Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $G=(V, E)$ with realvalued edge weights c_{e}, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G=(V, E)$

$T, \sum_{e \in T} C_{e}=50$

Applications

MST is fundamental problem with diverse applications.

- Network design.
- telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
- traveling salesperson problem, Steiner tree
- Indirect applications.
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.

Greedy Algorithms

Simplifying assumption. All edge costs c_{e} are distinct.

Cut property. Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

e is in the MST

f is not in the MST

Greedy Algorithms

Simplifying assumption. All edge costs c_{e} are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. By contradiction

- Suppose $e=\{u, v\}$ does not belong to T^{*}.
- Adding e to T^{*} creates a cycle C in T^{*}.
- There is a path from u to v in $T^{*} \Rightarrow$ there exists another edge, say f, that leaves S.
- $T^{\prime}=T^{\star} \cup\{e\}-\{f\}$ is also a spanning tree.
- Since $c_{e}<c_{f}, \operatorname{cost}\left(T^{\prime}\right)<\operatorname{cost}\left(T^{*}\right)$.
- This is a contradiction. •

Greedy Algorithms

Simplifying assumption. All edge costs c_{e} are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^{*} does not contain f.

Pf. By contradiction

- Suppose f belongs to T^{\star}.
- Deleting from T^{\star} cuts T^{\star} into two connected components.
- There exists another edge, say e, that is in the cycle and connects the components.
- $T^{\prime}=T^{\star} \cup\{e\}-\{f\}$ is also a spanning tree.
- Since $c_{e}<c_{f}, \operatorname{cost}\left(T^{\prime}\right)<\operatorname{cost}\left(T^{*}\right)$.
- This is a contradiction. •

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert $e=(u, v)$ into Taccording to cut property where S = set of nodes in u's connected component.

Case 1

Case 2

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find.

```
Kruskal (G, c) {
    Sort edges weights so that col }\leq\mp@subsup{c}{2}{}\leq\ldots,\ldots\mp@subsup{c}{m}{}
    T={}
    foreach (u E V) make a set containing singleton u
    for i = 1 to m are u and v in different connected components?
        (u,v)= ei
        if (u and v are in different sets) {
            T=TU{的}
            merge the sets containing }u\mathrm{ and v
        }
    return T
}
```


Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex

$\{V, A, B, C\}$
$\{W, P, Q\}$

Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex

To check whether A, Q are in same connected component, follow pointers and check if root is the same.

Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex
- To merge sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).

Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex
- To merge sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).

Union Find Data Structure

- Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex
- To merge sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).

Union Find Data Structure

- To merge sets, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary).
- Claim: If the label of a root is k, there are at least $2^{\wedge} k$ elements in the set. (Therefore the depth of any tree in algorithm is at most $\log n$)

Union Find Data Structure

- Claim: If the label of a root is k, there are at least 2^{k} elements in the set. (Therefore the depth of any tree in algorithm is at most $\log n$)
- Pf: By induction on k. When $k=0$, this is true. If we merge roots with labels $k 1>k 2$, the number of vertices only increases while the label stays the same. If $k 1=k 2$, the merged tree has label $k 1+1$, and by induction, at least $2^{k 1}+2^{k 2}=2^{k 1+1}$ elements.

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find.

```
Kruskal(G, c) {
```



```
    T={}
    foreach (u E V) make a set containing singleton u
    for i = 1 to m
        (u,v)= ei
        if (u and v are in different sets) {
            T=TU}{\mp@subsup{e}{i}{}
            merge the sets containing }u\mathrm{ and v
        }
    return T
}
```

Removing the assumption that edge weights are distinct

Suppose edge weights are not distinct, and Kruskal's algorithm sorts edges so
$w(e 1) \leq w(e 2) \leq \ldots \leq w(e m)$
Suppose Kruskal finds MST T of weight $w(T)$, but the optimal solution T^{\star} has weight $w\left(T^{\star}\right)<w(T)$.

Perturb each of the weights by a very small amount so that
$w^{\prime}(e 1)<w^{\prime}(e 2)<. . .<w^{\prime}(e m)$
If the perturbation is small enough, $w^{\prime}\left(T^{\star}\right)<w^{\prime}(T)$. However, this contradicts the correctness of Kruskal's algorithm, since the algorithm will still find T !

Greedy Algorithms

Kruskal's algorithm. Start with $T=\{ \}$. Consider edges in ascending order of cost. Insert edge e in Tunless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T=E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.

