Given directed graph with non-negative edge lengths $l_{u,v}$. Compute all shortest paths from s to every other vertex.
Disjkstra(s)

Set all vertices \(v \) undiscovered, \(d(v) = \infty \)
Set \(d(s) = 0 \), mark \(s \) discovered.

while there is edge from discovered vertex to undiscovered vertex,

let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v} \)
set \(d(v) = d(u) + l_{u,v} \), mark \(v \) discovered
Dijkstra's Algorithm
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u,v) be such edge minimizing $d(u) + l_{u,v}$
set $d(v) = d(u) + l_{u,v}$, mark v discovered
Dijkstra’s Algorithm

```
while there is edge from discovered vertex to undiscovered vertex,
    let (u,v) be such edge minimizing d(u) + l_{u,v}
    set d(v) = d(u) + l_{u,v}, mark v discovered
```
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
 let (u,v) be such edge minimizing d(u)+l_{u,v}
 set d(v) = d(u) + l_{u,v}, mark v discovered
Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex,
 let \((u,v)\) be such edge minimizing \(d(u)+l_{u,v}\)
 set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex, let (u,v) be such edge minimizing $d(u)+l_{u,v}$, set $d(v) = d(u) + l_{u,v}$, mark v discovered
while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing $d(u) + l_{u,v}$
set $d(v)$ = $d(u) + l_{u,v}$, mark v discovered
Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex,
 let (u,v) be such edge minimizing \(d(u) + l_{u,v}\)
 set \(d(v) = d(u) + l_{u,v}\), mark v discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u) + l_{u,v}
set d(v) = d(u) + l_{u,v}, mark v discovered
Dijkstra’s Algorithm

While there is edge from discovered vertex to undiscovered vertex, let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\), set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered.
while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing \(d(u) + l_{u,v} \)
set \(d(v) = d(u) + l_{u,v} \), mark v discovered
Dijkstra's Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let (u,v) be such edge minimizing d(u) + l_{u,v}
set d(v) = d(u) + l_{u,v}, mark v discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Disjkstra(s)

Set all vertices v undiscovered, \(d(v) = \infty \)

Set \(d(s) = 0 \), mark s discovered.

while there is edge from undiscovered vertex to discovered vertex,

let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v} \)

set \(d(v) = d(u) + l_{u,v} \), mark v discovered

Correctness analysis:

Prove that if v is discovered \(d(v) \) is distance of v from s.

Initially this is true, since \(d(s) = 0 \), and s is only discovered vertex.

Let v be next discovered vertex, using edge \((u,v)\). \(d(v) = d(u) + l_{u,v} \). Then distance of v from s is at most \(d(v) \) since \(d(u) \) is correct.

If distance v from s is < \(d(v) \), must be \(v' \) s.t.

\[d(u') + l_{u',v'} < d(u) + l_{u,v} \]

This contradicts algorithm, \(v' \) would be chosen instead of v.
Disjkstra(s)
Set all vertices v undiscovered, d(v) = ∞
Set d(s) = 0, mark s discovered.
while there is edge from undiscovered vertex to discovered vertex,
 let (u,v) be such edge minimizing d(u) + l_{u,v}
 set d(v) = d(u) + l_{u,v}, mark v discovered

Running time analysis:
O(mn).
Heaps

Supported operations:

binary tree, every vertex has value at most that of its children
Heaps

Supported operations:
delete min: delete root, replace with last leaf, swap with min-child until order restored.

Binary tree, every vertex has value at most that of its children.
Heaps

Binary tree, every vertex has value at most that of its children

Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.
Heaps

Supported operations:
delete min: delete root, replace with last leaf, swap with min-child until order restored.

Binary tree, every vertex has value at most that of its children.
Heaps

Supported operations:
delete min: delete root, replace with last leaf, swap with min-child until order restored.

binary tree, every vertex has value at most that of its children
Heaps

Supported operations:
delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node: bubble up value until order restored

binary tree, every vertex has value at most that of its children
Heaps

binary tree, every vertex has value at most that of its children

Supported operations:

delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node: bubble up value until order restored
Heaps

Supported operations:
delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node: bubble up value until order restored

binary tree, every vertex has value at most that of its children
Heaps

Supported operations:
delete min: delete root, replace with last leaf, swap with min-child until order restored.

reduce value of node: bubble up value until order restored

all operations take $O(\log n)$ time
Disjkstra(s)
Set all vertices v undiscovered, d(v) = ∞
Set d(s) = 0, mark s discovered.
while there is edge from undiscovered vertex to discovered vertex,
 let (u,v) be such edge minimizing d(u) + l_{u,v}
 set d(v) = d(u) + l_{u,v}, mark v discovered

Running time analysis:
O(mn).

Disjkstra(s)
Set all vertices v undiscovered, d(v) = ∞
Set d(s) = 0, mark s discovered. Make heap.
while heap is not empty,
 delete u with minimum d(u) value from heap
 for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.

Running time analysis:
O((m+n) log n).
Dijkstra’s Algorithm

while heap is not empty,
 delete u with minimum d(u) value from heap
 for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
 delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
 delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra's Algorithm

while heap is not empty,
delete u with minimum $d(u)$ value from heap
for each edge (u,v)
 if $d(v) > d(u) + l_{u,v}$, update $d(v) = d(u) + l_{u,v}$.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
 delete u with minimum $d(u)$ value from heap

for each edge (u,v)
 if $d(v) > d(u) + l_{u,v}$, update $d(v) = d(u) + l_{u,v}$.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
 delete u with minimum \(d(u)\) value from heap
for each edge \((u,v)\)
 if \(d(v) > d(u) + l_{u,v}\), update \(d(v) = d(u) + l_{u,v}\).
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
while heap is not empty,
 delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while heap is not empty,
 delete u with minimum d(u) value from heap
for each edge (u,v)
 if d(v) > d(u) + l_{u,v}, update d(v) = d(u) + l_{u,v}.
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u) + l_{u,v}
set d(v) = d(u) + l_{u,v}, mark v discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u, v) be such edge minimizing \(d(u) + l_{u,v} \)
set \(d(v) = d(u) + l_{u,v} \), mark v discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u)+l_{u,v}
set d(v) = d(u) + l_{u,v}, mark v discovered
while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from undiscovered vertex to discovered vertex, let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\), set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra's Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex, let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\), set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing d(u) + \(l_{u,v} \)
set \(d(v) = d(u) + l_{u,v} \), mark v discovered
Dijkstra's Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing \(d(u) + l_{u,v} \)
set \(d(v) = d(u) + l_{u,v} \), mark v discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
 let (u,v) be such edge minimizing \(d(u) + l_{u,v} \)
 set \(d(v) = d(u) + l_{u,v} \), mark \(v \) discovered
while there is edge from undiscovered vertex to discovered vertex, let \((u,v)\) be such edge minimizing \(d(u)+l_{u,v}\). set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered.
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from undiscovered vertex to discovered vertex, let (u,v) be such edge minimizing d(u) + l_{u,v}
set d(v) = d(u) + l_{u,v}, mark v discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered

Diagram of Dijkstra’s Algorithm with vertices and edges labeled.
while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

```plaintext
while there is edge from undiscovered vertex to discovered vertex,
  let (u,v) be such edge minimizing \( d(u) + l_{u,v} \)
  set \( d(v) = d(u) + l_{u,v} \), mark v discovered
```
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u, v) be such edge minimizing \(d(u) + l_{u,v} \)
set \(d(v) = d(u) + l_{u,v} \), mark v discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra's Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing $d(u) + l_{u,v}$
set $d(v) = d(u) + l_{u,v}$, mark v discovered
while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing $d(u) + l_{u,v}$
set $d(v) = d(u) + l_{u,v}$, mark v discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
Dijkstra’s Algorithm

while there is edge from undiscovered vertex to discovered vertex, let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from undiscovered vertex to discovered vertex,
let (u,v) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark v discovered.
What about negative edge weights? Assume no negative cycles.
Claim: If graph has no negative length cycles, then shortest walk (walk = path where vertices can repeat) from s to v has at most $n-1$ edges, and must be a path.

Pf: Suppose not. Then by pigeonhole principle, the shortest walk must contain a cycle! Removing it gives a shorter walk. Contradiction.
Bellman-Ford
For all vertices set \(d(v) = \infty \)
Set \(d(s) = 0 \)
\textbf{for} \(i=1,2,\ldots,n-1 \)
\textbf{for} every edge \((u,v)\)
\textbf{if} \(d(v) > d(u) + l_{u,v} \), update \(d(v) = d(u) + l_{u,v} \).
Bellman-Ford
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
update (u,v):
\[d(v) = \min \{ d(v) + l_{(u,v)} \} \]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
Bellman-Ford

update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
update \((u,v)\):

\[d(v) = \min\{d(v) + l_{(u,v)}\} \]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\} \]
update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
Bellman-Ford

update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update (u,v):
\[d(v) = \min\{d(v) + \ell(u,v)\} \]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\} \]
update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min \{d(v) + l_{(u,v)}\} \]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u, v)\):

\[d(v) = \min \{d(v) + l_{(u,v)}\} \]
Bellman-Ford

update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update (u,v):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v) \):
\[
d(v) = \min\{d(v) + I_{(u,v)}\}
\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
update \((u,v)\):
\[d(v) = \min\{d(v) + l_{(u,v)}\}\]
Bellman-Ford

update \((u,v)\):
\[
d(v) = \min\{d(v) + l_{(u,v)}\}
\]
Bellman-Ford Algorithm

For all vertices set $d(v) = \infty$.
Set $d(s) = 0$

for $i=1,2,...,n-1$
 for every edge (u,v)
 if $d(v) > d(u) + l_{u,v}$, update $d(v) = d(u) + l_{u,v}$.

Claim: If graph has no negative length cycles, then for every v, $d(v) \geq \text{distance}(s,v)$.
Bellman-Ford Algorithm

For all vertices set $d(v) = \infty$

Set $d(s) = 0$

for $i=1,2,...,n-1$

 for every edge (u,v)

 if $d(v) > d(u) + l_{u,v}$, update $d(v) = d(u) + l_{u,v}$.

Claim: If graph has no negative length cycles, then for every v, $d(v) \geq \text{distance}(s,v)$.

Pf: Initially it is true. If we update $d(v) = d(u) + l_{u,v}$, then $d(v)$

= $d(u) + l_{u,v}$

$\geq \text{distance}(s,u) + l_{u,v}$

$\geq \text{distance}(s,v)$
Bellman-Ford Algorithm
For all vertices set \(d(v) = \infty \)
Set \(d(s) = 0 \)
for \(i=1,2,...,n-1 \)
 for every edge \((u,v) \)
 if \(d(v) > d(u) + l_{u,v} \), update \(d(v) = d(u) + l_{u,v} \).

Claim: If graph has no negative length cycles, then for every \(v \), \(d(v) \geq \text{distance}(s,v) \).

Claim: If \((s,u_1),(u_1,u_2),\ldots,(u_{k-1},u_k)\) occur as a subsequence in the sequence of edge updates of algorithm, then
\[d(u_k) \leq l_{s,u_1} + l_{u_1,u_2} + \ldots + l_{u_{k-1},u_k} \]

Pf: After \((s,u_1)\) is updated, \(d(u_1) \) is at most \(d(s) + l_{s,u_1} = l_{s,u_1} \).
After \((u_1,u_2)\) is updated, \(d(u_2) \) is at most \(l_{s,u_1} + l_{u_1,u_2} \).
...
Claim: If graph has no negative length cycles, then for every v, d(v) ≥ distance(s,v).

Claim: If (s,u_1),(u_1,u_2),...,(u_{k-1},u_k) occur as a subsequence in the sequence of edge updates of algorithm, then d(u_k) ≤ |s,u_1|+|u_1,u_2|+...+|u_{k-1},u_k|

Claim: Every sequence of n-1 edges occurs as a subsequence of the edge sequence used in the algorithm, so d(u) is at most distance(s,u) at the end.
Bellman-Ford Algorithm
For all vertices set $d(v) = \infty$
Set $d(s) = 0$
\textbf{for} i=1,2,...,n-1
\hspace{1cm} \textbf{for} every edge (u,v)
\hspace{2cm} \textbf{if} $d(v) > d(u) + l_{u,v}$, update $d(v) = d(u) + l_{u,v}$.

Running time analysis:
$O((m+n)n)$.
Detecting Negative Cycles

• Run Bellman-Ford n times. If any value $d(v)$ changes in the n’th iteration, there is a negative cycle!