
3

Divide-and-Conquer

Divide-and-conquer.
! Break up problem into several parts.
! Solve each part recursively.
! Combine solutions to sub-problems into overall solution.

Most common usage.
! Break up problem of size n into two equal parts of size ½n.
! Solve two parts recursively.
! Combine two solutions into overall solution in linear time.
! Running time: O(n log n)

4

Mergesort

Mergesort.
! Divide array into two halves.
! Recursively sort each half.
! Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

Running time: T(n)

5

auxiliary array

smallest smallest

A G L O R H I M S T

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

A

6

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

G

7

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

H

8

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

I

9

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

L

10

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

M

11

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

O

12

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

R

13

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

S

14

auxiliary array

first half
exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

T

15

auxiliary array

first half
exhausted

second half
exhausted

A G L O R H I M S T

A G H I L M O R S T

Merging

Merge.
! Keep track of smallest element in each sorted half.
! Insert smallest of two elements into auxiliary array.
! Repeat until done.

16

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

€

T(n) ≤

 0 if n =1
T n /2# $()
solve left half
    

+ T n /2% &()
solve right half
    

+ n
merging
 otherwise

'

(
)

*
)

17

Proof by Recursion Tree

n

n/2n/2

n/4n/4n/4 n/4

2 2 2 2 2 2 2 2

n

n / 2k

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

"

$

% $

