application: Shortest Paths
1

2 3

10

5

4

9

8

13

6 7

11

0

1

2

3

4
can label by distances from start

all edges connect same/adjacent levels

12
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Tree (solid edges) 
gives shortest 
paths from 
start vertex

BFS Application: Shortest Paths
1

2 3

10

5
4

9

8

13

6 7

11

0

1

2

3

4 can label by distances from start
all edges connect same/adjacent levels

12
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Tree (solid edges) 
gives shortest 
paths from 
start vertex

BFS Application: Shortest Paths
1

2 3

10

54

98

13

6 7

11

0

1

2

3

4 Lemma:
all edges connect same/adjacent levels

12
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Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph 
problem: find a "nice" tree in the graph, i.e., one 
such that non-tree edges have some simplifying 
structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (below) finds a different tree, but it also has 
interesting structure…
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Graph Search Application: 
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a 
path from u to v?

Set up one-time data structure to answer such 
questions efficiently.
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Graph Search Application: 
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a 
path from u to v?

Idea: create array A such that 
A[u] = smallest numbered vertex that
is connected to u.  Question reduces 
to whether A[u]=A[v]?
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Graph Search Application: 
Connected Components

initial state: all v undiscovered
for v = 1 to n do

if state(v) != fully-explored then                                 
BFS(v): setting A[u] = v for each u found 
(and marking u discovered/fully-explored)

endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times (twice)
works also with DFS



3.4  Testing Bipartiteness
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Bipartite Graphs

Def.  An undirected graph G = (V, E) is 
bipartite (2-colorable) if the nodes can be
colored red or blue such that no edge 
has both ends the same color.

Applications.
Stable marriage:  men = red, women = blue
Scheduling:  machines = red, jobs = blue

a bipartite graph

"bi-partite" means 
"two parts." An 
equivalent definition: 
G is bipartite if you 
can partition the 
node set into 2 parts 
(say, blue/red or 
left/right) so that all 
edges join nodes in 
different parts/no 
edge has both ends 
in the same part.
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Testing Bipartiteness

Testing bipartiteness.   Given a graph G, is it bipartite?
Many graph problems become:

easier if the underlying graph is bipartite (matching)
tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to 
understand structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An Obstruction to Bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain 
an odd length cycle.

Pf.  Impossible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

not bipartite
(not 2-colorable)
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Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).
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Case (i)

L1 L2 L3

Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).

Pf.  (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Bipartition:  
red  = nodes on odd levels, 
blue = nodes on even levels.
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z = lca(x, y)

(x, y) path from
y to z

path from
z to x

Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.

(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).

Pf.  (ii)
Suppose (x, y) is an edge & x, y in same level Lj.
Let z = their lowest common ancestor in BFS tree.
Let Li be level containing z.
Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.
Its length is  1  +   (j-i)  +  (j-i),  which is odd.
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Obstruction to Bipartiteness

Cor:  A graph G is bipartite iff it contains no odd 
length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

NB: the proof is algorithmic–it 
finds a coloring or odd cycle.



3.6  DAGs and Topological Ordering
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Precedence Constraints

Precedence constraints.  Edge (vi, vj) means task vi
must occur before vj.

Applications

Course prerequisites:  course vi must be taken before vj

Compilation: must compile module vi before vj

Computing workflow:  output of job vi is input to job vj

Manufacturing or assembly: sand it before you paint it…

Spreadsheet evaluation order:  if A7 is "=A6+A5+A4", 
evaluate them first
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Directed Acyclic Graphs

Def.  A DAG is a directed acyclic graph, i.e., one that contains 
no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must 
precede vj.

Def.  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge 
(vi, vj) we have i < j.

a DAG
a topological ordering of that DAG–
all edges left-to-right

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

E.g., ∀edge (vi, vj), finish
vi before starting  vj
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)
Suppose that G has a topological order v1, …, vn
and that G also has a directed cycle C.
Let vi be the lowest-indexed node in C, and let vj be the node just 
before vi; thus (vj, vi) is an edge.
By our choice of i, we have i < j.
On the other hand, since (vj, vi) is an edge and v1, …, vn is a topological 
order, we must have j < i, a contradiction.

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C

if all edges go L→R, 
you can't loop back 
to close a cycle 
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Directed Acyclic Graphs

Lemma.  
If G has a topological order, then G is a DAG.

Q.  Does every DAG have a topological ordering?

Q.  If so, how do we compute one?
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a node with no incoming edges.

Pf.  (by contradiction)
Suppose that G is a DAG and every node has at least one incoming 
edge.  Let's see what happens.
Pick any node v, and begin following edges backward from v.  Since v 
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk 
backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered 
between successive visits to w.  C is a cycle.

w x u v

Why must 
this happen?

C
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)
Base case:  true if n = 1.
Given DAG on n > 1 nodes, find a node v with no incoming edges.
G - { v } is a DAG, since deleting v cannot create cycles.
By inductive hypothesis, G - { v } has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has no incoming edges.   ▪

DAG

v
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v1

Topological Ordering Algorithm:  Example

Topological order:  

v2 v3

v6 v5 v4

v7 v1
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v2

Topological Ordering Algorithm:  Example

Topological order:  v1

v2 v3

v6 v5 v4

v7
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v3

Topological Ordering Algorithm:  Example

Topological order:  v1, v2

v3

v6 v5 v4

v7
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v4

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3

v6 v5 v4

v7
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v5

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3, v4

v6 v5

v7
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v6

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3, v4, v5

v6

v7
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v7

Topological Ordering Algorithm:  Example

Topological order:  v1, v2, v3, v4, v5, v6

v7
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Topological order:  v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Topological Ordering Algorithm:  Example
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Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges

Initialization:  
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S = S È {w} for all w with count[w]==0

Main loop: 
while S not empty

remove some v from S
make v next in topo order O(1) per node
for all edges from v to some w O(1) per edge
decrement count[w]
add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n)  (assuming edge-list representation of graph)
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Depth-First Search

Follow the first path you find as far as you can go
Back up to last unexplored edge when you reach a 
dead end, then go as far you can 

Naturally implemented using recursive calls or a 
stack
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DFS(v) – Recursive version
Global Initialization: 

for all nodes v, v.dfs# = -1 // mark v "undiscovered"
dfscounter = 0

DFS(v) 
v.dfs# = dfscounter++ // v "discovered", number it
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously  undiscovered)

DFS(x)
else … // code for back-, fwd-, parent,

// edges, if needed
// mark v "completed," if needed
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Why fuss about trees (again)?

BFS tree ≠ DFS tree, but, as with 
BFS, DFS has found a tree in the graph s.t.
non-tree edges are "simple”
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DFS(A)
A,1

B J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
(Edge list):

A (B,J)
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DFS(A)
A,1

B,2 J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
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DFS(A)
A,1

B,2 J

I

H

C,3

G

FD

E

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
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DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
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DFS(A)
A,1

B,2 J

I

H

C,3

G

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1

B,2 J

I

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
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DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)
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DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)
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DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M(L) 
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

TA-DA!!
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DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge
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DFS(A) A,1

B,2
J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge
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DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
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DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
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DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11

L,12

M,13

Edge code:
Tree edge
Back edge
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DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7F,6

D,4

E,5 K,11

L,12

M,13

Edge code:
Tree edge
Back edge
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DFS(A)
A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!
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Properties of (Undirected) DFS(v)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from v to 
x (through previously unvisited vertices)

Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

Unlike the BFS tree: 
the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root
non-tree edges never join vertices on the same or 
adjacent levels

BUT…
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Non-tree edges

All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree

No cross edges!
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Why fuss about trees (again)?

As with BFS, DFS has found a tree in the 
graph s.t. non-tree edges are "simple"--only 
descendant/ancestor
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A simple problem on trees

Given: tree T, a value L(v) defined for every 
vertex v in T
Goal: find M(v), the min value of L(v) 
anywhere in the subtree rooted at v
(including v itself).
How?
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DFS(v) – Recursive version
Global Initialization: 

for all nodes v, v.dfs# = -1 // mark v "undiscovered"
dfscounter = 0

DFS(v) 
v.dfs# = dfscounter++ // v "discovered", number it
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously  undiscovered)

DFS(x)
else … // code for back-, fwd-, parent,

// edges, if needed
// mark v "completed," if needed


