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Minimum Spanning Tree

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is minimized.
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Applications

MST is fundamental problem with diverse applications.

! Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

! Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

! Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a network

! Cluster analysis.



3

Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes (called a cut), and let e be 
the min cost edge with exactly one endpoint in S.  Then every MST 
contains e.

Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then no MST contains f.

f 
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e

f is not in the MST
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf.  By contradiction
! Suppose e = {u,v} does not belong to T*.
! Adding e to T* creates a cycle C in T*.
! There is a path from u to v in T*  ⇒ there exists another edge, say 

f, that leaves S.
! T' = T* ∪ { e } - { f } is also a spanning tree.
! Since ce < cf, cost(T') < cost(T*).
! This is a contradiction.   ▪
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f.

Pf.  By contradiction
! Suppose f belongs to T*.
! Deleting f from T* cuts T* into two connected components.
! There exists another edge, say e, that is in the cycle and connects 

the components.
! T' = T* ∪ { e } - { f } is also a spanning tree.
! Since ce < cf, cost(T') < cost(T*).
! This is a contradiction.   ▪
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Kruskal's Algorithm:  Proof of Correctness

Kruskal's algorithm.  [Kruskal, 1956]
! Consider edges in ascending order of weight.
! Case 1:  If adding e to T creates a cycle, discard e according to 

cycle property.
! Case 2:  Otherwise, insert e = (u, v) into T according to cut 

property where S = set of nodes in u's connected component. 

Case 1

v

u

Case 2

e

e S
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Implementation:  Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
T = {}

foreach (u ∊ V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T = T ∪ {ei}
merge the sets containing u and v

}
return T

}

Implementation.  Use the union-find data structure.
! Build set T of edges in the MST.
! Maintain set for each connected component.
! O(m log n) for sorting and  O(m log n) for union-find.

are u and v in different connected components?

merge two components



Union Find Data Structure

• Each set is represented as a tree of pointers, where every vertex is 
labeled with longest path ending at the vertex
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Union Find Data Structure

• Each set is represented as a tree of pointers, where every vertex is 
labeled with longest path ending at the vertex

To check whether A,Q are in same connected component, follow 
pointers and check if root is the same. 
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Union Find Data Structure

• Each set is represented as a tree of pointers, where every vertex is 
labeled with longest path ending at the vertex

• To merge sets, make the root with the smaller label point to the 
root with the bigger label (adjusting labels if necessary). 
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Union Find Data Structure

• Each set is represented as a tree of pointers, where every vertex is 
labeled with longest path ending at the vertex

• To merge sets, make the root with the smaller label point to the 
root with the bigger label (adjusting labels if necessary). 
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Union Find Data Structure

• Each set is represented as a tree of pointers, where every vertex is 
labeled with longest path ending at the vertex

• To merge sets, make the root with the smaller label point to the 
root with the bigger label (adjusting labels if necessary). 
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Union Find Data Structure

• To merge sets, make the root with the smaller label point to the 
root with the bigger label (adjusting labels if necessary). 

• Claim: If the label of a root is k, there are at least 2^k elements in 
the set. (Therefore the depth of any tree in algorithm is at most  
log n)
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Union Find Data Structure

• Claim: If the label of a root is k, there are at least 2k elements in 
the set. (Therefore the depth of any tree in algorithm is at most  
log n)

• Pf: By induction on k. When k = 0, this is true. If we merge roots 
with labels k1 > k2, the number of vertices only increases while the 
label stays the same. If k1 = k2, the merged tree has label k1+1, and 
by induction, at least 2k1 + 2k2 = 2k1+1 elements.
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Implementation:  Kruskal's Algorithm

Implementation.  Use the union-find data structure.
! Build set T of edges in the MST.
! Maintain set for each connected component.
! O(m log n) for sorting and  O(m log n) for union-find.

Find roots and compare

Merge at the roots

Kruskal(G, c) {
Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
T = {}

foreach (u ∊ V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T = T ∪ {ei}
merge the sets containing u and v

}
return T

}



Removing the assumption that edge weights are distinct

Suppose edge weights are not distinct, and Kruskal’s algorithm sorts 
edges so 
w(e1) ≤ w(e2) ≤ … ≤ w(em)

Suppose Kruskal finds MST T of weight w(T), but the optimal solution 
T* has weight w(T*) < w(T). 

Perturb each of the weights by a very small amount so that

w’(e1) < w’(e2) < … < w’(em)

If the perturbation is small enough, w’(T*) < w’(T). However, this 
contradicts the correctness of Kruskal’s algorithm, since the algorithm 
will still find T!
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Greedy Algorithms

Kruskal's algorithm.  Start with T = {}. Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so would 
disconnect T.

Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T.

Remark. All three algorithms produce an MST.


