Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

$T, \sum_{e \in T} c_e = 50$
Applications

MST is fundamental problem with diverse applications.

- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, road

- Approximation algorithms for NP-hard problems.
 - traveling salesperson problem, Steiner tree

- Indirect applications.
 - max bottleneck paths
 - LDPC codes for error correction
 - image registration with Renyi entropy
 - learning salient features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network

- Cluster analysis.
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

[e is in the MST]

[f is not in the MST]
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. By contradiction
- Suppose $e = \{u,v\}$ does not belong to T^*.
- Adding e to T^* creates a cycle C in T^*.
- There is a path from u to v in $T^* \Rightarrow$ there exists another edge, say f, that leaves S.
- $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, cost(T') < cost(T^*).
- This is a contradiction.
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. By contradiction
- Suppose f belongs to T^*.
- Deleting f from T^* cuts T^* into two connected components.
- There exists another edge, say e, that is in the cycle and connects the components.
- $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $\text{cost}(T') < \text{cost}(T^*)$.
- This is a contradiction. •
Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
- Consider edges in ascending order of weight.
- **Case 1:** If adding \(e \) to \(T \) creates a cycle, discard \(e \) according to cycle property.
- **Case 2:** Otherwise, insert \(e = (u, v) \) into \(T \) according to cut property where \(S = \) set of nodes in \(u \)'s connected component.

![Case 1](image1.png)
Case 1

![Case 2](image2.png)
Case 2
Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.
- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find.

Kruskal(G, c) {
 Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
 $T = \{\}$

 foreach $(u \in V)$ make a set containing singleton u

 for $i = 1$ to m are u and v in different connected components?
 $(u,v) = e_i$
 if $(u$ and v are in different sets) {
 $T = T \cup \{e_i\}$
 merge the sets containing u and v
 } merge two components
 return T
}
Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

\[\{V,A,B,C\} \]

\[\{W,P,Q\} \]
Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

To check whether A, Q are in same connected component, follow pointers and check if root is the same.
Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

- To **merge** sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).

![Diagram of Union Find Data Structure]
Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

- To **merge** sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).

![Diagram of Union Find Data Structure]

1. V,2
2. A,1
3. B,0
4. C,0
5. W,2
6. P,1
7. Q,0
8. R,0
Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

- To **merge** sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).
Union Find Data Structure

- To merge sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).

- **Claim:** If the label of a root is k, there are at least 2^k elements in the set. (Therefore the depth of any tree in algorithm is at most $\log n$)
Union Find Data Structure

- **Claim:** If the label of a root is k, there are at least 2^k elements in the set. (Therefore the depth of any tree in algorithm is at most $\log n$)
- **Pf:** By induction on k. When $k = 0$, this is true. If we merge roots with labels $k_1 > k_2$, the number of vertices only increases while the label stays the same. If $k_1 = k_2$, the merged tree has label k_1+1, and by induction, at least $2^{k_1} + 2^{k_2} = 2^{k_1+1}$ elements.
Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- \(O(m \log n)\) for sorting and \(O(m \log n)\) for union-find.

```
Kruskal(G, c) {
    Sort edges weights so that \(c_1 \leq c_2 \leq \ldots \leq c_m\).
    T = {}

    foreach (u ∈ V) make a set containing singleton u

    for i = 1 to m
        (u,v) = e_i
        if (u and v are in different sets) {
            T = T ∪ \{e_i\}
            merge the sets containing u and v
        }
    return T
}
```
Removing the assumption that edge weights are distinct

Suppose edge weights are not distinct, and Kruskal’s algorithm sorts edges so
\[w(e_1) \leq w(e_2) \leq ... \leq w(e_m) \]

Suppose Kruskal finds MST \(T \) of weight \(w(T) \), but the optimal solution \(T^* \) has weight \(w(T^*) < w(T) \).

Perturb each of the weights by a very small amount so that

\[w'(e_1) < w'(e_2) < ... < w'(e_m) \]

If the perturbation is small enough, \(w'(T^*) < w'(T) \). However, this contradicts the correctness of Kruskal’s algorithm, since the algorithm will still find \(T \)!
Greedy Algorithms

Kruskal's algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.